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Abstract—In this paper, three new operations are 

introduced on intuitionistic fuzzy soft sets .They are 

based on concentration, dilatation and normalization of 

intuitionistic fuzzy sets. Some examples of these 

operations were given and a few important properties 

were also studied. 

 

Index Terms—Soft Set, Intuitionistic Fuzzy Soft Set, 

Concentration, Dilatation, Normalization. 

 

I.  INTRODUCTION 

The concept of the intuitionistic fuzzy (IFS, for short) 

was introduced in 1983 by K. Aanassov [1] as an 

extension of Zadeh‘s fuzzy set. All operations, defined 

over fuzzy sets were transformed for the case the IFS 

case .This concept is capable of capturing the 

information that includes some degree of hesitation and 

applicable in various fields of research. For example, in 

decision making problems, particularly in the case of 

medical diagnosis,  sales analysis, new product 

marketing, financial services, etc. Atanassov et.al [2,3] 

have widely applied theory of intuitionistic sets in logic 

programming, Szmidt and Kacprzyk [4] in group 

decision making , De  et al [5] in medical diagnosis etc. 

Therefore in various engineering application, 

intuitionistic fuzzy sets techniques have been more 

popular than fuzzy sets techniques in recent years. 

Another important concept that addresses uncertain 

information is the soft set theory originated by 

Molodtsov [6].  This concept is  free from the 

parameterization inadequacy syndrome of fuzzy set 

theory, rough set theory, probability theory. Molodtsov 

has successfully applied the soft set theory in many 

different fields such as smoothness of functions, game 

theory, operations research, Riemann integration, Perron  

integration, and probability. In recent years, soft set 

theory has been received much attention since its 

appearance. There are many papers devoted to fuzzify 

the concept of soft set theory which leads to a series of 

mathematical models such as fuzzy soft set [7,8,9,10,11], 

generalized fuzzy soft set [12,13], possibility fuzzy soft 

set [14] and so on. Thereafter, P.K.Maji and his 

coauthor [15] introduced the notion of intuitionistic 

fuzzy soft set which is based on a combination of the 

intuitionistic fuzzy sets and soft set models and they 

studied the properties of intuitionistic fuzzy soft set. 

Then, a lot of extensions of intuitionistic fuzzy soft have 

appeared such as generalized intuitionistic fuzzy soft set 

[16], possibility intuitionistic fuzzy soft set [17] etc. 

In this paper our aim is to extend the two operations 

defined by Wang et al. [18] on intuitionistic fuzzy set to 

the case of intuitionistic fuzzy soft sets, then we define 

the concept of normalization of intuitionistic fuzzy soft 

sets and we study some of their basic properties. 

This paper is arranged in the following manner .In 

section 2, some definitions and notions about soft set, 

fuzzy soft set, intuitionistic fuzzy soft set and several 

properties of them are presented. In section 3, we 

discuss the normalization intuitionistic fuzzy soft sets. 

In section 4, we conclude the paper. 

 

II.  PRELIMINARIES 

In this section, some definitions and notions about soft 

sets and intutionistic fuzzy soft set are given. These will 

be useful in later sections. 

Let U be an initial universe, and E be the set of all 

possible parameters under consideration with respect to 

U. The set of all subsets of U, i.e. the power set of U is 

denoted by P(U) and the set of all intuitionistic fuzzy 

subsets of U is denoted by IFU. Let A be a subset of E.
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2.1 Definition 

A pair (F, A) is called a soft set over U, where F is a 

mapping given by F: A  P (U). 

In other words, a soft set over U is a parameterized 

family of subsets of the universe U. For     A, F ( ) may 

be considered as the set of   -approximate elements of 

the soft set (F, A). 

2.2 Definition 

Let U be an initial universe set and E be the set of 

parameters. Let IFU denote the collection of all 

intuitionistic fuzzy subsets of U. Let. A    E pair (F, A) 

is called an intuitionistic fuzzy soft set over U where F is 

a mapping given by F: A→ IFU. 

