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1 Introduction 

Let Θ be a frame of discernment, defined as: 

{ }1 2, , ..., , 2,Θ = ≥n nφ φ φ  (1) 

and its Super-Power Set (or fusion space): 

( , , , )Θ Θ ∪ ∩ CS  (2) 

which means the set Θ closed under union, intersection, and 
respectively complement. 

As an alternative to the existing logics we have 
proposed the neutrosophic logic (NL) to represent a 
mathematical model of uncertainty, vagueness, ambiguity, 
imprecision, undefined, unknown, incompleteness, 
inconsistency, redundancy, contradiction. It is a  
non-classical logic. NL and neutrosophic set are 
consequences of the neutrosophy. 

Neutrosophy is a new branch of philosophy, which 
studies the origin, nature, and scope of neutralities, as well 
as their interactions with different ideational spectra. 

A logic in which each proposition is estimated to have 
the percentage of truth in a subset T, the percentage of 
indeterminacy in a subset I, and the percentage of falsity in 
a subset F, where T, I, F are defined above, is called NL. 

(T, I, F) truth-values, where T, I, F are standard or  
non-standard subsets of the non-standard interval ]–0, 1+[, 
where ninf = inf T + inf I + inf F ≥ –0, and nsup = sup T + 
sup I + sup F ≤ 3+. Statically T, I, F are subsets, but 
dynamically T, I, F are functions/operators depending on 
many known or unknown parameters. 

The truth, indeterminacy and falsity can be 
approximated: for example, a proposition is between 30% to 
40% true and between 60% to 70% false, even worst: 
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between 30% to 40% or 45% to 50% true (according to 
various analysers), and 60% or between 66% to 70% false. 

The subsets are not necessary intervals, but any sets 
(discrete, continuous, open or closed or half-open/half-
closed interval, intersections or unions of the previous sets, 
etc.) in accordance with the given proposition. 

Statically T, I, F are subsets, but dynamically they are 
functions/operators depending on many known or unknown 
parameters. 

The classical logic, also called bivalent logic for taking 
only two values {0, 1}, or Boolean logic from British 
mathematician George Boole (1815–1964), was named by 
the philosopher Quine (1981) ‘sweet simplicity’. 

Peirce, before 1910, developed a semantics for  
three-valued logic in an unpublished note, but Emil Post’s 
dissertation (1920s) is cited for originating the three-valued 
logic. Here ‘1’ is used for truth, ‘1/2’ for indeterminacy, and 
‘0’ for falsehood. Also, Reichenbach, leader of the logical 
empiricism, studied it. 

The three-valued logic was employed by Hallden 
(1949), Korner (1960), and Tye (1994) to solve Sorites 
Paradoxes. They used truth tables, such as Kleene’s, but 
everything depended on the definition of validity. A  
three-valued paraconsistent system (LP) has the values: 
‘true’, ‘false’, and ‘both true and false’. The ancient Indian 
metaphysics considered four possible values of a statement: 
‘true (only)’, ‘false (only)’, ‘both true and false’, and 
‘neither true nor false’; J.M. Dunn (1976) formalised this in 
a four-valued paraconsistent system as his first degree 
entailment semantics. 

The Buddhist logic added a fifth value to the previous 
ones, ‘none of these’ (called catushkoti). 

The {0, a1, …, an, 1} multi-valued, or plurivalent, logic 
was develop by Lukasiewicz, while post originated the m 
valued calculus. 

The many-valued logic was replaced by Goguen (1969) 
and Zadeh (1975) with an infinite-valued logic (of 
continuum power, as in the classical mathematical analysis 
and classical probability) called fuzzy logic, where the 
truth-value can be any number in the closed unit interval  
[0, 1]. The fuzzy set was introduced by Zadeh in 1965. 

Applications of neutrosophic logic/set have been used to 
information fusion (Smarandache and Dezert, 2004–2009), 
extension logic (Smarandache, 2013; Vladareanu et al., 
2013), and to robotics (Smarandache and Vladareanu, 2011; 
Smarandache, 2011; Okuyama et al., 2013). 

