A Generalization of Certain Remarkable Points of the Triangle Geometry

Prof. Claudiu Coandă - National College "Carol I", Craiova, Romania

Prof. Florentin Smarandache - University of New Mexico, Gallup, U.S.A. Prof. Ion Pătrașcu - National College "Fraţii Buzeşti", Craiova, Romania

In this article we prove a theorem that will generalize the concurrence theorems that are leading to the Franke's point, Kariya's point, and to other remarkable points from the triangle geometry.

Theorem 1:

Let $P(\alpha, \beta, \gamma)$ and $A^{\prime}, B^{\prime}, C^{\prime}$ its projections on the sides $B C, C A$ respectively $A B$ of the triangle $A B C$.

We consider the points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ such that $\overrightarrow{P A^{\prime \prime}}=k \overrightarrow{P A^{\prime}}, \overrightarrow{P B^{\prime \prime}}=k \overrightarrow{P B^{\prime}}, \overrightarrow{P C^{\prime \prime}}=k \overrightarrow{P C^{\prime}}$, where $k \in R^{*}$. Also we suppose that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent. Then the lines $A A ", B B^{\prime \prime}, C C^{"}$ are concurrent if and only if are satisfied simultaneously the following conditions:

$$
\begin{gathered}
\alpha \beta c\left(\frac{\beta}{b} \cos A-\frac{\alpha}{a} \cos B\right)+\beta \gamma a\left(\frac{\gamma}{c} \cos B-\frac{\beta}{b} \cos C\right)+\gamma \alpha b\left(\frac{\alpha}{a} \cos C-\frac{\gamma}{c} \cos A\right)=0 \\
\frac{\alpha^{2}}{a^{2}} \cos A\left(\frac{\gamma}{c} \cos B-\frac{\beta}{b} \cos C\right)+\frac{\beta^{2}}{b^{2}} \cos B\left(\frac{\alpha}{a} \cos C-\frac{\gamma}{c} \cos A\right)+\frac{\gamma^{2}}{c^{2}} \cos C\left(\frac{\beta}{b} \cos A-\frac{\alpha}{a} \cos B\right)=0
\end{gathered}
$$

Proof:

We find that

$$
\begin{aligned}
& A^{\prime}\left(0, \frac{\alpha}{2 a^{2}}\left(a^{2}+b^{2}-c^{2}\right)+\beta, \frac{\alpha}{2 a^{2}}\left(a^{2}-b^{2}+c^{2}\right)+\gamma\right) \\
& \overrightarrow{P A^{\prime \prime}}=k \overrightarrow{P A^{\prime}}=k\left[-\alpha \overrightarrow{r_{A}}+\frac{\alpha}{2 a^{2}}\left(a^{2}+b^{2}-c^{2}\right) \overrightarrow{r_{B}}+\frac{\alpha}{2 a^{2}}\left(a^{2}-b^{2}+c^{2}\right) \overrightarrow{r_{C}}\right] \\
& \overrightarrow{P A^{\prime \prime}}=\left(\alpha^{\prime \prime}-\alpha\right) \overrightarrow{r_{A}}+\left(\beta^{\prime \prime}-\beta\right) \overrightarrow{r_{B}}+\left(\gamma^{\prime \prime}-\gamma\right) \overrightarrow{r_{C}}
\end{aligned}
$$

We have:

$$
\left\{\begin{array}{l}
\alpha^{\prime \prime}-\alpha=-k \alpha \\
\beta^{\prime \prime}-\beta=\frac{k \alpha}{2 a^{2}}\left(a^{2}+b^{2}-c^{2}\right), \\
\gamma^{\prime \prime}-\gamma=\frac{k \alpha}{2 a^{2}}\left(a^{2}-b^{2}+c^{2}\right)
\end{array}\right.
$$

Therefore:

$$
\left\{\begin{array}{l}
\alpha^{\prime \prime}=(1-k) \alpha \\
\beta^{\prime \prime}=\frac{k \alpha}{2 a^{2}}\left(a^{2}+b^{2}-c^{2}\right)+\beta \\
\gamma^{\prime \prime}=\frac{k \alpha}{2 a^{2}}\left(a^{2}-b^{2}+c^{2}\right)+\gamma
\end{array}\right.
$$

