INEQUALITIES FOR THE INTEGER PART FUNCTION ${ }^{1}$

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In this article we will prove some inequalities for the integer part function, and we'll give some applications in the number theory.

Theorem 1. For any $x, y>0$ we have the following inequality:

$$
\begin{equation*}
[5 x]+[5 y] \geq[3 x+y]+[3 y+x], \tag{1}
\end{equation*}
$$

where [] means the integer part function.
Proof: We will use the notations: $x_{1}=[x], y_{1}=[y], u=\{x\}, v=\{y\}, x_{1}, y_{1} \in \mathrm{~N}$ and $u, v \in[0,1)$. We can write the inequality (1) as:

$$
x_{1}+y_{1}+[5 u]+[5 v] \geq[3 u+v]+[3 v+u] .
$$

We distinguish the following cases:
α) Let $u \geq v$. If $u \leq 2 v$, then $5 v \geq 3 v+u$ and $[5 v] \geq[3 v+u]$, analogously $5 u \geq 3 u+v$ and $[5 u] \geq[3 u+v]$, from where by addition we obtain (1).
β) If $u>2 v$ and $5 u=a+b, 5 v=c+d, a, c \in \mathrm{~N}, 0 \leq b<1,0 \leq d<1$, then we have to prove the following inequality:

$$
\begin{equation*}
a+c+x_{1}+y_{1} \geq\left[\frac{3 a+c+3 b+d}{5}\right]+\left[\frac{3 c+a+3 d+b}{5}\right] \tag{2}
\end{equation*}
$$

But, considering that $1>u>2 v$, we obtain $5>5 u>10 v$, from where, $5>a+b>2 c+2 d$, thus $a+b<5$ and $a \leq 4$.

If $a<2 c$, then $a \leq 2 c-1$ and $a+1-2 c \leq 0$ thus $a+b-2 c<0$; contradiction with $a+b-2 c>2 d$, thus $4 \geq a, a \geq 2 c$, and $3 b+d<4,3 d+b<4$.

From $4 \geq a \geq 2 c$ we have the cases from the following table, and in each of the nine cases is verified the inequality (2).

$$
\begin{array}{l|lllllllll}
a \mid & 4 & 4 & 3 & 3 & 2 & 2 & 1 & 0 \\
\hline c \mid 2 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}
$$

Application 1. For any $m, n \in \mathrm{~N},(5 \mathrm{~m})!(5 \mathrm{n})!$ is divisible by

$$
m!n!(3 m+n)!(3 a+m)!
$$

Proof: If p is a prime number, the power exponent of p in decomposition of m !

[^0]is
$$
\left[\frac{m}{p}\right]+\left[\frac{m}{p^{2}}\right]+\ldots
$$

It is sufficient to prove that

$$
\left[\frac{5 m}{r}\right]+\left[\frac{5 n}{r}\right] \geq\left[\frac{m}{r}\right]+\left[\frac{n}{r}\right]+\left[\frac{3 m+n}{r}\right]+\left[\frac{3 n+m}{r}\right]
$$

for any $r \in \mathrm{~N}, r \geq 2$.
If $m=r m_{1}+x, n=r n_{1}+y$, where $0 \leq x<r, 0 \leq y<r, m, n \in \mathbf{Z}$, it is sufficient to prove that

$$
\left[\frac{5 x}{r}\right]+\left[\frac{5 y}{r}\right] \geq\left[\frac{3 x+y}{r}\right]+\left[\frac{3 y+x}{r}\right]
$$

but this inequality verifies the theorem 1.
Remark. If $x, y>0$, then we have the inequality:

$$
5 x+5 y \geq x+y+3 x+y+3 y+x
$$

Theorem 2. (Szilárd András). If $x, y, z \geq 0$, then we have the inequality:

$$
3 x+3 y+3 z \geq x+y+z+x+y+y+z+z+x
$$

Application 2. For any $a, b, c \in \mathrm{~N},(3 a)!(3 b)!(3 c)!$ is divisible by

$$
a!b!c!(a+b)!(b+c)!(c+a)!.
$$

Proof: Let k_{1}, k_{2}, k_{3} be the biggest power for which

$$
p^{k_{1}}\left|3 a!, p^{k_{2}}\right| 3 b!, p^{k_{3}} \mid 3 c!
$$

respectively, and $r_{i}, \quad i \in 1,2,3,4,5,6$ the biggest power for which

$$
p^{r_{1}}\left|a!, p^{r_{2}}\right| b!, p^{r_{3}}\left|c!, p^{r_{4}}\right| a+b!, p^{r_{5}}\left|b+c!, p^{r_{6}}\right| c+a!
$$

respectively, then

$$
k_{1}+k_{2}+k_{3}=\left(\left[\frac{3 a}{p}\right]+\left[\frac{3 a}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{3 b}{p}\right]+\left[\frac{3 b}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{3 c}{p}\right]+\left[\frac{3 c}{p^{2}}\right]+\ldots\right)
$$

and

$$
\begin{gathered}
\sum_{i=1}^{6} r_{i}\left(\left[\frac{a}{p}\right]+\left[\frac{a}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{b}{p}\right]+\left[\frac{b}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{c}{p}\right]+\left[\frac{c}{p^{2}}\right]+\ldots\right)+ \\
+\left(\left[\frac{a+b}{p}\right]+\left[\frac{a+b}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{b+c}{p}\right]+\left[\frac{b+c}{p^{2}}\right]+\ldots\right)+\left(\left[\frac{c+a}{p}\right]+\left[\frac{c+a}{p^{2}}\right]+\ldots\right) .
\end{gathered}
$$

We have to prove that $k_{1}+k_{2}+k_{3} \geq \sum_{i=1}^{6} r_{i}$, but this inequality reduces to theorem 2.