2.3 Defintion 

Let F: A→ IFU  then  F is a function defined as  F ( ) 
={ x,   ( )( ) ,   ( )( ) :           +   where    ,   

denote the degree of  membership and degree of non-

membership respectively. 

2.4 Definition 

For two intuitionistic fuzzy soft sets (F , A) and (G, B) 

over a common universe U , we say that (F , A) is an  

intuitionistic fuzzy soft subset of (G, B) if 

(1) A   B and 

(2) F ( )   G( ) for all     A. i.e   ( )( )   

  ( )( ) ,   ( )( )     ( )( ) for all     E and  

We write (F, A)   (G, B). 

2.5 Definition 

Two intuitionistic fuzzy soft sets (F, A) and (G, B) 

over a common universe U are said to be soft equal if (F, 

A) is a soft subset of (G, B) and (G, B) is a soft subset of 

(F, A). 

2.6 Definition 

Let U be an initial universe, E be the set of parameters, 

and A   E. 

(a) (F, A) is called a null intuitionistic fuzzy soft set (with 

respect to the parameter set A), denoted by   , if F (a) = 

   for all a   A. 

(b) (G, A) is called an absolute intuitionistic fuzzy soft 

set (with respect to the parameter set A), denoted by   , 

if G(e) = U for all e   A. 

2.7Definition 

Let (F, A) and (G, B) be two IFSSs over the same 

universe U. Then the union of (F, A) and (G, B) is 

denoted by ‗(F, A)   (G, B)‘ and is defined by (F, A)   

(G, B) = (H, C), where C=A     B and the truth-

membership, falsity-membership of (H, C) are as 

follows: 

 

 ( ) 

=

{
 
 

 
 

*(  ( )( )   ( )( )       +                 

*(  ( )( )   ( )( )       }              –   

{   (  ( )( )   ( )( ))      (  ( )( )   ( )( ))       }  

            

 

 

Where   ( )( )  =     (  ( )( )   ( )( )) and 

  ( )( ) =     (  ( )( )   ( )( )) 

 

2.8 Definition 

Let (F, A) and (G, B) be two IFSSs over the same 

universe U such that A   B≠0. Then the intersection of 

(F, A) and ( G, B) is denoted by ‗( F, A)   (G, B)‘ and 

is defined by ( F, A )   ( G, B ) = ( K, C),where C =A 

 B and the truth-membership, falsity-membership of 

( K, C ) are related to those of (F, A) and (G, B) by:  

 

 ( ) 

=

{
 
 

 
 

*(  ( )( )   ( )( )       +                 

*(  ( )( )   ( )( )       }              –   

{   (  ( )( )   ( )( ))      (  ( )( )   ( )( ))       }  

            

 

 

III.  CONCENTRATION OF INTUITIONISTIC FUZZY SOFT SET 

3.1 Definition 

The concentration of an intuitionistic fuzzy soft set (F, 

A) of universe U, denoted by CON (F, A), and is defined 

as a unary operation on IFU: 

 

Con: IFU   IFU 

 

Con (F, A) = 

{Con {F( ) } = {<x,    ( )
 ( ) , 1- (     ( ( ))( ))

   > |   

∈ U and  ∈ A}. where 

 

From 0     ( )( ),   ( )( )   1 

 

and   ( )( ) +  ( )( )   1, 

 

we obtain 0     ( )
 ( )     ( )( ) 

 

   1- (     ( ( ))( ))
     ( )( ) 

 

     Con (F, A)   IFU, i.e Con (F, A)    (F, A ) this 

means that concentration of a intuitionistic fuzzy soft set 

leads to a reduction of the degrees of membership. 