Hence:

$$
A^{\prime \prime}\left((1-k) \alpha, \frac{k \alpha}{2 a^{2}}\left(a^{2}+b^{2}-c^{2}\right)+\beta, \frac{k \alpha}{2 a^{2}}\left(a^{2}-b^{2}+c^{2}\right)+\gamma\right)
$$

Similarly:

$$
\begin{gathered}
B^{\prime}\left(-\frac{\beta}{2 b^{2}}\left(-a^{2}-b^{2}+c^{2}\right)+\alpha, 0,-\frac{\beta}{2 b^{2}}\left(a^{2}-b^{2}-c^{2}\right)+\gamma\right) \\
B^{\prime \prime}\left(-\frac{k \beta}{2 b^{2}}\left(-a^{2}-b^{2}+c^{2}\right)+\alpha,(1-k) \beta,-\frac{k \beta}{2 b^{2}}\left(a^{2}-b^{2}-c^{2}\right)+\gamma\right) \\
C^{\prime}\left(-\frac{\gamma}{2 c^{2}}\left(-a^{2}+b^{2}-c^{2}\right)+\alpha,-\frac{\gamma}{2 c^{2}}\left(a^{2}-b^{2}-c^{2}\right)+\beta, 0\right) \\
C^{\prime \prime}\left(-\frac{k \gamma}{2 c^{2}}\left(-a^{2}+b^{2}-c^{2}\right)+\alpha,-\frac{k \gamma}{2 c^{2}}\left(a^{2}-b^{2}-c^{2}\right)+\beta,(1-k) \gamma\right)
\end{gathered}
$$

Because $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent, we have:

$$
\frac{-\frac{\alpha}{2 a^{2}}\left(-a^{2}-b^{2}+c^{2}\right)+\beta}{-\frac{\alpha}{2 a^{2}}\left(-a^{2}+b^{2}-c^{2}\right)+\gamma} \cdot \frac{-\frac{\beta}{2 b^{2}}\left(-a^{2}-b^{2}-c^{2}\right)+\gamma}{-\frac{\beta}{2 b^{2}}\left(-a^{2}-b^{2}+c^{2}\right)+\alpha} \cdot \frac{-\frac{\gamma}{2 c^{2}}\left(-a^{2}+b^{2}-c^{2}\right)+\alpha}{-\frac{\gamma}{2 c^{2}}\left(a^{2}-b^{2}-c^{2}\right)+\beta}=1
$$

We note

$$
\begin{aligned}
& M=\frac{\alpha}{2 a^{2}}\left(a^{2}+b^{2}-c^{2}\right)=\frac{\alpha}{a} \cdot b \cos C \\
& N=\frac{\alpha}{2 a^{2}}\left(a^{2}-b^{2}+c^{2}\right)=\frac{\alpha}{a} \cdot c \cos B \\
& P=\frac{\beta}{2 b^{2}}\left(-a^{2}+b^{2}+c^{2}\right)=\frac{\beta}{b} \cdot c \cos A \\
& Q=\frac{\beta}{2 b^{2}}\left(a^{2}+b^{2}-c^{2}\right)=\frac{\beta}{b} \cdot a \cos C \\
& R=\frac{\gamma}{2 c^{2}}\left(a^{2}-b^{2}+c^{2}\right)=\frac{\gamma}{c} \cdot a \cos B \\
& S=\frac{\gamma}{2 c^{2}}\left(-a^{2}+b^{2}+c^{2}\right)=\frac{\gamma}{c} \cdot a \cos A
\end{aligned}
$$

The precedent relation becomes

$$
\frac{M+\beta}{N+\gamma} \cdot \frac{P+\gamma}{Q+\alpha} \cdot \frac{R+\alpha}{S+\beta}=1
$$

