INTEGER NUMBER SOLUTIONS OF LINEAR SYSTEMS

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Definitions and Properties of the Integer Solution of a Linear System

Let's consider
(1) $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=\overline{1, m}$
a linear system with all coefficients being integer numbers (the case with rational coefficients is reduced to the same).

Definition 1. $x_{j}=x_{j}^{0}, j=\overline{1, n}$ is a particular integer solution of (1) if $x_{j}^{0} \in \mathbf{Z}, j=\overline{1, n}$ and $\sum_{j=1}^{n} a_{i j} x_{j}^{0}=b_{i}, \quad i=\overline{1, m}$.

Let's consider the functions $f_{j}: \mathbf{Z}^{h} \rightarrow \mathbf{Z}, j=\overline{1, n}$, where $h \in \mathrm{~N}^{*}$.
Definition 2. $x_{j}=f_{j}\left(k_{1}, \ldots, k_{h}\right), j=\overline{1, n}$ is the general integer solution for (1) if:
(a) $\sum_{j=1}^{n} a_{i j} f_{j}\left(k_{1}, \ldots, k_{h}\right)=b_{i}, \quad i=\overline{1, m}$, irrespective of $k_{1}, \ldots, k_{h} \in \mathbf{Z}$;
(b) Irrespective of $x_{j}=x_{j}^{0}, j=\overline{1, n}$ a particular integer solution of (1) there is $\left(k_{1}^{0}, \ldots, k_{h}^{0}\right) \in \mathbf{Z}$ such that $f_{j}\left(k_{1}^{0}, \ldots, k_{h}^{0}\right)=x_{j}, j=\overline{1, n}$. (In other words the general solution that comprises all the other solutions.)

Property 1.
A general solution of a linear system of m equations with n unknowns, $r(A)=m<n$, is undetermined $n-m$-times.

Proof:
We assume by reduction ad absurdum that it is of order $r, 1 \leq r \leq n-m$ (the case $r=0$, i.e., when the solution is particular, is trivial). It follows that the general solution is of the form:
$\left(\mathrm{S}_{1}\right) \quad\left\{\begin{array}{l}x_{1}=u_{11} p_{1}+\ldots+u_{1 r} p_{r}+v_{1} \\ \vdots \\ x_{n}=u_{n 1} p_{1}+\ldots+u_{n r} p_{r}+v_{n}, \quad u_{i h}, \forall i \in \mathbf{Z} \\ p_{h}=\text { parameters } \in \mathbf{Z}\end{array}\right.$
We prove that the solution is undetermined $n-m$-times.
The homogeneous linear system (1), resolved in r has the solution:

$$
\left\{\begin{array}{l}
x_{1}=\frac{D_{m+1}^{1}}{D} x_{m+1}+\ldots+\frac{D_{n}^{1}}{D} x_{n} \\
x_{m}=\frac{D_{m+1}^{m}}{D} x_{m+1}+\ldots+\frac{D_{n}^{m}}{D} x_{n}
\end{array}\right.
$$

Let $x_{i}=x_{i}^{0}, i=\overline{1, n}$, be a particular solution of the linear system (1).
Considering

$$
\left\{\begin{array}{l}
x_{m+1}=D \cdot k_{m+1} \\
: \\
x_{n}=D \cdot k_{n}
\end{array}\right.
$$

we obtain the solution

$$
\left\{\begin{array}{l}
x_{1}=D_{m+1}^{1} \cdot k_{m+1}+\ldots+D_{n}^{1} \cdot k_{n}+x_{1}^{0} \\
: \\
x_{m}=D_{m+1}^{m} \cdot k_{m+1}+\ldots+D_{n}^{m} \cdot k_{n}+x_{m}^{0} \\
x_{m+1}=D \cdot k_{m+1}+x_{m+1}^{0} \\
: \\
x_{n}=D \cdot k_{n}+x_{n}^{0}, \quad k_{j}=\text { parameters } \in \mathbf{Z}
\end{array}\right.
$$

which depends on the $n-m$ independent parameters, for the system (1). Let the solution be undetermined $n-m$-times:

