A GENERALIZATION REGARDING THE EXTREMES OF A TRIGONOMETRIQUE FUNCTION

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail:smarand@unm.edu

After a passionate lecture of this book [1] (Mathematics plus literature!) I stopped at one of the problems explained here:

At page 121, the problem 2 asks to determine the maximum of expression:

$$
E(x)=\left(9+\cos ^{2} x\right)\left(6+\sin ^{2} x\right) .
$$

Analogue, in G. M. 7/1981, page 280, problem 18820*.
Here, we'll present a generalization of these problems, and we'll give a simpler solving method, as follows:

Let $f: \square \rightarrow \square, f(x)=\left(a_{1} \sin ^{2} x+b_{1}\right)\left(a_{2} \cos ^{2} x+b_{2}\right) ;$
find the function's extreme values.
To solve it, we'll take into account that we have the following relation:

$$
\cos ^{2} x=1-\sin ^{2} x
$$

and we'll note $\sin ^{2} x=y$. Thus $y \in[0,1]$.
The function becomes:

$$
f(y)-\left(a_{1} y+b_{1}\right)\left(-a_{2} y+a_{2}+b_{2}\right)=-a_{1} a_{2} y^{2}+\left(a_{1} a_{2}+a_{1} b_{2}-a_{2} b_{1}\right) y+b_{1} a_{2}+b_{1} b_{2}
$$

where $y \in[0,1]$.
Therefore f is a parabola.
If $a_{1} a_{2}=0$, the problem becomes banal.
If $a_{1} a_{2}>0, f\left(y_{\max }\right)=\frac{-\Delta}{4 a}, y_{\text {max }}=\frac{-b}{2 a}$
a) when $-\frac{b}{2 a} \in[0,1]$, the values that we are looking for are those from (*), and

$$
y_{\min }=\max \left\{-\frac{b}{2 a}-0,1+\frac{b}{2 a}\right\}
$$

b) when $-\frac{b}{2 a}>1$, we have $y_{\max }=1, y_{\min }=0$. (it is evident that $f_{\text {max }}=f\left(y_{\max }\right)$ and $\left.f_{\text {min }}=f\left(y_{\text {min }}\right)\right)$
c) when $-\frac{b}{2 a}<0$, we have $y_{\text {max }}=0, y_{\text {min }}=1$.

If $a_{1} a_{2}<0$, the function admits a minimum for

$$
\begin{equation*}
y_{\min }=-\frac{b}{2 a}, f_{\min } \frac{-\Delta}{4 a} \text { (on the real axes) } \tag{**}
\end{equation*}
$$

a) when $-\frac{b}{2 a} \in[0,1]$, the looked after solutions are those from (**). And $y_{\text {max }}=\max \left\{-\frac{b}{2 a}, 1+\frac{b}{2 a}\right\}$
b) when $-\frac{b}{2 a}>1$, we have $y_{\text {max }}=0, y_{\text {min }}=1$
c) when $-\frac{b}{2 a}<0$, we have $y_{\text {max }}=1, y_{\text {min }}=0$.

Maybe the cases presented look complicated and unjustifiable, but if you plot the parabola (or the line), then the reasoning is evident.

REFERENCE

[1] Viorel Gh. Vodă - Surprize în matematica elementară - Editura Albatros, Bucureşti, 1981.