With imprecise data has been worked in magnetic 
bearing systems (Anantachaisilp and Lin, 2013), signal 
processing (Golpira and Golpira, 2013), water pollution 
control system (Wang and Wu, 2013), neutrosophic soft set 
(Broumi and Smarandache, 2013), and especially to 
robotica and mechatronics systems (Vladareanu et al., 
2012a, 2012b). 

This paper is organised as follows: we present the NL, 
the indeterminate masses, elements and models, and give an 
example of indeterminate intersection. 

2 Indeterminate mass 

2.1 Neutrosophic logic 

NL (Smarandache, 1998, 2002) started in 1995 as a 
generalisation of the fuzzy logic, especially of the 
intuitionistic fuzzy logic (IFL). A logical proposition P is 
characterised by three neutrosophic components: 

( ) ( , , )=NL P T I F  (3) 

where T is the degree of truth, F the degree of falsehood, 
and I the degree of indeterminacy (or neutral, where the 
name ‘neutro-sophic’ comes from, i.e., neither truth nor 
falsehood but in between – or included-middle principle), 
and with: 

, , 0, 1+⊆ −⎤ ⎡⎦ ⎣T I F  (4) 

where ]–0, 1+[ is a non-standard interval. 
In this paper, for technical proposal, we can reduce this 

interval to the standard interval [0, 1]. 
The main distinction between NL and IFL is that in NL 

the sum T + I + F of the components, when T, I, and F are 
crisp numbers, does not need to necessarily be 1 as in IFL, 
but it can also be less than 1 (for incomplete/missing 
information), equal to 1 (for complete information), or 
greater than 1 (for paraconsistent/contradictory information). 

The combination of neutrosophic propositions is done 
using the neutrosophic operators (especially ∧, ∨). 

2.2 Neutrosophic mass 

We recall that a classical mass m(.) is defined as: 

: [0,1]Θ →m S  (5) 

such that 

( ) 1
Θ∈

=∑
X S

m X  (6) 

We extend this classical basic belief assignment (mass) m(.) 
to a neutrosophic basic belief assignment (NBBA) (or 
neutrosophic mass) mn(.) in the following way. 

3: [0, 1]Θ →nm S  (7) 

with 

( )( ) ( ), ( ), ( )=nm A T A I A F A  (8) 

where T(A) means the (local) chance that hypothesis A 
occurs, F(A) means the (local) chance that hypothesis A 
does not occur (non-chance), while I(A) means the (local) 
indeterminate chance of A (i.e., knowing neither if A occurs 
nor if A does not occur), such that: 

[ ]( ) ( ) ( ) 1.
Θ∈

+ + =∑
X S

T X I X F X  (9) 

In a more general way, the summation (9) can be less than 1 
(for incomplete neutrosophic information), equal to 1 (for 
complete neutrosophic information), or greater than 1 (for 
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paraconsistent/conflicting neutrosophic information). But in 
this paper we only present the case when summation (9) is 
equal to 1. 

Of course, 

0 ( ), ( ), ( ) 1≤ ≤T A I A F A  (10) 

A basic belief assignment (or mass) is considered 
indeterminate if there exist at least an element A ∈ SΘ such 
that I(A) > 0, i.e., there exists some indeterminacy in the 
chance of at least an element A for occurring or for not 
occurring. Therefore, a neutrosophic mass which has at least 
one element A with I(A) > 0 is an indeterminate mass. 

A classical mass m(.) as defined in equations (5) and (6) 
can be extended under the form of a neutrosophic mass 

(.)′nm  in the following way: 

3(.) : [0, 1]Θ′ →nm S  (11) 

with 

( )( ) ( ), 0, 0′ =nm A m A  (12) 

but reciprocally it does not work since I(A) has no 
correspondence in the definition of the classical mass. 

We just have T(A) = m(A) and F(A) = m(C(A)), where 
C(A) is the complement of A. The non-null I(A) can, for 
example, be roughly approximated by the total ignorance 
mass m(Θ), or better by the partial ignorance mass m(ΘI) 
where ΘI is the union of all singletons that have some  
non-zero indeterminacy, but these mean less accuracy and 
less refinement in the fusion. 