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m}+d_{1} \tag{2}\\
: \\
x_{n}=c_{n 1} k_{1}+\ldots+u_{n n-m} k_{n-m}+d_{n} \\
c_{i j}, d_{i} \in \mathbf{Z}, k_{j}=\text { parameters } \in \mathbf{Z}
\end{array}\right.
$$

(There are such solutions, we have proved it before.) Let the system be:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
: \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

$x_{i}=$ unknowns $\in \mathbf{Z}, a_{i j}, b_{i} \in \mathbf{Z}$.
I. The case $b_{i}=0, i=\overline{1, m}$ results in a homogenous linear system:

$$
\begin{array}{ll}
& a_{i 1} x_{i}+\ldots+a_{i n} x_{n}=0 ; i=\overline{1, m} . \\
\left.\Rightarrow \mathrm{S}_{2}\right) \quad & a_{i 1}\left(c_{i 1} k_{1}+\ldots+c_{1 n-m} k_{n-m}+d_{1}\right)+\ldots+a_{i n}\left(c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}+d_{n}\right)=0 \\
& 0=\left(a_{i 1} c_{11}+\ldots+a_{i n} c_{n 1}\right) k_{1}+\ldots+\left(a_{i 1} c_{1 n-m}+\ldots+a_{i n} c_{n n-m}\right) k_{n-m}+\left(a_{i 1} d_{1}+\ldots+a_{i n} d_{n}\right) \\
& \forall k_{j} \in \mathrm{Z}
\end{array}
$$

For $k_{1}=\ldots=k_{n-m}=0 \Rightarrow a_{i 1} d_{1}+\ldots+a_{i n} d_{n}=0$.
For $k_{1}=\ldots=k_{h-1}=k_{h+1}=\ldots=k_{n-m}=0$ and $k_{h}=1 \Rightarrow$
$\Rightarrow\left(a_{i 1} c_{i h}+\ldots+a_{i n} c_{n h}\right)+\left(a_{i 1} d_{1}+\ldots+a_{i n} d_{d}^{(n)}\right)=0 \Rightarrow$
$a_{i 1} c_{i h}+\ldots+a_{i n} c_{n h}=0, \forall i=\overline{1, m}, \forall h=\overline{1, n-m}$.
The vectors

$$
V_{h}=\left(\begin{array}{l}
c_{1 h} \\
: \\
: \\
c_{n h}
\end{array}\right), h=\overline{1, n-m}
$$

are the particular solutions of the system.
$V_{h}, h=\overline{1, n-m}$ also linearly independent because the solution is undetermined $n-m$-times $V_{1}, \ldots, V_{n-m}+d$ is a linear variety that includes the solutions of the system obtained from $\left(S_{2}\right)$.

Similarly for $\left(\mathrm{S}_{1}\right)$ we deduce that

$$
U_{s}=\left(\begin{array}{l}
U_{1 s} \\
: \\
: \\
U_{n s}
\end{array}\right), s=\overline{1, r}
$$

are particular solutions of the given system and are linearly independent, because $\left(\mathrm{S}_{1}\right)$ is undetermined $n-m$-times, and $V=\left(\begin{array}{l}V_{1} \\ : \\ : \\ V_{n}\end{array}\right)$ is a solution of the given system.

Case (a) $U_{1}, \ldots, U_{r}, V=$ linearly dependent, it follows that U_{1}, \ldots, U_{r} is a free sub-module of order $r<n-m$ of solutions of the given system, then, it follows that there are solutions that belong to $V_{1}, \ldots, V_{n-m}+d$ and which do not belong to U_{1}, \ldots, U_{r}, a fact which contradicts the assumption that $\left(\mathrm{S}_{1}\right)$ is the general solution.

