K-Divisibility and K-Strong Divisibility Sequences

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

A sequence of rational integers g is called a divisibility sequence if and only if

$$
n|m \Rightarrow g(n)| g(m)
$$

for all positive integers n, m. [See [3] and [4]].
Also, g is called a strong divisibility sequence if and only if

$$
(g(n), g(m))=g((n, m))
$$

for all positive integers n, m. [See [1], [2], [3], [4], and [5]].
Of course, it is easy to show that the results of the Smarandache function $S(n)$ is neither a divisibility nor a strong divisibility sequence, because $4 \mid 20$ but $S(4)=4$ does not divide $5=S(20)$, and $(S(4), S(20))=(4,5)=1 \neq 4=S(4)=S((4,20))$.
a) However, is there an infinite subsequence of integers $M=\left\{m_{1}, m_{2}, \ldots\right\}$ such that S is a divisibility sequence on M ?
b) If $P\left\{p_{1}, p_{2}, \ldots\right\}$ is the set of prime numbers, the S is not a strong divisibility sequence on P, because for $i \neq j$ we have

$$
\left(S\left(p_{i}\right), S\left(p_{j}\right)\right)=\left(p_{i}, p_{j}\right)=1 \neq 0=S(1)=S\left(\left(p_{i}, p_{j}\right)\right)
$$

And the same question can be asked about P as it was asked in part a).
We introduce the following two notions, which are generalizations of a "divisibility sequence" and "strong divisibility sequence" respectively.

1) A k-divisibility sequence, where $l \geq 1$ is an integer, is defined in the following way:
If

$$
n|m \Rightarrow g(n)| g(m) \Rightarrow g(g(n))|g(g(m)) \Rightarrow \ldots \Rightarrow \underbrace{g(\ldots(g(n)) \ldots)}_{k \text { times }}| \underbrace{g(\ldots(m(m)) \ldots)}_{k \text { times }}
$$

for all positive integers n, m.
For example, $g(n)=n!$ is a k-divisibility sequence.
Also, any constant sequence is a k-divisibility sequence.
2) A k-strong divisibility sequence, where $k \geq 1$ is an integer, is defined in the following way:
If $\left(g\left(n_{1}\right), g\left(n_{2}\right), \ldots, g\left(n_{k}\right)\right)=g\left(\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right)$ for all positive integers $n_{1}, n_{2}, \ldots, n_{k}$.

For example, $g(n)=2 n$ is a k-strong divisibility sequence, because

$$
\left(2 n_{1}, 2 n_{2}, \ldots, 2 n_{k}\right)=2 *\left(n_{1}, n_{2}, \ldots, n_{k}\right)=g\left(\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right) .
$$

Remarks: If g is a divisibility sequence and we apply its definition k-times, we obtain that g is a k-divisibility sequence for any $k \geq 1$. The converse is also true. If g is k-strong divisibility sequence, $k \geq 2$, then g is a strong divisibility sequence. This can be seen by taking the definition of a k-strong divisibility sequence and replacing n by n_{1} and all n_{2}, \ldots, n_{k} by m to obtain $(g(n), g(m), \ldots, g(m))=g((n, m, \ldots, m))$ or $(g(n), g(m))=g((n, m))$.
The converse is also true, as

$$
\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\left(\left(\ldots\left(\left(n_{1}, n_{2}\right), n_{3}\right), \ldots\right), n_{k}\right) .
$$

Therefore, we found that:
a) The divisibility sequence notion is equivalent to a k-divisibility sequence, or a generalization of a notion is equivalent to itself.
Is there any paradox or dilemma?
b) The strong divisibility sequence is equivalent to the k-strong divisibility sequence notion
As before, a generalization of a notion is equivalent to itself.
Again, is there any paradox or dilemma?

REFERENCES

[1] Kimberling C. - Strong Divisibility Sequences With Nonzero Initial Term - The Fibonacci Quarterly, Vol. 16, 1978, pp. 541-544.
[2] Kimberling C. - Strong Divisibility Sequence and Some Conjectures The Fibonacci Quarterly, Vol. 17, 1979, pp. 13-17.
[3] Ward M. - Note on Divisibility Sequences - Bulletin of the American Mathematical Society, Vol. 38, 1937, pp. 725-732.
[4] Ward M. - A Note on Divisibility Sequences - Bulletin of the American Mathematical Society, Vol. 45, 1939, pp. 334-336.