If I(X) = 0 for all X ∈ SΘ, then the neutrosophic mass is 
simply reduced to a classical mass. 

3 Indeterminate element 

We have two types of elements in the fusion space SΘ, 
determinate elements (which are well-defined), and 
indeterminate elements (which are not well-defined; for 
example: a geographical area whose frontiers are vague; or 
let us say in a murder case there are two suspects, John – 
who is known/determinate element – but he acted together 
with another man X (since the information source saw John 
together with an unknown/unidentified person) – therefore 
X is an indeterminate element). 

Herein, we gave examples of singletons as indeterminate 
elements just in the frame of discernment Θ, but 
indeterminate elements can also result from the 
combinations (unions, intersections, and/or complements) of 
determinate elements that form the super-power set SΘ. For 
example, A and B can be determinate singletons (we call the 
elements in Θ as singletons), but their intersection A ∩ B 
can be an indeterminate (unknown) element, in the sense 
that we might not know if A ∩ B = φ or A ∩ B ≠ φ. 

Or A can be a determinate element, but its complement 
C(A) can be indeterminate element (not well-known), and 
similarly for determinate elements A and B, but their A ∪ B 
might be indeterminate. 

Indeterminate elements in SΘ can, of course, result from 
the combination of indeterminate singletons too. All 
depends on the problem that is studied. 

A frame of discernment which has at least an 
indeterminate element is called indeterminate frame of 
discernment. Otherwise, it is called determinate frame of 
discernment. Similarly, we call an indeterminate fusion 
space (SΘ) that fusion space which has at least one 
indeterminate element. Of course an indeterminate frame of 
discernment spans an indeterminate fusion space. 

An indeterminate source of information is a source 
which provides an indeterminate mass or an indeterminate 
fusion space. Otherwise it is called a determinate source of 
information. 

4 Indeterminate model 

An indeterminate model is a model whose fusion space is 
indeterminate, or a mass that characterises it is 
indeterminate. 

Such case has not been studied in the information fusion 
literature so far. In the next sections, we will present some 
examples of indeterminate models. 

5 Classification of models 

In the classical fusion theories, all elements are considered 
determinate in the closed world, except in Smets’ open 
world where there is some room (i.e., mass assigned to the 
empty set) for a possible unknown missing singleton in the 
frame of discernment. So, the open world has a probable 
indeterminate element, and thus its frame of discernment is 
indeterminate. While the closed world frame of discernment 
is determinate. 

In the closed world in Dezert-Smarandache theory, there 
are three models classified upon the types of singleton 
intersections: Shafer’s model (where all intersections are 
empty), hybrid model (where some intersections are empty, 
while others are non-empty), and free model (where all 
intersections are non-empty). 

We now introduce a fourth category, called 
indeterminate model (where at least one intersection is 
indeterminate/unknown, and in general at least one element 
of the fusion space is indeterminate). We do this because in 
practical problems we do not always know if an intersection 
is empty or nonempty. As we still have to solve the problem 
in the real time, we have to work with what we have, i.e., 
with indeterminate models. 

The indeterminate intersection cannot be refined 
(because not knowing if A ∩ B is empty or nonempty, we’d 
get two different refinements: {A, B} when intersection is 
empty, and {A\B, B\A, A ∩ B} when intersection is 
nonempty). 

The percentage of indeterminacy of a model depends on 
the number of indeterminate elements and indeterminate 
masses. 
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By default: the sources, the masses, the elements, the 
frames of discernment, the fusion spaces, and the models 
are supposed determinate. 

6 An example of information fusion with an 
indeterminate model 

We present the below example. 
Suppose we have two sources, m1(.) and m2(.), such that. 

Table 1 First part of the fusion with indeterminate model 

 A B C A ∪ B 
∪ C 

A ∩ B 
= Ind. 