Case (b) $U_{1}, \ldots, U_{r}, V=$ linearly independent.
$U_{1}, \ldots, U_{r}+\mathrm{V}$ is a linear variety that comprises the solutions of the given system, which were obtained from $\left(\mathrm{S}_{1}\right)$. It follows that the solution belongs to $V_{1}, \ldots, V_{n-m}+d$ and does
not belong to $U_{1}, \ldots, U_{r}+\mathrm{V}$, a fact which is a contradiction to the assumption that $\left(\mathrm{S}_{1}\right)$ is the general solution.
II. When there is an $i \in \overline{1, m}$ with $b_{i} \neq 0$ then non-homogeneous linear system

$$
a_{i 1} x_{i}+\ldots+a_{i n} x_{n}=b_{1}, i=\overline{1, m}
$$

$$
\left(\mathrm{S}_{2}\right) \Rightarrow a_{i 1}\left(c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m}+d_{1}\right)+\ldots+a_{i n}\left(c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}+d_{n}\right)=b_{i}
$$

it follows that
$\Rightarrow\left(a_{i 1} c_{11}+\ldots+a_{i n} c_{n 1}\right) k_{1}+\ldots+\left(a_{i 1} c_{1 n-m}+\ldots+a_{i n} c_{n n-m}\right) k_{n-m}+\left(a_{i 1} d_{1}+\ldots+a_{i n} d_{n}\right)=b_{i}$
For $k_{1}=\ldots=k_{n-m}=0 \Rightarrow a_{i 1} d_{1}+\ldots+a_{i n} d_{n}=b_{1}$;
For $k_{1}=\ldots=k_{j-1}=k_{j+1}=\ldots=k_{n-m}=0$ and $k_{j}=1 \Rightarrow$
$\Rightarrow a_{i 1} c_{1 j}+\ldots+a_{i n} c_{n j}+a_{i n} d_{1}+\ldots+a_{i n} d_{n}=b_{i}$ it follows that

$$
\left\{\begin{array}{l}
a_{i 1} c_{1 j}+\ldots+a_{i n} c_{n j}=0 \\
a_{i 1} d_{1}+\ldots+a_{i n} d_{n}=b_{i}
\end{array} ; \quad \forall i=\overline{1, m}, \forall j=\overline{1, n-m} .\right.
$$

$V_{j}=\left(\begin{array}{l}c_{1 j} \\ : \\ c_{n j}\end{array}\right), j=\overline{1, n-m}$, are linearly independent because the solution $\left(\mathrm{S}_{2}\right)$ is
undetermined $n-m$-times.

$$
V_{j}, j=\overline{1, n-m} \text {, and } d=\left(\begin{array}{l}
d_{1} \tag{?!}\\
: \\
d_{n}
\end{array}\right)
$$

are linearly independent.
We assume that they are not linearly independent. It follows that

$$
d=s_{1} V_{1}+\ldots+s_{n-m} V_{n-m}=\left(\begin{array}{l}
s_{1} c_{11}+\ldots+s_{n-m} c_{1 n-m} \\
: \\
s_{1} c_{n 1}+\ldots+s_{n-m} c_{n n-m}
\end{array}\right) .
$$

Irrespective of $i=\overline{1, m}$:

$$
\begin{aligned}
& b_{1}=a_{i 1} d_{1}+\ldots+a_{i n} d_{n}=a_{i 1}\left(s_{1} c_{11}+\ldots+s_{n-m} c_{1 n-m}\right)+\ldots+a_{i n}\left(s_{1} c_{n 1}+\ldots+s_{n-m} c_{n n-m}\right)= \\
& =\left(a_{i 1} c_{11}+\ldots+a_{i n} c_{n 1}\right) s_{1}+\ldots+\left(a_{i 1} c_{1 n-m}+\ldots+a_{i n} c_{n n-m}\right) s_{n-m}=0 .
\end{aligned}
$$

Then, $b_{i}=0$, irrespective of $i=\overline{1, m}$, contradicts the hypothesis (that there is an $i \in \overline{1, m}$, $\left.b_{i} \neq 0\right)$. It follows that $V_{1}, \ldots, V_{n-m}, d$ are linearly independent.
$V_{1}, \ldots, V_{n-m}+d$ is a linear variety that contains the solutions of the nonhomogeneous system, solutions obtained from $\left(S_{2}\right)$. Similarly it follows that
$G_{1}, \ldots, G_{r}+V$ is a linear variety containing the solutions of the non-homogeneous system, obtained from $\left(\mathrm{S}_{1}\right)$.
$n-m>r$ it follows that there are solutions of the system that belong to
$V_{1}, \ldots, V_{n-m}+d$ and which do not belong to $G_{1}, \ldots, G_{r}+V$, this contradicts the fact that $\left(\mathrm{S}_{1}\right)$ is the general solution. Then, it shows that the general solution depends on the $n-m$ independent parameters.