In the following theorem, The operator ―Con ―reveals 

nice distributive properties with respect to intuitionistic 

union and intersection. 
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3.2 Therorem 

i. Con ( F, A )    ( F, A ) 

 

ii. Con (( F, A )   ( G,B )) = Con ( F, A )   Con ( G, B ) 

 

iii. Con (( F, A )    ( G,B )) = Con ( F, A )   Con ( G, B ) 

 

iv. Con (( F, A )   ( G,B ))=  Con ( F, A )   Con ( G,B ) 

 

v. Con ( F, A )   Con ( G, B )   Con (( F, A )   ( G,B )) 

 

vi. ( F, A )    ( G, B )     Con ( F, A )    Con( G, B ) 

 

Proof , we prove only (v) ,i.e 

 

  ( )
 ( ) +   ( )

 ( ) -   ( )
 ( )   ( )

 ( )   (   ( )( )  

    ( )( )     ( )( )    ( )( ))
 , 

 

(1- (     ( ) ( ))
 ). (1- (    ( )( ))

  )   1- 

(     ( )( )   ( )( ))
  or, putting 

 

a=   ( )( ), b=   ( )( ), c =   ( )( ), d =   ( )( ) 

 

   +    -         (            ) , 
 

(1- (    ) ) . (1- (    ) )    1- (     )  
 

The last inequality follows from 0   a, b, c, d   1. 

 

Example 

Let U={a, b, c} and E ={   ,    ,    ,   } , A ={   ,   ,   } 

  E, B={   ,    ,   }   E 

 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 

0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},  

F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

 

(G, B) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 

0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 

G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

 

Con ( F, A )={ con(F(  )) ={ ( a, 0.25, 0.19), (b, 0.01, 

0.96), (c, 0.04, 0.75)}, con(F(  ))={ ( a, 0.49, 0.19), (b, 0, 

0.96), (c, 0.09, 0.75) }, con(F(  ))={ ( a, 0.36, 0.51), (b, 

0.01, 0.91), (c, 0.81, 0.19) } 

 

Con ( G, B )={ con(G(  ))={ ( a, 0.04, 0.84), (b, 0.49, 

0.19), (c, 0.64, 0.75)}, 

 

con(G(  ))={ ( a, 0.16, 0.19), (b, 0.25, 0.51), (c, 0.16, 

0.51) }, con(G(  ))={ ( a, 0, 0.84), (b, 0, 0.96), (c, 0.01, 

0.75) } 

 

(F, A)   (G, B) = (H, C) = {H (  ) ={( a, 0.2, 0.6), (b, 0.1, 

0.8), (c, 0.2, 0. 5)}, H (  ) ={( a, 0.4, 0.1), (b, 0, 0.8), (c, 

0.3, 0. 5)}} 

 

Con (( F, A )    ( G,B ))= {con H(  ) ={( a, 0.04, 0.84), 

(b, 0.01, 0.96), (c, 0.04, 0. 75)}, con H(  ) ={( a, 0.16, 

0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}} 

 

Con ( F, A )   Con (G, B ) =(K,C) ={con K(  ) ={( a, 

0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, conK(  ) 

={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}}. 

 

Then 

Con (( F, A )    ( G,B )) = Con ( F, A )   Con ( G, B ) 

 

IV.  DILATATION OF INTUITIONISTIC FUZZY SOFT SET 

4.1 Definition 

The dilatation of an intuitionistic fuzzy soft set (F, A) 

of universe U, denoted by DIL (F, A ), and is defined as a 

unary operation on IFU: 

 

DIL: IFU   IFU 

 

(F, A)= {<x,   ( )( ),   ( )( )  > |     U and    A}. 

 

DIL( F, A ) ={ DIL {F( ) } =  

{<x,  
 ( )

 

 ( ), 1- (     ( ( ))( ))
 

   > |    U and    A}. 

 

where 

From 0     ( )( ),   ( )( )   1, 

 

and   ( )( ) +  ( )( )   1, 

 

we obtain 0     ( )( )    
 ( )

 

 ( ) 

 

0   (     ( ( ))( ))
 

     ( )( ) 

 

     DIL( F, A )   IFU, i.e ( F, A )    DIL( F, A ) this 

means that dilatation of an intuitionistic fuzzy soft set leads 

to an increase of the degrees of membership. 