A ∩ C 
= φ 

B ∩ C 
= Ind. 

m1 0.4 0.2 0.3 0.1    
m2 0.1 0.3 0.2 0.4    
m12 0.21 0.17 0.20 0.04 0.14 0.11 0.13 

Applying the conjunction rule to m1 and m2 we get m12(.) as 
shown in Table 1. 

The frame of discernment is Θ = {A, B, C}. We know 
that A ∩ C is empty, but we do not know the other two 
intersections: we note them as A ∩ B = ind. and B ∩ C = 
ind, where ind. means indeterminate. 

Using the conjunctive rule to fusion m1 and m2, we get 
m12(.): 

12 1 2
,

\ , ( ) ( ) ( ).
Θ

Θ

∈
= ∩

∀ ∈ = ∑
X Y S
A X Y

A S m A m X m Yφ  (13) 

Whence m12(A) = 0.21, m12(B) = 0.17, m12(C) = 0.20, m12(A 
∪ B ∪ C) = 0.04, and for the intersections: 

12 12 12( ) 0.14, ( ) 0.11, ( ) 0.13.∩ = ∩ = ∩ =m A B m A C m B C  

We then use the PCR5 fusion rule style to redistribute the 
masses of these three intersections. We recall PCR5 for two 
sources: 

12 12

2 2
1 2 2 1

1 2 2 1\{ }

\
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )Θ

Θ

∈
∩ =

∀ ∈
=

⎡ ⎤
+ +⎢ ⎥+ +⎣ ⎦
∑
PCRS

X S
X A

A S
m A m A

m A m X m A m X
m A m X m A m Xφ

φ

φ,
 (14) 

a m12(A ∩ C) = 0.11 is redistributed back to A and C 
because A ∩ C = φ, according to the PCR5 style. 

Let α1 and α2 be the parts of mass 0.11 redistributed back 
to A, and γ1 and γ2 be the parts of mass 0.11 redistributed 
back to C. 

We have the following proportionalisations: 

1 1 0.4 0.2 0.133333,
0.4 0.2 0.4 0.2

⋅
= = =

+
γα  

whence α1 = 0.4(0.133333) ≈ 0.053333 and γ1 = 0.2 
(0.13333) ≈ 0.026667. 

Similarly: 

2 2 0.1 0.3 0.075,
0.1 0.3 0.1 0.3

⋅
= = =

+
γα  

whence α2 = 0.1(0.075) = 0.0075 and γ2 = 0.3(0.075) = 
0.0225. 

Therefore, the mass of A, which can also be noted as 
T(A) in a neutrosophic mass form, receives from 0.11 back: 

1 2 0.053333 0.0075 0.060833,+ = + =α α  

while the mass of C, or T(C) in a neutrosophic form, 
receives from 0.11 back: 

1 2 0.026667 0.0225 0.049167.+ = + =γ γ  

We verify our calculations: 0.060833 + 0.049167 = 0.11. 
m12(A ∩ B) = 0.14 is redistributed back to the 

indeterminate parts of the masses of A and B respectively, 
namely I(A) and I(B) as noted in the neutrosophic mass 
form, because A ∩ B = Ind. We follow the same PCR5 style 
as done in classical PCR5 for empty intersections (as 
above). 

Let α3 and α4 be the parts of mass 0.14 redistributed 
back to I(A), and β1 and β2 be the parts of mass 0.14 
redistributed back to I(B). 

We have the following proportionalisations: 

3 1 0.4 0.3 0.171429,
0.4 0.3 0.4 0.3

⋅
= = =

+
α β  

whence α3 = 0.4(0.171429) ≈ 0.068572 and β1 = 0.3 
(0.171429) ≈ 0.051428. 

Similarly: 

4 2 0.1 0.2 0.066667
0.1 0.2 0.1 0.2

⋅
= = =

+
α β  

whence α4 = 0.1(0.066667) ≈ 0.006667 and β2 = 0.2 
(0.066667) ≈ 0.013333. 