The coefficients M, N, P, Q, R, S verify the following relations:

$$
\begin{aligned}
& M+N=\alpha \\
& P+Q=\beta \\
& R+S=\gamma \\
& \frac{M}{Q}=\frac{\alpha}{\beta} \cdot \frac{b^{2}}{a^{2}}=\frac{\frac{\alpha}{a^{2}}}{\frac{\beta}{b^{2}}} \\
& \frac{P}{S}=\frac{\beta}{\gamma} \cdot \frac{c^{2}}{b^{2}}=\frac{\frac{\beta}{b^{2}}}{\frac{\gamma}{c^{2}}} \\
& \frac{R}{N}=\frac{\gamma}{\alpha} \cdot \frac{a^{2}}{c^{2}}=\frac{\frac{\gamma}{c^{2}}}{\frac{\alpha}{a^{2}}}
\end{aligned}
$$

Therefore $\frac{M}{Q} \cdot \frac{P}{S} \cdot \frac{R}{N}=1$

$$
\begin{aligned}
& (M+\beta)(P+\gamma)(R+\alpha)=\alpha \beta \gamma+\alpha \beta P+\beta \gamma R+\gamma \alpha M+\alpha M P+\beta P R+\gamma R M+M P R \\
& (N+\gamma)(Q+\alpha)(S+\beta)=\alpha \beta \gamma+\alpha \beta N+\beta \gamma Q+\gamma \alpha S+\alpha N S+\beta N Q+\gamma Q S+N Q S
\end{aligned}
$$

We deduct that:
$\alpha \beta P+\beta \gamma R+\gamma \alpha M+\alpha M P+\beta P R+\gamma R M=\alpha \beta N+\beta \gamma Q+\gamma \alpha S+\alpha N S+\beta N Q+\gamma Q S+N Q S$
We apply the theorem:
Given the points $Q_{i}\left(a_{i}, b_{i}, c_{i}\right), i=\overline{1,3}$ in the plane of the triangle $A B C$, the lines $A Q_{1}, B Q_{2}, C Q_{3}$ are concurrent if and only if $\frac{b_{1}}{c_{1}} \cdot \frac{c_{2}}{a_{2}} \cdot \frac{a_{3}}{b_{3}}=1$.

For the lines $A A^{\prime \prime}, B B^{\prime \prime}, C C "$ we obtain

$$
\frac{k M+\beta}{k N+\gamma} \cdot \frac{k P+\alpha}{k S+\beta} \cdot \frac{k R+\alpha}{k S+\beta}=1
$$

It result that

$$
\begin{align*}
& k^{2}(\alpha \beta P+\beta \gamma R+\gamma \alpha M)+k(\alpha M P+\beta P R+\gamma R M)= \\
& =k^{2}(\alpha \beta N+\beta \gamma Q+\gamma \alpha S)+k(\alpha N S+\beta N Q+\gamma Q S) \tag{2}
\end{align*}
$$

For relation (1) to imply relation (2) it is necessary that

$$
\alpha \beta P+\beta \gamma R+\gamma \alpha M=\alpha \beta N+\beta \gamma Q+\gamma \alpha S
$$

and

$$
\alpha N S+\beta N Q+\gamma Q S=\alpha M P+\beta P R+\gamma R M
$$

or

$$
\left\{\begin{array}{l}
\alpha \beta c\left(\frac{\beta}{b} \cos A-\frac{\alpha}{a} \cos B\right)+\beta \gamma a\left(\frac{\gamma}{c} \cos B-\frac{\beta}{b} \cos C\right)+\gamma \alpha b\left(\frac{\alpha}{a} \cos C-\frac{\gamma}{c} \cos A\right)=0 \\
\frac{\alpha^{2}}{a^{2}} \cos A\left(\frac{\gamma}{c} \cos B-\frac{\beta}{b} \cos C\right)+\frac{\beta^{2}}{b^{2}} \cos B\left(\frac{\gamma}{c} \cos B-\frac{\beta}{b} \cos C\right)+\frac{\gamma^{2}}{c^{2}} \cos C\left(\frac{\beta}{b} \cos A-\frac{\alpha}{a} \cos B\right)=0
\end{array}\right.
$$

As an open problem, we need to determine the set of the points from the plane of the triangle $A B C$ that verify the precedent relations.

We will show that the points I and O verify these relations, proving two theorems that lead to Kariya's point and Franke's point.