Theorem 3. If $x, y, z \geq 0$, then we have the inequality:

$$
2 x+2 y+2 z \leq x+y+z+x+y+z
$$

Application 3. If $a, b, c \in \mathrm{~N}$, then $a!b!c!(a+b+c)!$ is divisible by $(2 a)!(2 b)!(2 c)!$.

Theorem 4. If $x, y \geq 0$ and $n, k \in \mathrm{~N}$ such that $n \geq k \geq 0$, then we have the inequality:

$$
n x+n y \geq k x+k y+n-k \quad x+y
$$

Application 4. If $a, b, n, k \in \mathrm{~N}$ and $n \geq k$, then ($n a$)! $(n b)$! is divisible by

$$
a!^{k} b!^{k} \quad a+b!^{n-k}
$$

Theorem 5. If $x_{k} \geq 0,(k=1,2, \ldots, n)$, then we have the inequality:

$$
2 \sum_{k=1}^{n} 2 x_{k} \geq 2 \sum_{k=1}^{n} x_{k}+x_{1}+x_{2}+x_{2}+x_{3}+\ldots+x_{n}+x_{1} .
$$

Application 5. If $a_{k} \in \mathrm{~N},(k=1,2, \ldots, n)$, then $\prod_{k=1}^{n} 2 a_{k}!^{2}$ is divisible by

$$
\prod_{k=1}^{n}\left(a_{k}!\right)^{2}\left(a_{1}+a_{2}\right)!\left(a_{2}+a_{3}\right)!\ldots\left(a_{n}+a_{1}\right)!
$$

Theorem 6. If $x_{k} \geq 0,(k=1,2, \ldots, n)$, then we have the inequality:

$$
m \sum_{k=1}^{n}\left[2 x_{k}\right]+n \sum_{p=1}^{m}\left[2 x_{p}\right] \geq m \sum_{k=1}^{n}\left[x_{k}\right]+n \sum_{p=1}^{m}\left[x_{p}\right]+\sum_{k=1}^{n} \sum_{p=1}^{m}\left[x_{k}+x_{p}\right] .
$$

Application 6. If $a_{k} \in \mathrm{~N},(k=1,2, \ldots, n)$, then $\prod_{k=1}^{n}\left(2 a_{k}!\right)^{m} \prod_{p=1}^{m}\left(2 a_{p}!\right)^{n}$ is divisible by

$$
\prod_{k=1}^{n} a_{k}!{ }^{m} \prod_{p=1}^{m} a_{p}!^{n} \prod_{k=1}^{n} \prod_{p=1}^{m} a_{k}+a_{p}!.
$$

Theorem 7. If $x, y \geq 1$, then we have the inequality:

$$
[\sqrt{x}]+[\sqrt{y}]+[\sqrt{x+y}] \geq[\sqrt{2 x}]+[\sqrt{2 y}]
$$

Proof: By the concavity of the square root function:

$$
\sqrt{x+y}=\sqrt{\frac{2 x+2 y}{2}} \geq \frac{1}{2} \sqrt{2 x}+\frac{1}{2} \sqrt{2 y} \geq\left[\frac{1}{2} \sqrt{2 x}\right]+\left[\frac{1}{2} \sqrt{2 y}\right]
$$

it follows that:

$$
[\sqrt{x+y}] \geq\left[\frac{1}{2} \sqrt{2 x}\right]+\left[\frac{1}{2} \sqrt{2 y}\right]
$$

Therefore, it is sufficient to show that

$$
[\sqrt{x}]+\left[\frac{1}{2} \sqrt{2 x}\right] \geq[\sqrt{2 x}] \text { for } x \geq 1
$$

The identity $[x]+\left[x+\frac{1}{2}\right]$ has a straightforward proof. We'll use it to replace $\left[\frac{1}{2} \sqrt{2 x}\right]$ with

$$
[\sqrt{2 x}]-\left[\frac{1}{2} \sqrt{2 x}+\frac{1}{2}\right]
$$

This yields $[\sqrt{x}] \geq\left[\frac{1}{2} \sqrt{2 x}+\frac{1}{2}\right]$, for $x \geq 1$.
This last inequality followed by the fact that $x \geq 4$ implies

$$
2-\sqrt{2} \sqrt{x}>1 \text { or }[\sqrt{x}]>\left[\frac{1}{2} \sqrt{2 x}+\frac{1}{2}\right]
$$

and $1 \leq x<4$ implies

$$
\frac{1}{2} \sqrt{2 x}+\frac{1}{2}<2 .
$$

Application 7. If $a, b \in \mathrm{~N}$, then $a!b!\left[\sqrt{a^{2}+b^{2}}!\right]$ is divisible by $[a \sqrt{2}]![b \sqrt{2}]!$.

[^0]: ${ }^{1}$ Together with Mihály Bencze and Florin Popovici

