INEQUALITIES FOR THE INTEGER PART FUNCTION¹

Florentin Smarandache, Ph D Associate Professor Chair of Department of Math & Sciences University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

In this article we will prove some inequalities for the integer part function, and we'll give some applications in the number theory.

Theorem 1. For any x, y > 0 we have the following inequality:

(1) $[5x]+[5y] \ge [3x+y]+[3y+x],$

where [] means the integer part function.

Proof: We will use the notations: $x_1 = [x]$, $y_1 = [y]$, $u = \{x\}$, $v = \{y\}$, $x_1, y_1 \in \mathbb{N}$ and $u, v \in [0, 1)$. We can write the inequality (1) as:

 $x_1 + y_1 + [5u] + [5v] \ge [3u + v] + [3v + u].$

We distinguish the following cases:

 α) Let $u \ge v$. If $u \le 2v$, then $5v \ge 3v + u$ and $[5v] \ge [3v + u]$, analogously $5u \ge 3u + v$ and $[5u] \ge [3u + v]$, from where by addition we obtain (1).

 β) If u > 2v and 5u = a + b, 5v = c + d, $a, c \in \mathbb{N}$, $0 \le b < 1$, $0 \le d < 1$, then we have to prove the following inequality:

(2)
$$a+c+x_1+y_1 \ge \left[\frac{3a+c+3b+d}{5}\right] + \left[\frac{3c+a+3d+b}{5}\right].$$

But, considering that 1 > u > 2v, we obtain 5 > 5u > 10v, from where, 5 > a + b > 2c + 2d, thus a + b < 5 and $a \le 4$.

If a < 2c, then $a \le 2c-1$ and $a+1-2c \le 0$ thus a+b-2c < 0; contradiction with a+b-2c > 2d, thus $4 \ge a$, $a \ge 2c$, and 3b+d < 4, 3d+b < 4.

From $4 \ge a \ge 2c$ we have the cases from the following table, and in each of the nine cases is verified the inequality (2).

a 4	4	4	3	3	2	2	1	0
$c \mid 2$	1	0	0	1	1	0	0	0

Application 1. For any $m, n \in \mathbb{N}$, (5m)!(5n)! is divisible by m!n!(3m+n)!(3a+m)!

Proof: If p is a prime number, the power exponent of p in decomposition of m!

¹Together with Mihály Bencze and Florin Popovici

$$\begin{bmatrix} \frac{m}{p} \end{bmatrix} + \begin{bmatrix} \frac{m}{p^2} \end{bmatrix} + \dots$$

It is sufficient to prove that
$$\begin{bmatrix} \frac{5m}{r} \end{bmatrix} + \begin{bmatrix} \frac{5n}{r} \end{bmatrix} \ge \begin{bmatrix} \frac{m}{r} \end{bmatrix} + \begin{bmatrix} \frac{n}{r} \end{bmatrix} + \begin{bmatrix} \frac{3m+n}{r} \end{bmatrix} + \begin{bmatrix} \frac{3n+m}{r} \end{bmatrix}$$

for any $r \in \mathbb{N}, r \ge 2$.

If $m = rm_1 + x$, $n = rn_1 + y$, where $0 \le x < r$, $0 \le y < r$, $m, n \in \mathbb{Z}$, it is sufficient to prove that

$$\left[\frac{5x}{r}\right] + \left[\frac{5y}{r}\right] \ge \left[\frac{3x+y}{r}\right] + \left[\frac{3y+x}{r}\right],$$

but this inequality verifies the theorem 1.

Remark. If x, y > 0, then we have the inequality:

$$5x + 5y \ge x + y + 3x + y + 3y + x .$$

Theorem 2. (Szilárd András). If $x, y, z \ge 0$, then we have the inequality:

 $3x + 3y + 3z \ge x + y + z + x + y + y + z + z + x$.

Application 2. For any *a*, *b*, $c \in \mathbb{N}$, (3a)!(3b)!(3c)! is divisible by a!b!c!(a+b)!(b+c)!(c+a)!.

Proof: Let k_1, k_2, k_3 be the biggest power for which

$$p^{k_1} \mid 3a \ !, \ p^{k_2} \mid 3b \ !, \ p^{k_3} \mid 3c \ !$$

respectively, and r_i , $i \in \{1, 2, 3, 4, 5, 6\}$ the biggest power for which

$$p^{r_1} | a!, p^{r_2} | b!, p^{r_3} | c!, p^{r_4} | a+b !, p^{r_5} | b+c !, p^{r_6} | c+a !$$

respectively, then

 k_1

$$+k_{2}+k_{3} = \left(\left[\frac{3a}{p}\right]+\left[\frac{3a}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{3b}{p}\right]+\left[\frac{3b}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{3c}{p}\right]+\left[\frac{3c}{p^{2}}\right]+\ldots\right)$$

and

$$\sum_{i=1}^{6} r_i \left(\left[\frac{a}{p} \right] + \left[\frac{a}{p^2} \right] + \ldots \right) + \left(\left[\frac{b}{p} \right] + \left[\frac{b}{p^2} \right] + \ldots \right) + \left(\left[\frac{c}{p} \right] + \left[\frac{c}{p^2} \right] + \ldots \right) + \left(\left[\frac{a+b}{p} \right] + \left[\frac{a+b}{p^2} \right] + \ldots \right) + \left(\left[\frac{b+c}{p} \right] + \left[\frac{b+c}{p^2} \right] + \ldots \right) + \left(\left[\frac{c+a}{p} \right] + \left[\frac{c+a}{p^2} \right] + \ldots \right).$$

We have to prove that $k_1 + k_2 + k_3 \ge \sum_{i=1}^{n} r_i$, but this inequality reduces to

theorem 2.