4.2 Theorem 

i. ( F, A )    DIL( F, A ) 

 

ii. DIL (( F, A )   ( G, B )) = DIL ( F, A )   DIL ( G, B ) 

 

iii. DIL (( F, A )    ( G, B )) = DIL( F, A )   DIL ( G, B ) 

 

iv. DIL(( F, A )   ( G, B ))=  DIL ( F, A )   DIL ( G,B ) 

 

v. DIL ( F, A )   DIL ( G, B )   DIL (( F, A )   ( G,B )) 

 

vi. CON ( DIL (F, A) ) = (F,A) 

 

vii. DIL ( CON (F, A) = (F,A) 

 

viii. ( F, A )    ( G, B )   DIL ( F, A )    DIL( G, B ) 
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Proof .we prove only (v), i.e 

 
 ( )

 

 ( ) +  
 ( )

 

 ( ) -  
 ( )

 

 ( )  
 ( )

 

 ( )   (   ( )( )  

    ( )( )     ( )( )    ( )( ))
 

 , 

 

(1- (     ( )( ))
 

 ). (1- (    ( )( ))
 

  )   1- 

(     ( )( )   ( )( ))
 

  or, putting 

 

a=   ( )( ), b=   ( )( ), c =   ( )( ), d =   ( )( ) 
 

 
 

  +  
 

  -  
 

   
 

    (            )
 

 , 

(1- (    )
 

 ). (1- (    )
 

 )   1- (     )
 

 , or 

equivalently : a+ b – a b   1 ,√       1. 

 

The last inequality follows from 0   a, b,c,d   1. 

 

Example 

Let U={a, b, c} and E ={   ,    ,    ,   }, A ={   ,   ,   } 

  E, B={   ,    ,   }   E 

 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 

0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 

F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} and 

 

(G, B) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 

0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 

G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

 

DIL( F, A )={ DIL(F(  ))={ ( a, 0.70, 0.05), (b, 0.31, 

0.55), (c, 0.44, 0.29)}, DIL (F(  ))={ ( a, 0.83, 0.05), (b, 

0, 0.55), (c, 0.54, 0.29) }, DIL(F(  ))={ ( a, 0.77, 0.05), 

(b, 0.31, 0.45), (c, 0.94, 0.05) } and 

 

DIL (G, B) = {DIL (G (  )) = {(a, 0.44, 0.36), (b, 0.83, 

0.05), (c, 0.89, 0.05)}, 

 

DIL(G(  )) ={ ( a, 0.63, 0.05), (b, 0.70, 0.05), (c, 0.63, 

0.29) }, DIL(G(  ))={ ( a, 0, 0.36), (b, 0, 0.55), (c, 0.31, 

0.29) } 

 

(F, A)   (G, B) = (H, C) = {H (  ) = {(a, 0.2, 0.6), (b, 0.1, 

0.8), (c, 0.2, 0. 5)}, H (  ) = {(a, 0.4, 0.1), (b, 0, 0.8), (c, 

0.3, 0. 5)}} 

 

DIL (( F, A )    ( G,B ))= {DILH(  ) ={( a, 0.44, 0.36), (b, 

0.31, 0.55), (c, 0.44, 0. 29)}, DILH(  ) ={( a, 0.63, 0.05), 

(b, 0, 0.55), (c, 0.54, 0. 29)}} 

 

DIL ( F, A )   DIL ( G, B ) =( K,C) ={ DIL K(  ) ={( a, 

0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, DIL K(  ) 

={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}} 

 

Then 

DIL (( F, A )    ( G,B )) = DIL( F, A )   DIL ( G, B ) 

 

V.  NORMALIZATION OF INTUITIONISTIC FUZZY SOFT SET 

In this section, we shall introduce the normalization 

operation on intuitionistic fuzzy soft set.  

5.1 Definition: 

The normalization of an intuitionistic fuzzy soft set ( F, 

A ) of universe U ,denoted by 

 

NORM (F, A) is defined as: 

 
NORM (F, A) ={ Norm {F( )} = {<x,       ( ( ))( ), 

       ( ( ))( ),  > |    U and      A}. where  

 

      ( ( ))( )  = 
  ( )( )

    (  ( )( ))
 and       ( ( ))( )  = 

  ( )( )    (  ( )( ))

      (  ( )( ))
 and  

 

Inf (  ( )( ))   0. 