Theorem 1. The general solution of a non-homogeneous linear system is equal to the general solution of an associated linear system plus a particular solution of the nonhomogeneous system.

Proof:
Let's consider the homogeneous linear solution:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=0 \\
: \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=0
\end{array}, \quad(A X=0)\right.
$$

with the general solution:

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m}+d_{1} \\
: \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}+d_{n}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x_{1}=x_{1}^{0} \\
: \\
x_{n}=x_{n}^{0}
\end{array}\right.
$$

with the general solution a particular solution of the non-homogeneous linear system $A X=b$;

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m}+d+x_{1}^{0} \tag{?!}\\
: \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}+d_{n}+x_{n}^{0}
\end{array}\right.
$$

is a solution of the non-homogeneous linear system.
We note:

$$
A=\left(\begin{array}{lll}
a_{11} \ldots & a_{1 n} \\
: & & \\
a_{m 1} \ldots & \ldots & a_{m n}
\end{array}\right), \quad X=\left(\begin{array}{l}
x_{1} \\
: \\
x_{n}
\end{array}\right), \quad b=\left(\begin{array}{l}
b_{1} \\
: \\
b_{m}
\end{array}\right), 0=\left(\begin{array}{l}
0 \\
: \\
0
\end{array}\right)
$$

(vector of dimension m),

$$
K=\left(\begin{array}{l}
k_{1} \\
: \\
k_{n-m}
\end{array}\right), C=\left(\begin{array}{lll}
c_{11} \ldots & c_{1 n-m} \\
: \\
c_{n 1} & \ldots & c_{n n-m}
\end{array}\right), d=\left(\begin{array}{l}
d_{1} \\
: \\
d_{n}
\end{array}\right), x^{0}=\left(\begin{array}{l}
x_{1}^{0} \\
: \\
x_{n}^{0}
\end{array}\right)
$$

$$
A X=A\left(C k+d+x^{0}\right)=A(C k+d)+A X^{0}=b+0=b
$$

We will prove that irrespective of

$$
\begin{aligned}
& x_{1}=y_{1}^{0} \\
& : \\
& x_{n}=y_{n}^{0}
\end{aligned}
$$

there is a particular solution of the non-homogeneous system

$$
\left\{\begin{array}{c}
k_{1}=k_{1}^{0} \in \mathbf{Z} \\
k_{n-m}=k_{n-m}^{0} \in \mathbf{Z}
\end{array},\right.
$$

with the property:

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}^{0}+\ldots+c_{1 n} k_{n-m}^{0}+d_{1}+x_{1}^{0}=y_{1}^{0} \\
: \\
x_{n}=c_{n 1} k_{1}^{0}+\ldots+c_{n n-m} k_{n-m}^{0}+d_{1}+x_{n}^{0}=y_{n}^{0}
\end{array}\right.
$$

We note $Y^{0}=\left(\begin{array}{l}y_{1}^{0} \\ : \\ y_{n}^{0}\end{array}\right)$.
We'll prove that those $k_{j}^{0} \in \mathbf{Z}, j=\overline{1, n-m}$ are those for which $A\left(C X^{0}+d\right)=0$ (there are such $X_{j}^{0} \in \mathbf{Z}$ because

$$
\left\{\begin{array}{l}
x_{1}=0 \\
: \\
x_{n}=0
\end{array}\right.
$$

is a particular solution of the homogeneous linear system and $X=C K+d$ is a general solution of the non-homogeneous linear system)
$A C K^{0}+d+X^{0}-Y^{0}=A C K^{0}+d+A X^{0}-A Y^{0}=0+b-b=0$.