Therefore, the indeterminate mass of A, I(A) receives 
from 0.14 back: 

3 4 0.068572 0.006667 0.075239+ = + =α α  

and the indeterminate mass of B, I(B), receives from 0.14 
back: 

1 2 0.051428 0.013333 0.064761.+ = + =β β  

Analogously, m12(B ∩ C) = 0.13 is redistributed back to the 
indeterminate parts of the masses of B and C respectively, 
namely I(B) and I(C) as noted in the neutrosophic mass 
form, because B ∩ C = Ind. also following the PCR5 style. 
Whence I(B) gets back 0.065 and I(C) also gets back 0.065. 

Finally, we sum all results obtained from firstly using 
the conjunctive rule (Table 1) and secondly redistributing 
the intersections masses with PCR5 [sections (a), (b), and 
(c) from above]: 
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Table 2 Second part of the fusion with indeterminate model 

 T(A) T(B) T(C) T(Θ) I(A) I(B) I(C) 

m12 0.21 0.17 0.20 0.04    
0.0075  0.022  0.068 0.051 0.04 
0.053  5  572 428 0.045
333  0.026  0.006 0.013  

  667  667 333  
     0.02  

Additions 

     0.045  
0.270 0.17 0.249 0.04 0.075 0.129 0.065m12PCR5I 
833  167  239 761  

where Θ = A ∪ B ∪ C is the total ignorance. 

7 Believe, disbelieve, and uncertainty 

In classical fusion theory, there exist the following 
functions: 

• Belief in A with respect to the bba m(.) is: 

\{ }

( ) ( )
Θ∈

⊆

= ∑
X S
X A

Bel A m X
φ

 (15) 

• Disbelief in A with respect to the bba m(.) is: 

\{ }

( ) ( )
Θ∈

∩ =

= ∑
X S
X A

Dis A m X
φ

φ

 (16) 

• Uncertainty in A with respect to the bba m(.) is: 

\{ }

( )

( ) ( ),
Θ∈

∩ ≠
∩ ≠

= ∑
X S
X A
X C A

U A m X
φ

φ
φ

 (17) 

where C(A) is the complement of A with respect to the 
total ignorance Θ. 

• Plausability of A with respect to the bba m(.) is: 

\{ }

( ) ( )
Θ∈

∩ ≠

= ∑
X S
X A

Pl A m X
φ

φ

 (18) 

8 Neutrosophic believe, neutrosophic disbelieve, 
and neutrosophic undecidability 

Let us consider a neutrosophic mass mn(.) as defined in 
formulas (7) and (8), mn(X) = (T(X), I(X), F(X)) for all  
X ∈ SΘ. 

We extend formulas (15) to (18) from m(.) to mn(.): 

• Neutrosophic Belief in A with respect to the nbba mn(.) 
is: 

\{ } \{ }

( ) ( ) ( )
Θ Θ∈ ∈

⊆ ∩ =

= +∑ ∑
X S X S
X A X A

NeutBel A T X F X
φ φ

φ

 (19) 

• Neutrosophic Disbelief in A with respect to the nbba 
mn(.) is: 

\{ } \{ }

( ) ( ) ( )
Θ Θ∈ ∈

∩ = ⊆

= +∑ ∑
X S X S
X A X A

NeutDis A T X F X
φ φ

φ

 (20) 

• Neutrosophic uncertainty in A with respect to the nbba 
mn(.) is 

[ ]

\{ } \{ }

( ) ( )

\{ }

( )

( ) ( ) ( )

( ) ( )

Θ Θ

Θ

∈ ∈
∩ ≠ ∩ ≠
∩ ≠ ∩ ≠

∈
∩ ≠
∩ ≠

= +

= +

∑ ∑

∑

X S X S
X A X A
X C A X C A

X S
X A
X C A

NeutU A T X F x

T X F X

φ φ
φ φ

φ φ

φ
φ

φ

 (21) 

• We now introduce the neutrosophic global 
indeterminacy in A with respect to the nbba mn(.) as a 
sum of local indeterminacies of the elements included 
in A: 

\{ }

( ) ( )
Θ∈

⊆

= ∑
X S
X A

NeutGlobInd A I X
φ

 (22) 

• And afterwards we define another function called 
neutrosophic undecidability about A with respect to the 
nbba mn(.): 

