Several Metrical Relations Regarding the Anti-Bisector, the Anti-Symmedian, the Anti-Height and their Isogonal

Professor Ion Pătrașcu – Frații Buzești National College, Craiova Professor Florentin Smarandache –University of New Mexico, U.S.A.

We suppose known the definitions of the isogonal cevian and isometric cevian; we remind that the anti-bisector, the anti-symmedian, and the anti-height are the isometrics of the bisector, of the symmedian and of the height in a triangle.

It is also known the following Steiner (1828) relation for the isogonal cevians AA_1 and AA'_1 :

$$\frac{BA_{1}}{CA_{1}} \cdot \frac{BA_{1}}{CA_{1}} = \left(\frac{AB}{AC}\right)^{2}$$

We'll prove now that there is a similar relation for the isometric cevians

Proposition

In the triangle *ABC* let consider AA_1 and AA'_1 two isometric cevians, then there exists the following relation:

$$\frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} \cdot \frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} = \left(\frac{\sin B}{\sin C}\right)^{2}$$
(*)

Proof

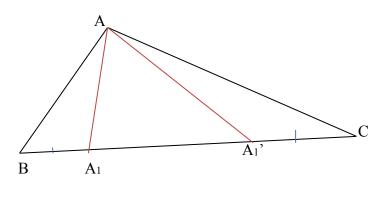


Fig. 1

The sinus theorem applied in the triangles ABA_1 , ACA_1 implies (see above figure)

$$\frac{\sin\left(\widehat{BAA}_{1}\right)}{BA_{1}} = \frac{\sin B}{AA_{1}} \tag{1}$$

$$\frac{\sin\left(\widehat{CAA_{1}}\right)}{CA_{1}} = \frac{\sin C}{AA_{1}}$$
(2)

From the relations (1) and (2) we retain

$$\frac{\sin\left(BAA_{1}\right)}{\sin\left(\widehat{CAA}_{1}\right)} = \frac{\sin B}{\sin C} \cdot \frac{BA_{1}}{CA_{1}}$$
(3)

The sinus theorem applied in the triangles $ACA_1^{'}, ABA_1^{'}$ leads to

$$\frac{\sin\left(\widehat{CAA_{1}}\right)}{A_{1}C} = \frac{\sin C}{AA_{1}}$$
(4)

$$\frac{\sin\left(\widehat{BAA'_{l}}\right)}{BA'_{l}} = \frac{\sin B}{AA'_{l}}$$
(5)

From the relations (4) and (5) we obtain:

$$\frac{\sin\left(\widehat{BAA'_{1}}\right)}{\sin\left(\widehat{CAA'_{1}}\right)} = \frac{\sin B}{\sin C} \cdot \frac{BA'_{1}}{CA'_{1}}$$
(6)

Because $BA_1 = CA_1$ and $A_1C = BA_1$) the cevians being isometric), from the relations (3) and (6) we obtain relation (*) from the proposition's enouncement.

Applications

1. If AA_1 is the bisector in the triangle ABC and AA_1' is its isometric, that is an anti-bisector, then from (*) we obtain

$$\frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} = \left(\frac{\sin B}{\sin C}\right)^{2}$$
(7)

Taking into account of the sinus theorem in the triangle ABC we obtain

$$\frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} = \left(\frac{AC}{AB}\right)^{2}$$
(8)

2. If AA_1 is symmetrian and AA_1' is an anti-symmetrian, from (*) we obtain

$$\frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} = \left(\frac{AC}{AB}\right)^{3}$$

Indeed, AA_1 being symmetrian it is the isogonal of the median AM and

$$\frac{\sin(\widehat{MAB})}{\sin(\widehat{MAC})} = \frac{\sin B}{\sin C} \text{ and}$$
$$\frac{\sin(\widehat{BAA_1})}{\sin(\widehat{CAA_1})} = \frac{\sin(\widehat{MAC})}{\sin(\widehat{MAB})} = \frac{\sin C}{\sin B} = \frac{AB}{AC}$$

