ON CARMICHAËL'S CONJECTURE

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Carmichaël's conjecture is the following: "the equation $\varphi(x)=n$ cannot have a unique solution, $(\forall) n \in \mathbb{N}$, where φ is the Euler's function". R. K. Guy presented in [1] some results on this conjecture; Carmichaël himself proved that, if n_{0} does not verify his conjecture, then $n_{0}>10^{37}$; V. L. Klee [2] improved to $n_{0}>10^{400}$, and P. Masai \& A. Valette increased to $n_{0}>10^{10000}$. C. Pomerance [4] wrote on this subject too.

In this article we prove that the equation $\varphi(x)=n$ admits a finite number of solutions, we find the general form of these solutions, also we prove that, if x_{0} is the unique solution of this equation (for a $n \in \mathbb{N}$), then x_{0} is a multiple of $2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 43^{2}$ (and $x_{0}>10^{10000}$ from [3]).
§1. Let x_{0} be a solution of the equation $\varphi(x)=n$. We consider n fixed. We'll try to construct another solution $y_{0} \neq x_{0}$.

The first method:
We decompose $x_{0}=a \cdot b$ with a, b integers such that $(a, b)=1$.
we look for an $a^{\prime} \neq a$ such that $\varphi\left(a^{\prime}\right)=\varphi(a)$ and $\left(a^{\prime}, b\right)=1$; it results that $y_{0}=a^{\prime} \cdot b$.

The second method:
Let's consider $x_{0}=q_{1}^{\beta_{1}} \ldots q_{r}^{\beta_{r}}$, where all $\beta_{i} \in \mathbb{N}^{*}$, and q_{1}, \ldots, q_{r} are distinct primes two by two; we look for an integer q such that $\left(q, x_{0}\right)=1$ and $\varphi(q)$ divides $x_{0} /\left(q_{1}, \ldots, q_{r}\right)$; then $y_{0}=x_{0} q / \varphi(q)$.

We immediately see that we can consider q as prime.
The author conjectures that for any integer $x_{0} \geq 2$ it is possible to find, by means of one of these methods, a $y_{0} \neq x_{0}$ such that $\varphi\left(y_{0}\right)=\varphi\left(x_{0}\right)$.

Lemma 1. The equation $\varphi(x)=n$ admits a finite number of solutions, $(\forall) n \in \mathbb{N}$.
Proof. The cases $n=0,1$ are trivial.
Let's consider n to be fixed, $n \geq 2$. Let $p_{1}<p_{2}<\ldots<p_{s} \leq n+1$ be the sequence of prime numbers. If x_{0} is a solution of our equation (1) then x_{0} has the form $x_{0}=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$, with all $\alpha_{i} \in \mathbb{N}$. Each α_{i} is limited, because:
$(\forall) i \in\{1,2, \ldots, s\},(\exists) a_{i} \in \mathbb{N}: p_{i}^{\alpha_{i}} \geq n$.

Whence $0 \leq \alpha_{i} \leq a_{i}+1$, for all i. Thus, we find a wide limitation for the number of solutions: $\prod_{i=1}^{s}\left(a_{i}+2\right)$

Lemma 2. Any solution of this equation has the form (1) and (2):

$$
x_{0}=n \cdot\left(\frac{p_{1}}{p_{1}-1}\right)^{\varepsilon_{1}} \cdots\left(\frac{p_{s}}{p_{s}-1}\right)^{\varepsilon_{s}} \in \mathbb{Z}
$$