( ) ( )  ( )= +NeutUnd A NeutU A NeutGlobInd A  (23) 

or 

[ ]
\{ }

( )

\{ }

( ) ( ) ( )

( )

Θ

Θ

∈
∩ ≠
∩ ≠

∈
⊆

= +

+

∑

∑

X S
X A
X C A

X S
X A

NeutUnd A T X F X

I X

φ
φ

φ

φ

 (24) 

• Neutrosophic plausability of A with respect to the nbba 
mn(.) is: 

\{ } \{ }
( )

( ) ( ) ( )
Θ Θ∈ ∈

∩ ≠ ∩ ≠

= +∑ ∑
X S Y S
X A C Y A

NeutPl A T X F Y
φ φ

φ φ

 (25) 

In the previous example, let us compute NeutBel(.), 
NeutDis(.), and NeutUnd(.): 

Table 3 Neutrosophic believe, disbelieve and undecidability 

 A B C A ∪ B 
∪ C 

NeutBel 0.270833 0.17 0.249167 0.73 

NeutDis 0.419167 0.52 0.440833 0 

NeutGlobInd 0.115239 0.169761 0.105 0 

Total 0.805239 ≠ 
1 

0.859761 ≠ 
1 

0.795 ≠ 1 0.73 ≠ 
1 



370 F. Smarandache  

As we see, for indeterminate model we cannot use the 
intuitionistic fuzzy set or IFL since the sum NeutBel(X) + 
NeutDis(X) + NeutGlobInd(X) is less than 1. In this case, we 
use the neutrosophic set or logic which can deal with 
incomplete information. 

The sum is less than 1 because there is missing 
information (we do not know if some intersections are 
empty or not). 

For example: 

( ) ( ) ( ) 0.859761
1 ( ) ( ).

+ + =
= − −
NeutBel B NeutDis B NeutGlobInd B

I A I C
 

( ) ( ) ( ) 0.795
1 ( ) ( ) 

+ + =
= − −
NeutBel C NeutDis C NeutGlobInd C

I A I B
 

and 

( ) ( )
( ) 0.73

1 ( ) ( ) ( ).

∪ ∪ + ∪ ∪
+ ∪ ∪ =
= − − −

NeutBel A B C NeutDis A B C
NeutGlobInd A B C

I A I B I C
 

9 Neutrosophic dynamic fusion 

A neutrosophic dynamic fusion is a dynamic fusion where 
some indeterminacy occurs: with respect to the mass or with 
respect to some elements. 

The solution of the above indeterminate model which 
has missing information, using the neutrosophic set, is 
consistent in the classical dynamic fusion in the case we 
receive part (or total) of the missing information. 

In the above example, let us say we find out later in the 
fusion process that A ∩ B = φ. That means that the mass of 
indeterminacy of A, I(A) = 0.075239, is transferred to A, and 
the masses of indeterminacy of B (resulted from A ∩ B 
only) – i.e., 0.051428 and 0.13333 – are transferred to B. 
Thus, we get in Table 4. 

The sum NeutBel(X) + NeutDis(X) + NeutBlogInd(X) 
increases towards 1, as indeterminacy I(X) decreases 
towards 0, and reciprocally. 

When we have complete information we get NeutBel(X) 
+ NeutDis(X) + NeutGlobInd(X) =1 and in this case we have 
an intuitionistic fuzzy set, which is a particular case of the 
neutrosophic set. 

Let us suppose once more, considering the neutrosophic 
dynamic fusion, that afterwards we find out that B ∩ C ≠ φ. 
Then, from Table 4 the masses of indeterminacies of B, I(B) 
(0.065 = 0.02 + 0.045, resulted from B ∩ C which was 
considered indeterminate at the beginning of the 
neutrosophic dynamic fusion), and that of C, I(C) = 0.065, 
go now to B ∩ C. Thus, we get in Table 5. 