Property 2 The general solution of the homogeneous linear system can be written under the form:

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m} \tag{SG}\\
: \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}
\end{array}\right.
$$

k_{j} is a parameter that belongs to \mathbf{Z} (with $d_{1}=d_{2}=\ldots=d_{n}=0$).
Poof:
$(\mathrm{SG})=$ general solution. It results that (SG) is undetermined $(n-m)$-times.
Let's consider that (SG) is of the form

$$
\left\{\begin{array}{l}
x_{1}=c_{11} p_{1}+\ldots+c_{1 n-m} p_{n-m}+d_{1} \tag{3}\\
: \\
x_{n}=c_{n 1} p_{1}+\ldots+c_{n n-m} p_{n-m}+d_{n}
\end{array}\right.
$$

with not all $d_{i}=0$; we'll prove that it can be written under the form (2); the system has the trivial solution

$$
\left\{\begin{array}{l}
x_{1}=0 \in \mathbf{Z} \\
: \\
x_{n}=0 \in \mathbf{Z}
\end{array}\right.
$$

it results that there are $p_{j} \in \mathbf{Z}, j=\overline{1, n-m}$,

$$
\left\{\begin{array}{l}
x_{1}=c_{11} p_{1}^{0}+\ldots+c_{1 n-m} p_{n-m}^{0}+d_{1}=0 \tag{4}\\
: \\
x_{n}=c_{n 1} p_{1}^{0}+\ldots+c_{n n-m} p_{n-m}^{0}+d_{n}=0
\end{array}\right.
$$

Substituting $p_{j}=k_{j}+p_{j}^{0}, j=\overline{1, n-m}$ in (3)

$$
\left.\left.\begin{array}{l}
k_{j} \in \mathbf{Z} \\
p_{j}^{0} \in \mathbf{Z}
\end{array}\right\} \Rightarrow p_{j} \in \mathbf{Z}, \quad, \begin{array}{c}
p_{j} \in \mathbf{Z} \\
p_{j}^{0} \in \mathbf{Z}
\end{array}\right\} \Rightarrow k_{j}=p_{j}-p_{j}^{0} \in \mathbf{Z}
$$

which means that that they do not make any restrictions.
It results that

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m}+\left(c_{11} p_{1}^{0}+\ldots+c_{1 n-m} p_{n-m}^{0}+d_{1}\right) \\
\vdots \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}+\left(c_{n 1} p_{1}^{0}+\ldots+c_{n n-m} p_{n-m}^{0}+d_{n}\right)
\end{array}\right.
$$

But

$$
c_{h 1} p_{1}^{0}+\ldots+c_{h n-m} p_{n-m}^{0}+d_{h}=0, h=\overline{1, n}(\text { from (4)). }
$$

Then the general solution is of the form:

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m} \\
: \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}
\end{array}\right.
$$

$k_{j}=$ parameters $\in \mathbf{Z}, j=\overline{1, n-m}$; it results that $d_{1}=d_{2}=\ldots=d_{n}=0$.
Theorem 2. Let's consider the homogeneous linear system:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=0 \\
: \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=0
\end{array},\right.
$$

$r(A)=m,\left(a_{h 1}, \ldots, a_{h n}\right)=1, h=\overline{1, m}$ and the general solution

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m} \\
\vdots \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}
\end{array}\right.
$$

then

$$
a_{h 1}, \ldots, a_{h i-1}, a_{h i+1}, \ldots, a_{h n} \mid c_{i 1}, \ldots, c_{i n-m}
$$

irrespective of $h=\overline{1, m}$ and $i=\overline{1, n}$.
Proof:
Let's consider some arbitrary $h \in \overline{1, m}$ and some arbitrary $i \in \overline{1, n}$;

$$
a_{h 1} x_{1}+\ldots+a_{h i-1} x_{i-1}+a_{h i+1} x_{i+1}+\ldots+a_{h n} x_{n}=a_{h i} x_{i}
$$

Because

$$
a_{h 1}, \ldots, a_{h i-1}, a_{h i+1}, \ldots, a_{h n} \mid a_{h i}
$$

it results that

$$
d=a_{h 1}, \ldots, a_{h i-1}, a_{h i+1}, \ldots, a_{h n} \mid x_{i}
$$

irrespective of the value of x_{i} in the vector of particular solutions.
For $k_{2}=k_{3}=\ldots=k_{n-m}=0$ and $k_{1}=1$ we obtain the particular solution:

$$
\left\{\left.\begin{array}{l}
x_{1}=c_{11} \\
: \\
x_{i}=c_{i 1} \\
: \\
x_{n}=c_{n 1}
\end{array} \Rightarrow d \right\rvert\, c_{i 1}\right.
$$

