CONJECTURE (GENERAL FERMAT NUMBERS)

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Let's consider a, b integers ≥ 2 and k an integer such that $a, c=1$.
One constructs the function $P(k)=a^{b^{k}}+c$, where $k \in 0,1,2, \ldots$.
Then:
a) For any given triplet a, b, c there is at least k_{0} such that $P\left(k_{0}\right)$ is prime.
b) There doesn't exist a triplet a, b, c such that $P(k)$ is prime for all $k \geq 0$.
c) Is it possible to find a triplet a, b, c such that $P(k)$ is prime for infinitely many k 's?

