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 Carmichaël’s conjecture is the following: “the equation ϕ(x) = n  cannot have a 
unique solution,  (∀)n ∈N , where ϕ  is the Euler’s function”. R. K. Guy presented in [1] 
some results on this conjecture; Carmichaël himself proved that, if n0  does not verify his 
conjecture, then n0 > 1037 ; V. L. Klee [2] improved to n0 > 10400 , and P. Masai & A. 
Valette increased to n0 > 1010000 . C. Pomerance [4] wrote on this subject too. 
 In this article we prove that the equation ϕ(x) = n  admits a finite number of 
solutions, we find the general form of these solutions, also we prove that, if x0  is the 
unique solution of this equation (for a n∈N ), then x0  is a multiple of 22 ⋅ 32 ⋅ 72 ⋅ 432  
(and x0 > 1010000  from [3]). 
 
 §1. Let x0  be a solution of the equation ϕ(x) = n . We consider n  fixed. We’ll try 
to construct another solution y0 ≠ x0 . 
 The first method: 
 We decompose x0 = a ⋅b  with ,  a b  integers such that (a, b) = 1. 

we look for an a ' ≠ a  such that ϕ(a ') = ϕ(a)  and (a’, b) = 1; it results that 
y0 = a '⋅b . 
 The second method: 
 Let’s consider x0 = q1

β1 ...qr
βr , where all  βi ∈N* , and q1,...,qr are distinct primes 

two by two; we look for an integer q  such that (q, x0) = 1 and ϕ(q)  divides 
x0 / (q1,...,qr ) ; then y0 = x0q /ϕ(q) . 
 We immediately see that we can consider q  as prime. 
 The author conjectures that for any integer x0 ≥ 2  it is possible to find, by means 
of one of these methods, a y0 ≠ x0  such that ϕ(y0 ) = ϕ(x0 ) . 
 
 Lemma 1. The equation ϕ(x) = n  admits a finite number of solutions,  (∀)n ∈N . 
 Proof. The cases n = 0,1  are trivial. 
 Let’s consider n  to be fixed, 2n ≥ . Let p1 < p2 < ... < ps ≤ n +1  be the sequence 
of prime numbers. If x0  is a solution of our equation (1) then 0x  has the form 
x0 = p1

α1 ...ps
α s , with all  α i ∈N . Each α i  is limited, because: 

 { }( ) 1, 2,..., ,  ( ) :  i
i ii s a p nα∀ ∈ ∃ ∈ ≥N . 
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Whence 0 ≤ α i ≤ ai +1, for all i . Thus, we find a wide limitation for the number of 

solutions: (ai + 2)
i=1

s

∏  

Lemma 2. Any solution of this equation has the form (1) and (2): 
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where, for 1 i s≤ ≤ , we have 0iε =  if 0iα = , or 1iε =  if 0iα ≠ . 
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whence it results the second form of x0 . 
 From (2) we find another limitation for the number of the solutions: 2s −1  
because each εi  has only two values, and at least one is not equal to zero. 
 
 §2. We suppose that x0  is the unique solution of this equation. 
 Lemma 3. x0  is a multiple of 22 ⋅ 32 ⋅ 72 ⋅ 432 . 
 Proof. We apply our second method. 
 Because ϕ(0) = ϕ(3)  and ϕ(1) = ϕ(2)  we take x0 ≥ 4 . 
 If 2 /| x0  then there is y0 = 2x0 ≠ x0  such that ϕ(y0 ) = ϕ(x0 ) , hence 2 | x0 ; if 
4 /| x0 ,  then we can take y0 = x0 / 2 . 
 If 3 /| x0  then y0 = 3x0 / 2 , hence 3 | x0 ; if  9 /| x0  then y0 = 2x0 / 3 , hence 9 | x0 ; 
whence 4 ⋅9 | x0 . 
 If 7 /| x0  then 0 07 / 6y x= , hence 07 | x ; if 049 | x/  then 0 06 / 7y x= hence 049 | x ; 

whence 04 9 49 | x⋅ ⋅ . 

If 043 | x/  then 0 043 / 42y x= , hence 043 | x ; if  432  /| x0  then y0 = 42x0 / 43 , 
hence 432  | x0 ;  whence  22 ⋅ 32 ⋅ 72 ⋅ 432 | x0 . 
 Thus x0 = 2γ 1 ⋅ 3γ 2 ⋅ 7γ 3 ⋅ 43γ 4 ⋅ t , with all γ i ≥ 2  and (t, 2@3@7@43) = 1 and  
x0 > 1010000  because n0 > 1010000 . 
 
 §3. Let’s consider m1 ≥ 3. If 5 /| x0  then 5x0 / 4 = y0 , hence 5 | x0 ; if  25 /| x0  then 
y0 = 4x0 / 5 , whence 25 | x0 . 
 We construct the recurrent set M of prime numbers: 

a) the elements 2,3,5 ∈M ; 
b) if the distinct odd elements e1,...,en ∈M  and bm = 1+ 2m ⋅ e1,...,en  is prime, 

with m = 1  or m = 2 , then bm ∈M ; 
c) any element belonging to M is obtained by the utilization (a finite number of 

times) of the rules a) or b) only. 
The author conjectures that M is infinite, which solves this case, because it results 

that there is an infinite number of primes which divide x0 . This is absurd. 
For example 2, 3, 5, 7, 11, 13, 23, 29, 31, 43, 47, 53, 61, … belong to M . 
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 The method from §3 could be continued as a tree (for γ 2 ≥ 3  afterwards γ 3 ≥ 3 , 
etc.) but its ramifications are very complicated… 
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