For $k_{1}=k_{2}=\ldots=k_{n-m-1}=0$ and $k_{n-m}=1$ it results the following particular solution:

$$
\left\{\begin{array}{l}
x_{1}=c_{1 n-m} \\
: \\
x_{i}=c_{i n-m} \Rightarrow d \mid c_{i n-m} \\
: \\
x_{n}=c_{n n-m}
\end{array}\right.
$$

hence

$$
d\left|c_{i j}, j=\overline{1, n-m} \Rightarrow d\right|\left(c_{i 1}, \ldots, c_{i n-m}\right) .
$$

Theorem 3.

If

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 n-m} k_{n-m} \\
: \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n n-m} k_{n-m}
\end{array}\right.
$$

$k_{j}=$ parameters $\in \mathbf{Z}, c_{i j} \in \mathbf{Z}$ being given, is the general solution of the homogeneous linear system

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=0 \\
: \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=0
\end{array}, \quad r(A)=m<n\right.
$$

then $c_{1 j}, \ldots, c_{n j}=1, \forall j=\overline{1, n-m}$.
Proof:
We assume, by reduction ad absurdum, that there is $j_{0} \in \overline{1, n-m}: c_{1 j_{0}}, \ldots, c_{n j_{0}}=d$ we consider the maximal co-divisor >0; we reduce to the case when the maximal codivisor is $-d$ to the case when it is equal to d (non restrictive hypothesis); then the general solution can be written under the form:

$$
\left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 j_{0}}^{\prime} d k_{j_{0}}+\ldots+c_{1 n-m} k_{n-m} \tag{5}\\
: \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n j_{0}}^{\prime} d k_{j_{0}}+\ldots+c_{n n-m} k_{n-m}
\end{array}\right.
$$

where $d=c_{i j_{0}}, . ., c_{n j_{0}}, c_{i j_{0}}=d \cdot c_{i j_{0}}^{\prime}$ and $c_{i j_{0}}^{\prime}, \ldots, c_{n j_{0}}^{\prime}=1$.
We prove that

$$
\left\{\begin{array}{l}
x_{1}=c_{1 j_{0}}^{\prime} \\
: \\
x_{n}=c_{n j_{0}}^{\prime}
\end{array}\right.
$$

is a particular solution of the homogeneous linear system.
We'll note:

$$
\left.C=\left(\begin{array}{ccccc}
c_{11} & \ldots & c_{i_{0}}^{\prime} & d & \ldots \\
c_{1 n-m} \\
: & \vdots & & \vdots \\
c_{n 1} & \ldots & c_{n j_{0}}^{\prime} & d & \ldots
\end{array}\right), c_{n n-m}\right), k=\left(\begin{array}{l}
k_{1} \\
\vdots \\
k_{j_{0}} \\
\vdots \\
k_{n-m}
\end{array}\right)
$$

$x=C \cdot k$ the general solution.
We know that $A X=0 \Rightarrow A(C K)=0, \quad A=\left(\begin{array}{lll}a_{11} \ldots & a_{1 n} \\ : \\ a_{n 1} \ldots & \\ m n\end{array}\right)$.
We assume that the principal variables are x_{1}, \ldots, x_{m} (if not, we have to renumber). It follows that x_{m+1}, \ldots, x_{n} are the secondary variables.

For $k_{1}=\ldots=k_{j_{0}-1}=k_{j_{0}+1}=\ldots=k_{n-m}=0$ and $k_{j_{0}}=1$ we obtain a particular solution of the system

$$
\left\{\begin{array}{l}
x_{1}=c_{1 j_{0}}^{\prime} d \\
: \\
x_{n}=c_{n j_{0}}^{\prime} d
\end{array} \Rightarrow\left(\begin{array}{l}
c_{1 j_{0}}^{\prime} d \\
: \\
c_{n j_{0}}^{\prime} d
\end{array}\right)=d \cdot A\left(\begin{array}{l}
c_{1 j_{0}}^{\prime} \\
: \\
c_{n j_{0}}^{\prime}
\end{array}\right) \Rightarrow A\left(\begin{array}{l}
c_{1 j_{0}}^{\prime} \\
: \\
c_{n j_{0}}^{\prime}
\end{array}\right)=0 \Rightarrow\left\{\begin{array}{l}
x_{1}=c_{1 j_{0}}^{\prime} \\
: \\
x_{n}=c_{n j_{0}}^{\prime}
\end{array}\right.\right.
$$