Theorem 3. If $x, y, z \ge 0$, then we have the inequality:

$$2x + 2y + 2z \le x + y + z + x + y + z .$$

Application 3. If $a, b, c \in \mathbb{N}$, then a!b!c!(a+b+c)! is divisible by (2a)!(2b)!(2c)!.

Theorem 4. If $x, y \ge 0$ and $n, k \in \mathbb{N}$ such that $n \ge k \ge 0$, then we have the inequality:

$$nx + ny \ge k \ x + k \ y + n - k \ x + y \ .$$

Application 4. If $a, b, n, k \in \mathbb{N}$ and $n \ge k$, then (na)!(nb)! is divisible by $a!^{k} b!^{k} a+b!^{n-k}$.

Theorem 5. If $x_k \ge 0$, (k = 1, 2, ..., n), then we have the inequality:

$$2\sum_{k=1}^{n} 2x_{k} \ge 2\sum_{k=1}^{n} x_{k} + x_{1} + x_{2} + x_{2} + x_{3} + \dots + x_{n} + x_{1} \cdot$$

Application 5. If $a_k \in \mathbb{N}$, (k = 1, 2, ..., n), then $\prod_{k=1}^{n} 2a_k !^2$ is divisible by

$$\prod_{k=1}^{n} (a_{k}!)^{2} (a_{1} + a_{2})! (a_{2} + a_{3})! ... (a_{n} + a_{1})! ...$$

Theorem 6. If $x_k \ge 0$, (k = 1, 2, ..., n), then we have the inequality:

$$m\sum_{k=1}^{n} [2x_{k}] + n\sum_{p=1}^{m} [2x_{p}] \ge m\sum_{k=1}^{n} [x_{k}] + n\sum_{p=1}^{m} [x_{p}] + \sum_{k=1}^{n} \sum_{p=1}^{m} [x_{k} + x_{p}].$$

Application 6. If $a_k \in \mathbb{N}$, (k = 1, 2, ..., n), then $\prod_{k=1}^{n} (2a_k!)^m \prod_{p=1}^{n} (2a_p!)^n$ is divisible

by

$$\prod_{k=1}^{n} a_{k} ! \prod_{p=1}^{m} a_{p} ! \prod_{k=1}^{n} \prod_{p=1}^{m} a_{k} + a_{p} ! .$$

Theorem 7. If $x, y \ge 1$, then we have the inequality: $\left[\sqrt{x}\right] + \left[\sqrt{y}\right] + \left[\sqrt{x+y}\right] \ge \left[\sqrt{2x}\right] + \left[\sqrt{2y}\right]$

Proof: By the concavity of the square root function:

$$\sqrt{x+y} = \sqrt{\frac{2x+2y}{2}} \ge \frac{1}{2}\sqrt{2x} + \frac{1}{2}\sqrt{2y} \ge \left[\frac{1}{2}\sqrt{2x}\right] + \left[\frac{1}{2}\sqrt{2y}\right],$$

it follows that:

$$\left[\sqrt{x+y}\right] \ge \left[\frac{1}{2}\sqrt{2x}\right] + \left[\frac{1}{2}\sqrt{2y}\right].$$

Therefore, it is sufficient to show that

 $\left[\sqrt{x}\right] + \left[\frac{1}{2}\sqrt{2x}\right] \ge \left[\sqrt{2x}\right] \text{ for } x \ge 1.$ The identity $[x] + \left[x + \frac{1}{2}\right]$ has a straightforward proof. We'll use it to replace $\left[\frac{1}{2}\sqrt{2x}\right]$ with $\left[\sqrt{2x}\right] - \left[\frac{1}{2}\sqrt{2x} + \frac{1}{2}\right].$ This yields $\left[\sqrt{x}\right] \ge \left[\frac{1}{2}\sqrt{2x} + \frac{1}{2}\right]$, for $x \ge 1$. This last inequality followed by the fact that $x \ge 4$ implies $2 - \sqrt{2} \sqrt{x} > 1$ or $\left[\sqrt{x}\right] > \left[\frac{1}{2}\sqrt{2x} + \frac{1}{2}\right]$ and $1 \le x < 4$ implies $\frac{1}{2}\sqrt{2x} + \frac{1}{2} < 2$.

Application 7. If $a, b \in \mathbb{N}$, then $a!b! \left[\sqrt{a^2 + b^2}!\right]$ is divisible by $\left[a\sqrt{2}\right]! \left[b\sqrt{2}\right]!$.

["Octogon", Braşov, Vol. 5, No. 2, 60-2, October 1997.]