GENERALIZATIONS OF THE THEOREM OF CEVA

Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

In these paragraphs one presents three generalizations of the famous theorem of Ceva, which states:

"If in a triangle ABC one plots the convergent straight lines

 AA_1, BB_1, CC_1 then $\frac{A_1B}{\overline{A_1C}} \cdot \frac{B_1C}{\overline{B_1A}} \cdot \frac{C_1A}{\overline{C_1B}} = -1$ ".

Theorem: Let us have the polygon $A_1A_2...A_n$, a point *M* in its plane, and a circular permutation

 $p = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 2 & 3 & \dots & n & 1 \end{pmatrix}.$ One notes M_{ij} the intersections of the line A_iM with the lines $A_{i+s}A_{i+s+1}, \dots, A_{i+s+t-1}A_{i+s+t}$ (for all i and j, $j \in \{i+s, \dots, i+s+t-1\}$).

If
$$M_{ij} \neq A_n$$
 for all the respective indices, and if $2s + t = n$, one has:

$$\prod_{i,j=1,i+s}^{n,i+s+t-1} \frac{\overline{M_{ij}A_j}}{\overline{M_{ij}A_n(j)}} = (-1)^n \text{ (s and } t \text{ are natural non zero numbers).}$$

Analytical demonstration: Let M be a point in the plain of the triangle ABC, such that it satisfies the conditions of the theorem. One chooses a Cartesian system of axes, such that the two parallels with the axes which pass through M do not pass by any point A_i (this is possible).

One considers M(a,b), where a and b are real variables, and $A_i(X_i,Y_i)$ where X_i and Y_i are known, $i \in \{1,2,...,n\}$.

The former choices ensure us the following relations:

 $X_i - a \neq 0$ and $Y_i - b \neq 0$ for all $i \in \{1, 2, ..., n\}$.

The equation of the line $A_i M$ $(1 \le i \le n)$ is:

$$\frac{x-a}{X_i-a} - \frac{y-b}{Y_i-b}$$
. One notes that $d(x, y; X_i, Y_i) = 0$.

One has _____

$$\frac{M_{ij}A_j}{M_{ij}A_{p(j)}} = \frac{\delta(A_j, A_iM)}{\delta(A_{p(j)}, A_iM)} = \frac{d(X_j, Y_j; X_i, Y_i)}{d(X_{p(j)}, Y_{p(j)}; X_i, Y_i)} = \frac{D(j, i)}{D(p(j), i)}$$

where $\delta(A,ST)$ is the distance from A to the line ST, and where one notes with D(a,b) for $d(X_a,Y_a;X_b,Y_b)$.

Let us calculate the product, where we will use the following convention:
$$a+b$$

will mean $\frac{p(p(...p(a)...))}{p_{blines}}$, and $a-b$ will mean $\frac{p^{-1}(p^{-1}(...p^{-1}(a)...))}{p_{blines}}$
 $\prod_{j=i+s}^{i+s+t-1} \frac{\overline{M_{ij}A_{j}}}{\overline{M_{ij}A_{j+1}}} = \prod_{j=i+s}^{i+s+t-1} \frac{D(j,i)}{D(j+1,i)} =$
 $= \frac{D(i+s,i)}{D(i+s+1,i)} \cdot \frac{D(i+s+1,i)}{D(i+s+2,i)} \cdots \frac{D(i+s+t-1,i)}{D(i+s+t,i)} =$
 $= \frac{D(i+s,i)}{D(i+s+t,i)} = \frac{D(i+s,i)}{D(i-s,i)}$
The initial product is equal to:
 $\prod_{i=1}^{n} \frac{D(i+s,i)}{D(i-s,i)} = \frac{D(1+s,1)}{D(1-s,1)} \cdot \frac{D(2+s,2)}{D(2-s,2)} \cdots \frac{D(2s,s)}{D(n,s)} \cdot \frac{D(2s+2,s+2)}{D(t+1,s+t+1)} \cdots \frac{D(2s+t+1,s+t+1)}{D(t+s,s+t+1)} \cdot \frac{D(2s+t+2,s+t+2)}{D(t+2,s+t+2)} \cdots \frac{D(2s+t+s,s+t+s)}{D(t+s,s+t+s)} =$
 $= \frac{D(1+s,1)}{D(1,1+s)} \cdot \frac{D(2+s,2)}{D(2,2+s)} \cdots \frac{D(2s+t,s+t)}{D(s+t,2s+t)} \cdots \frac{D(s,n)}{D(n,s)} =$
 $= \prod_{i=1}^{n} \frac{D(i+s,i)}{D(i,i+s)} = \prod_{i=1}^{n} \left(-\frac{P(i+s)}{P(i)}\right) = (-1)^{n}$