where, for $1 \leq i \leq s$, we have $\varepsilon_{i}=0$ if $\alpha_{i}=0$, or $\varepsilon_{i}=1$ if $\alpha_{i} \neq 0$.
Of course, $n=\varphi\left(x_{0}\right)=x_{0}\left(\frac{p_{1}}{p_{1}-1}\right)^{\varepsilon_{1}} \cdots\left(\frac{p_{s}}{p_{s}-1}\right)^{\varepsilon_{s}}$,
whence it results the second form of x_{0}.
From (2) we find another limitation for the number of the solutions: $2^{s}-1$ because each ε_{i} has only two values, and at least one is not equal to zero.
§2. We suppose that x_{0} is the unique solution of this equation.
Lemma 3. x_{0} is a multiple of $2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 43^{2}$.
Proof. We apply our second method.
Because $\varphi(0)=\varphi(3)$ and $\varphi(1)=\varphi(2)$ we take $x_{0} \geq 4$.
If $2 \nless x_{0}$ then there is $y_{0}=2 x_{0} \neq x_{0}$ such that $\varphi\left(y_{0}\right)=\varphi\left(x_{0}\right)$, hence $2 \mid x_{0}$; if $4 \AA x_{0}$, then we can take $y_{0}=x_{0} / 2$.

If $3 k x_{0}$ then $y_{0}=3 x_{0} / 2$, hence $3 \mid x_{0}$; if $9 \ell x_{0}$ then $y_{0}=2 x_{0} / 3$, hence $9 \mid x_{0}$; whence $4.9 \mid x_{0}$.

If $7 \ell x_{0}$ then $y_{0}=7 x_{0} / 6$, hence $7 \mid x_{0}$; if $49 \nmid x_{0}$ then $y_{0}=6 x_{0} / 7$ hence $49 \mid x_{0}$; whence $4 \cdot 9 \cdot 49 \mid x_{0}$.

If $43 \nmid x_{0}$ then $y_{0}=43 x_{0} / 42$, hence $43 \mid x_{0}$; if $43^{2} \nmid x_{0}$ then $y_{0}=42 x_{0} / 43$, hence $43^{2} \mid x_{0}$; whence $2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 43^{2} \mid x_{0}$.

Thus $x_{0}=2^{\gamma_{1}} \cdot 3^{\gamma_{2}} \cdot 7^{\gamma_{3}} \cdot 43^{\gamma_{4}} \cdot t$, with all $\gamma_{i} \geq 2$ and $(t, 2 \cdot 3 \cdot 7 \cdot 43)=1$ and $x_{0}>10^{10000}$ because $n_{0}>10^{10000}$.
§3. Let's consider $Y_{l} \geq 3$. If $5 \ell x_{0}$ then $5 x_{0} / 4=y_{0}$, hence $5 \mid x_{0}$; if $25 \ell x_{0}$ then $y_{0}=4 x_{0} / 5$, whence $25 \mathrm{I} x_{0}$.

We construct the recurrent set M of prime numbers:
a) the elements $2,3,5 \in M$;
b) if the distinct odd elements $e_{1}, \ldots, e_{n} \in M$ and $b_{m}=1+2^{m} \cdot e_{1}, \ldots, e_{n}$ is prime, with $m=1$ or $m=2$, then $b_{m} \in M$;
c) any element belonging to M is obtained by the utilization (a finite number of times) of the rules a) or b) only.
The author conjectures that M is infinite, which solves this case, because it results that there is an infinite number of primes which divide x_{0}. This is absurd.

For example $2,3,5,7,11,13,23,29,31,43,47,53,61, \ldots$ belong to M.

The method from §3 could be continued as a tree (for $\gamma_{2} \geq 3$ afterwards $\gamma_{3} \geq 3$, etc.) but its ramifications are very complicated...

REFERENCES

[1] R. K. Guy, Monthly unsolved problems - 1969-1983. Amer. Math. Monthly, Vol. 90, No. 10/1983, p. 684.
[2] V. L. Klee, Amer. Math. Monthly 76, (969), p. 288.
[3] P. Masai \& A. Valette, A lower bound for a counter-example to Carmichaël’s conjecture, Boll. Unione Mat. Ital, (6) A (1982), pp. 313316.
[4] C. Pomerance, Math. Reviews: 49:4917.
[Published in "Gamma", XXIV, Year VIII, No. 2, February 1986, pp. 13-14.]