Theorem 2 (Kariya -1904)
Let I be the center of the circumscribe circle to triangle $A B C$ and $A^{\prime}, B^{\prime}, C^{\prime}$ its projections on the sides $B C, C A, A B$. We consider the points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ such that:

$$
\overrightarrow{I A^{\prime \prime}}=k \overrightarrow{I A^{\prime}}, \overrightarrow{I B^{\prime \prime}}=k \overrightarrow{I B^{\prime}}, \overrightarrow{I C^{\prime \prime}}=k \overrightarrow{I C^{\prime}}, k \in R^{*} .
$$

Then $A A^{\prime \prime}, B B^{\prime \prime}, C C^{"}$ are concurrent (the Kariya's point)

Proof:

The barycentric coordinates of the point I are $I\left(\frac{a}{2 p}, \frac{b}{2 p}, \frac{c}{2 p}\right)$.
Evidently:

$$
a b c(\cos A-\cos B)+a b c(\cos B-\cos C)+a b c(\cos C-\cos A)=0
$$

and

$$
\cos A(\cos B-\cos C)+\cos B(\cos C-\cos A)+\cos C(\cos A-\cos B)=0 .
$$

In conclusion $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ are concurrent.
Theorem 3 (de Boutin - 1890)
Let O be the center of the circumscribed circle to the triangle $A B C$ and $A^{\prime}, B^{\prime}, C^{\prime}$ its projections on the sides $B C, C A, A B$. Consider the points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ such that $\frac{O A^{\prime}}{O A^{\prime \prime}}=\frac{O B^{\prime}}{O B^{\prime \prime}}=\frac{O C^{\prime}}{O C^{\prime \prime}}=k, k \in R^{*}$. Then the lines $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ are concurrent (The point of Franke - 1904).

Proof:

$$
O\left(\frac{R^{2}}{2 S} \sin 2 A, \frac{R^{2}}{2 S} \sin 2 B, \frac{R^{2}}{2 S} \sin 2 C\right), P=N \text {, because } \frac{\sin 2 B \cos A}{\sin B}-\frac{\sin 2 A \cos B}{\sin A}=0 .
$$

Similarly we find that $R=Q$ and $M=S$.
Also $\alpha M P=\alpha N S, \beta P R=\beta N Q, \gamma R M=\gamma Q S$. It is also verified the second relation from the theorem hypothesis. Therefore the lines $A A^{\prime \prime}, B B^{\prime \prime}, C C$ "are concurrent in a point called the Franke's point.

Remark 1:

It is possible to prove that the Franke's points belong to Euler's line of the triangle $A B C$.

Theorem 4:

Let I_{a} be the center of the circumscribed circle to the triangle $A B C$ (tangent to the side $B C)$ and $A^{\prime}, B^{\prime}, C^{\prime}$ its projections on the sites $B C, C A, A B$. We consider the points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ such that $\overrightarrow{I A^{\prime \prime}}=k \overrightarrow{I A^{\prime}}, \overrightarrow{I B^{\prime \prime}}=k \overrightarrow{I B^{\prime},} \overrightarrow{I C^{\prime \prime}}=k \overrightarrow{I C^{\prime}}, k \in R^{*}$. Then the lines $A A ", B B ", C C$ " are concurrent.

Proof

$$
I_{a}\left(\frac{-a}{2(p-a)}, \frac{b}{2(p-a)}, \frac{c}{2(p-a)}\right)
$$

The first condition becomes:

$$
-a b c(\cos A+\cos B)+a b c(\cos B-\cos C)-a b c(-\cos C-\cos A)=0, \quad \text { and the }
$$

second condition:

$$
\cos A(\cos B-\cos C)+\cos B(-\cos C-\cos A)+\cos C(\cos A+\cos B)=0
$$

Is also verified.
From this theorem it results that the lines $A A$ ", $B B^{\prime \prime}, C C$ " are concurrent.

Observation 1:

Similarly, this theorem is proven for the case of I_{b} and I_{c} as centers of the ex-inscribed circles.

References

[1] C. Coandă -Geometrie analitică în coordonate baricentrice - Editura Reprograph, Craiova, 2005.
[2] F. Smarandache - Multispace \& Multistructure, Neutrosophic Trandisciplinarity (100 Collected Papers of Sciences), Vol. IV, 800 p., North-European Scientific Publishers, Finland, 2010.