because:

$$\frac{D(r,p)}{D(p,r)} = \frac{\frac{X_r - a}{X_p - a} - \frac{Y_r - b}{Y_p - b}}{\frac{X_p - a}{X_r - a} - \frac{Y_p - b}{Y_r - b}} = -\frac{(X_r - a)(Y_r - b)}{(X_p - a)(Y_p - b)} = -\frac{P(r)}{P(p)},$$

The last equality resulting from what one notes: $(X_t - a)(Y_t - b) = P(t)$. From (1) it results that $P(t) \neq 0$ for all t from $\{1, 2, ..., n\}$. The proof is completed.

Comments regarding the theorem:

t represents the number of lines of a polygon which are intersected by a line $A_{i_0}M$; if one notes the sides A_iA_{i+1} of the polygon, by a_i , then s+1 represents the

order of the first line intersected by the line A_1M (that is a_{s+1} the first line intersected by A_1M).

Example: If s = 5 and t = 3, the theorem says that :

- the line A_1M intersects the sides A_6A_7, A_7A_8, A_8A_9 .

- the line A_2M intersects the sides $A_7A_8, A_8A_9, A_9A_{10}$.
- the line A_3M intersects the sides $A_8A_9, A_9A_{10}, A_{10}A_{11}$, etc.

Observation: The restrictive condition of the theorem is necessary for the existence of the ratios $\frac{\overline{M_{ij}A_j}}{\overline{M_{ii}A_{r(i)}}}$.

Consequence 1: Let us have a polygon $A_1A_2...A_{2k+1}$ and a point M in its plan. For all *i* from $\{1, 2, ..., 2k+1\}$, one notes M_i the intersection of the line $A_iA_{p(i)}$ with the line which passes through M and by the vertex which is opposed to this line. If $M_i \notin \{A_i, A_{p(i)}\}$ then one has: $\prod_{i=1}^n \frac{\overline{M_iA_i}}{\overline{M_iA_{p(i)}}} = -1$.

The demonstration results immediately from the theorem, since one has s = k and t = 1, that is n = 2k + 1.

The reciprocal of this consequence is not true.

From where it results immediately that the reciprocal of the theorem is not true either.

Counterexample:

Let us consider a polygon of 5 sides. One plottes the lines A_1M_3, A_2M_4 and A_3M_5 which intersect in M.

Let us have
$$K = \frac{\overline{M_3 A_3}}{\overline{M_3 A_4}} \cdot \frac{\overline{M_4 A_4}}{\overline{M_4 A_5}} \cdot \frac{\overline{M_5 A_5}}{\overline{M_5 A_1}}$$

Then one plots the line A_4M_1 such that it does not pass through M and such that it forms the ratio:

(2) $\frac{M_1A_1}{M_1A_2} = 1/K$ or 2/K. (One chooses one of these values, for which

 A_4M_1 does not pass through M).

At the end one traces A_5M_2 which forms the ratio $\frac{M_2A_2}{M_2A_3} = -1$ or $-\frac{1}{2}$ in function of (2). Therefore the product:

 $\prod_{i=1}^{5} \frac{\overline{M_i A_i}}{\overline{M_i A_{p(i)}}}$ without which the respective lines are concurrent.

Consequence 2: Under the conditions of the theorem, if for all i and $j, j \notin \{i, p^{-1}(i)\}$, one notes $M_{ij} = A_i M \cap A_j A_{p(j)}$ and $M_{ij} \notin \{A_j, A_{p(j)}\}$ then one has:

$$\prod_{i,j=1}^{n} \frac{\overline{M_{ij}A_j}}{\overline{M_{ij}A_{p(j)}}} = (-1)^n \, .$$

 $j \notin \{i, p^{-1}(i)\}$ In effect one has s = 1, t = n - 2, and therefore 2s + t = n.

Consequence 3: For n = 3, it comes s = 1 and t = 1, therefore one obtains (as a particular case) the theorem of Céva.