is the particular solution of the system.
We'll prove that this particular solution cannot be obtained by

$$
\begin{align*}
& \left\{\begin{array}{l}
x_{1}=c_{11} k_{1}+\ldots+c_{1 j_{0}}^{\prime} d k_{j_{0}}+\ldots+c_{1 n-m} k_{n-m}=c_{1 j_{0}}^{\prime} \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n j_{0}}^{\prime} d k_{j_{0}}+\ldots+c_{n n-m} k_{n-m}=c_{n j_{0}}^{\prime}
\end{array}\right. \tag{6}\\
& \left\{\begin{array}{l}
x_{m+1}=c_{m+1} k_{1}+\ldots+c_{m+1}^{\prime} d k_{j_{0}}+\ldots+c_{m+1, n-m} k_{n-m}=c_{m+1 j_{0}}^{\prime} \\
x_{n}=c_{n 1} k_{1}+\ldots+c_{n j_{0}}^{\prime} d k_{j_{0}}+\ldots+c_{n n-m} k_{n-m}=c_{n j_{0}}^{\prime}
\end{array}\right. \tag{7}\\
& \left.\Rightarrow k_{j_{0}}=\frac{\left|\begin{array}{cccc}
c_{m+1,1} & \ldots & c_{m+1 j} & \ldots \\
\vdots & & c_{m+1, n-m} \\
c_{h, 1} & \ldots & c_{n j} & \ldots \\
\left|\begin{array}{cccc}
c_{m+1,1} & \ldots & c_{m+1 j_{0}}^{\prime} & c_{n, n-m}
\end{array}\right| & \ldots & c_{m+1, n-m} \\
: & & 0 & 0 . \\
c_{h, 1} & \ldots & c_{n j}^{\prime} d & \ldots \\
c_{n, n-m}
\end{array}\right|}{} \begin{array}{l}
c_{n, n}
\end{array} \right\rvert\,
\end{align*}
$$

(because $d \neq 1$).
It is important to point out the fact that those $k_{j}=k_{j}^{0}, j=\overline{1, n-m}$, that satisfy the system (7) also satisfy the system (6), because, otherwise (6) would not satisfy the definition of the solution of a linear system of equations (i.e., considering the system (7) the hypothesis was not restrictive). From $X_{j_{0}} \in \mathbf{Z}$ follows that (6) is not the general solution of the homogeneous linear system contrary to the hypothesis); then $c_{1 j}, \ldots, c_{n j}=1$, irrespective of $j=\overline{1, n-m}$.

Property 3. Let's consider the linear system

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
: \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

$$
a_{i j}, b_{i} \in \mathbf{Z}, r(A)=m<n, x_{j}=\text { unknowns } \in \mathbf{Z}
$$

Resolved in \mathbf{P}, we obtain

$$
\left\{\begin{array}{l}
x_{1}=f_{1}\left(x_{m+1}, \ldots, x_{n}\right) \\
: \\
x_{m}=f_{m}\left(x_{m+1}, \ldots, x_{n}\right)
\end{array}, x_{1}, \ldots, x_{m}\right. \text { are the main variables, }
$$

where f_{i} are linear functions of the form:

$$
f_{i}=\frac{c_{m+1}^{i} x_{m+1}+\ldots+c_{n}^{i} x_{n}+e_{i}}{d_{i}}
$$

where $c_{m+j}^{i}, d_{i}, e_{i} \in \mathbf{Z} ; i=\overline{1, m}, j=\overline{1, n-m}$.
If $\frac{e_{i}}{d_{i}} \in \mathbf{Z}$ irrespective of $i=\overline{1, m}$ then the linear system has integer solution.
Proof:
For $1 \leq i \leq m, x_{i} \in \mathbf{Z}$, then $f_{j} \in \mathbf{Z}$. Let's consider