10 More redistribution versions for 
indeterminate intersections of determinate 
elements 

Besides PCR5, it is also possible to employ other fusion 
rules for the redistribution, such as follows: 

a For the masses of the empty intersections we can use 
PCR1-PCR4, URR, PURR, Dempster’s Rule, etc. (in 
general any fusion rule that first uses the conjunctive 
rule, and then a redistribution of the masses of empty 
intersections). 

b For the masses of the indeterminate intersections we 
can use DSm Hybrid (DSmH) rule to transfer the mass 
m12(X ∩ Y = ind.) to X ∪ Y, since X ∪ Y is a kind of 
uncertainty related to X, Y. In our opinion, a better 
approach in this case would be to redistributing the 
empty intersection masses using the PCR5 and the 
indeterminate intersection masses using the DSmH, so 
we can combine two fusion rules into one. 

Table 4 First neutrosophic dynamic fusion 

 A B C Θ I(A) I(B) I(C) A∩B A∩C 

m 0.270 0.17 0.249 0.04 0 0.065 0.065 0 0 

 833  167       

+ 0.075 0.051        

 239 428        

  0.013        

  333        

mN 0.346 0.234 0.249 0.04 0 0.065 0.065 0 0 

 072 761 167       

Note: Where Θ = A ∪ B ∪ C is the total ignorance. 
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Table 5 Second neutrosophic dynamic fusion 

 A B C Θ I(A) I(B) I(C) A∩B A∩C B∩C 

0.346 0.234 0.249 0.04 0 0.065 0.065 0 0 0 mN 
072 761 167        

     –0.065 –0.065   +0.065 –/+ 
         +0.065 

0.346 0.234 0.249 0.04 0 0 0 0 0 0.13 mNN 
072 761 167        

 
Let m1(.) and m2(.) be two masses. Then: 
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Yet, the best approach, for an indeterminate intersection 
resulted from the combination of two classical masses m1(.) 
and m2(.) defined on a determinate frame of discernment, is 
the first one: 

• Use the PCR5 to combine the two sources: formula 
(14). 

• Use the PCR5-ind [adjusted from classical PCR5 
formula (14)] in order to compute the indeterminacies 
of each element involved in indeterminate intersections: 

( )12 5

2 2
1 2 2 1

1 2 2 1\{ }
.

\ ,
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )Θ

Θ

∈
∩ =
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∑
PCR Ind

X S
X A ind

A S
m I A

m A m X m A m X
m A m X m A m Xφ

φ
 (27) 

• Compute NeutBel(.), NeutDis(.), NeutGlobInd(.) of 
each element. 

11 Conclusions 

In order for the paper to be easier understanding, a short 
history of logics was made in the introduction. Connection 
between neutrosophy and NL were established. 

In this paper, we introduced for the first time the notions 
of indeterminate mass (BBA), indeterminate element, 
indeterminate intersection, and so on. We gave an example 
of neutrosophic dynamic fusion using two classical masses, 

defined on a determinate frame of discernment, but having 
indeterminate intersections in the super-power set SΘ (the 
fusion space). We adjusted several classical fusion rules 
(PCR5 and DSmH) to work for indeterminate intersections 
instead of empty intersections. 

Then we extended the classical Bel(.), Dis(.) {also called 
Dou(.), i.e., Dough} and the uncertainty U(.) functions to 
their respectively neutrosophic correspondent functions that 
use the neutrosophic masses, i.e., to the NeutBel(.), 
NeutDis(.), NeutU(.) and to the undecidability function 
NeutUnd(.). We have also introduced the neutrosophic 
global indeterminacy function, NeutGlobInd(.), which 
together with NeutU(.) form the NeutUnd(.) function. 

In our first example, the mass of A ∩ B is determined (it 
is equal to 0.14), but the element A ∩ B is indeterminate (we 
do not know if it empty or not). 

But there are cases when the element is determinate (let 
us say a suspect John), but its mass could be indeterminate 
as given by a source of information {for example, mn(John) 
= (0.4, 0.1, 0.2), i.e., there is some mass indeterminacy: 
I(John) = 0.2 > 0}. 

These are the distinctions between the indeterminacy of 
an element, and the indeterminacy of a mass. 
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