3. If AA_1 is a height in the triangle ABC, $A_1 \in (BC)$ and AA'_1 is its isometric (antiheight), the relation (*) becomes.

$$\frac{\sin(BAA_{1}')}{\sin(\widehat{CAA_{1}'})} = \left(\frac{AC}{AB}\right)^{2} \cdot \frac{\cos C}{\cos B}$$

Indeed

$$sin\left(\widehat{BAA_{l}}\right) = \frac{BA_{l}}{AB}; sin\left(\widehat{CAA_{l}}\right) = \frac{CA_{l}}{AC}$$

therefore

$$\frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} = \frac{AC}{AB} \cdot \frac{BA_{1}}{CA_{1}}$$

From (*) it results
$$\frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} = \frac{AC}{AB} \cdot \frac{CA_{1}}{BA_{1}}$$

or

$$CA_1 = AC \cdot cos C$$
 and $BA_1 = AB \cdot cos B$

therefore

$$\frac{\sin\left(\widehat{BAA_{1}}\right)}{\sin\left(\widehat{CAA_{1}}\right)} = \left(\frac{AC}{AB}\right)^{2} \cdot \frac{\cos C}{\cos B}$$

4. If $AA_1^{"}$ is the isogonal of the anti-bisector $AA_1^{'}$ then

$$\frac{BA_{1}^{"}}{A_{1}^{"}C} = \left(\frac{AB}{AC}\right)^{3}$$
 (Maurice D'Ocagne, 1883)

Proof

The Steiner's relation for $AA_{l}^{''}$ and $AA_{l}^{'}$ is

$$\frac{BA_{l}''}{A_{l}'C} \cdot \frac{BA_{l}'}{A_{l}'C} = \left(\frac{AB}{AC}\right)^{2}$$

But AA_1 is the bisector and according to the bisector theorem $\frac{BA_1}{CA_1} = \frac{AB}{AC}$ but $BA_1 = CA_1$ and

 $A_1'C = BA_1$ therefore

$$\frac{CA_{1}}{BA_{1}} = \frac{AB}{AC}$$

and we obtain the D'Ocagne relation

5. If in the triangle ABC the cevian $AA_1^{"}$ is isogonal to the symmetrian $AA_1^{'}$ then

$$\frac{BA_{1}^{"}}{A_{1}^{"}C} = \left(\frac{AB}{AC}\right)^{"}$$

Proof

Because AA_1 is a symmetry from the Steiner's relation we deduct that

$$\frac{BA_1}{CA_1} = \left(\frac{AB}{AC}\right)^2$$

The Steiner's relation for $AA_{1}^{''}$, $AA_{1}^{'}$ gives us

$$\frac{BA_{l}^{"}}{A_{l}^{"}C} \cdot \frac{BA_{l}^{'}}{CA_{l}^{'}} = \left(\frac{AB}{AC}\right)$$

Taking into account the precedent relation, we obtain

$$\frac{BA_1''}{A_1'C} = \left(\frac{AB}{AC}\right)^4$$

6.

If $AA_1^{''}$ is the isogonal of the anti-height $AA_1^{'}$ in the triangle *ABC* in which the height AA_1 has $A_1 \in (BC)$ then

$$\frac{BA_{1}^{"}}{A_{1}^{"}C} = \left(\frac{AB}{AC}\right)^{3} \cdot \frac{\cos B}{\cos C}$$

Proof

If AA_1 is height in triangle $ABC A_1 \in (BC)$ then

$$\frac{BA_1}{A_1C} = \frac{AB}{AC} \cdot \frac{\cos B}{\cos C}$$

Because $AA_1^{'}$ is anti-median, we have $BA_1 = CA_1^{'}$ and $A_1C = BA_1^{'}$ then

$$\frac{BA_1''}{A_1''C} = \frac{AC}{AB} \cdot \frac{\cos C}{\cos B}$$

Observation

The precedent results can be generalized for the anti-cevians of rang k and for their isogonal.