$$
\left\{\begin{array}{l}
x_{m+1}=u_{m+1} k_{m+1} \\
\vdots \\
x_{n}=u_{n} k_{n} \\
: \\
x_{1}=v_{m+1}^{1} k_{m+1}+\ldots+v_{n}^{1} k_{n}+\frac{e_{1}}{d_{1}} \\
: \\
x_{m}=v_{m+1}^{m} k_{m+1}+\ldots+v_{n}^{m} k_{n}+\frac{e_{m}}{d_{m}}
\end{array}\right.
$$

a solution, where u_{m+1} is the maximal co-divisor of the denominators of the fractions $\frac{c_{m+j}^{i}}{d_{i}}, i=\overline{1, m}, j=\overline{1, n-m}$ calculated after their complete simplification.
$v_{m+j}^{i}=\frac{c_{m+j}^{i} u_{m+j}}{d_{i}} \in \mathbf{Z}$ is a solution undetermined $(n-m)$-times which depends on $n-m$ independent parameters $\left(k_{m+1}, \ldots, k_{n}\right)$ but is not a general solution.

Property 4. Under the conditions of property 3 , if there is an $i_{0} \in \overline{1, m}: f_{i_{0}}=u_{m+1}^{i_{0}} x_{m+1}+\ldots+u_{n}^{i_{0}} x_{n}+\frac{e_{i_{0}}}{d_{i_{0}}}$ with $u_{m+j}^{i_{0}} \in \mathbf{Z}, j=\overline{1, n-m}$, and $\frac{e_{i_{0}}}{d_{i_{0}}} \notin \mathbf{Z}$ then the system does not have integer solution.

Proof:
$\forall x_{m+1}, \ldots, x_{n}$ in \mathbf{Z}, it results that $x_{i_{0}} \notin \mathbf{Z}$.

Theorem 4. Let's consider the linear system

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
: \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

$a_{i j}, b_{i} \in \mathbf{Z}, x_{j}=$ unknowns $\in \mathbf{Z}, r(A)=m<n$. If there are indices $1 \leq i_{1}<\ldots<i_{m} \leq n$, $i_{h} \in 1,2, . ., n, h=\overline{1, m}$, with the property:

$$
\begin{aligned}
& \Delta=\left|\begin{array}{cccc}
a_{1 i_{1}} & \ldots & a_{1 i_{m}} \\
a_{m i_{1}} & \ldots & a_{m i_{m}}
\end{array}\right| \neq 0 \text { and } \\
& \Delta_{x_{i_{1}}}=\left|\begin{array}{cccc}
b_{1} & a_{1 i_{2}} & \ldots & a_{1 i_{m}} \\
: & \vdots & & : \\
b_{m} & a_{m i_{2}} & \ldots & a_{m i_{m}}
\end{array}\right| \text { is divided by } \Delta \\
& \cdot \\
& \cdot \\
& \Delta_{x_{i_{m}}}=\left|\begin{array}{cccc}
a_{1 i_{1}} & \ldots & a_{1 i_{m-1}} & b_{1} \\
: & & : & : \\
a_{m i_{1}} & \ldots & a_{m i_{m-1}} & b_{m}
\end{array}\right| \text { is divided by } \Delta
\end{aligned}
$$

then the system has integer number solutions.
Proof:
We use property 3

$$
d_{i}=\Delta, i=\overline{1, m} ; e_{i_{h}}=\Delta_{x_{i_{h}}}, h=\overline{1, m}
$$

Note 1. It is not true in the reverse case.
Consequence 1. Any homogeneous linear system has integer number solutions (besides the trivial one); $r(A)=m<n$.

Proof:

$$
\Delta_{x_{i_{h}}}=0: \Delta, \text { irrespective of } h=\overline{1, m}
$$

Consequence 2. If $\Delta= \pm 1$, it follows that the linear system has integer number solutions.

Proof:
$\Delta_{x_{i_{h}}}:(\pm 1)$, irrespective of $h=\overline{1, m}$;
$\Delta_{x_{i_{h}}} \in \mathbf{Z}$.