 

Example. Let there are five objects as the universal set 

where U = {x1, x2, x3, x4, x5} and the set of parameters 

as E = {beautiful, moderate, wooden, muddy, cheap, 

costly} and Let A = {beautiful, moderate, wooden}. Let 

the attractiveness of the objects represented by the 

intuitionistic fuzzy soft sets (F, A) is given as  

 

F(beautiful)={x1/(.6,.4), x2/(.7, .3), x3/(.5, .5), x4/(.8, .2), 

x5/(.9, .1)}, 

 

F(moderate)={x1/(.3, .7), x2/(6, .4), x3/(.8, .2), x4/(.3, .7), 

x5/(1, .9)} and 

 

F(wooden) ={ x1/(.4, .6), x2/(.6, .4), x3/(.5, .5), x4/(.2, .8), 

x5/(.3, .7,)}. 

 

Then, 

 

    (  (         )( )) = 0.9,     (  (         )( ) = 0.1. We 

have  

 

      ( (         ))(  ) = 
   

   
 = 0.66, 

 

      ( (         ))(  ) = 
   

   
 = 0.77,  

 

      ( (         ))(  ) = 
   

   
 = 0.55,  

 

       ( (         ))(  ) = 
   

   
  =0.88,  

 

       ( (         ))(  ) = 
   

   
 = 1 and 

 

      ( (         ))(  ) = 
   

   
 = 0.33,  

 

      ( (         ))(  ) = 
   

   
 = 0.22,  
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       ( (         ))(  ) = 
   

   
 = 0.44 

 

       ( (         ))(  ) = 
   

   
 = 0.11, 

 

       ( (         ))(  ) = 
   

   
 = 0. 

 

Norm(F(         )) ={ x1/(.66,.33), x2/(.77, .22), x3/(.55, .44), 

x4/(.88, .11), x5/(1, 0) }. 

 

    (  (        )( )) = 0.8,      (  (        )( ) = 0.2. 

We have 

 

      ( (        ))(  ) = 
   

   
 = 0.375, 

 

      ( (        ))(  ) = 
   

   
 = 0.75, 

 

       ( (        ))(  ) = 
   

   
 = 1, 

 

       ( (        ))(  ) = 
   

   
  =0.375, 

 

       ( (        ))(  ) = 
   

   
 = 0.125 And 

 

      ( (        ))(  ) = 
   

   
 = 0.625, 

 

      ( (        ))(  ) = 
   

   
 = 0.25, 

 

       ( (        ))(  ) = 
 

   
 = 0, 

 

       ( (        ))(  ) = 
   

   
  = 0.625, 

 

       ( (        ))(  ) = 
   

   
 = 0.875. 

 

Norm(F(        )) ={ x1/(.375,.625), x2/(.75, .25), x3/(1, 0), 

x4/(.375, .625), x5/(0.125, 0.875) }. 

    (  (      )( )) = 0.6,      (  (      )( ) = 0.4. We 

have  

 

      ( (      ))(  ) = 
   

   
 = 0.66, 

 

      ( (      ))(  ) = 
   

   
 = 1, 

 

       ( (      ))(  ) = 
   

   
 = 0.83, 

 

      ( (      ))(  ) = 
   

   
 = 0.34, 

 

       ( (      ))(  ) = 
   

   
 = 0.5 and 

 

      ( (      ))(  ) = 
   

   
 = 0.34, 

 

      ( (      ))(  ) = 
 

   
 = 0, 

 

      ( (      ))(  ) = 
   

   
 = 0.17, 

 

      ( (      ))(  ) = 
   

   
 = 0.66, 

 

       ( (      ))(  ) = 
   

   
 = 0.5. 

 

Norm(F(      )) ={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17), 

x4/(.34, .66), x5/(0.5, 0. 5) }. 

 

Then, Norm (F, A) = {Norm F (         ), Norm 

F(        ), Norm F(      )} 

 

Norm (F,A)={ F(         ) ={ x1/(.66,.33), x2/(.77, .22), 

x3/(.55, .44), x4/(.88, .11), x5/(1, 0) }, F(        )={ x1/(.375,.625), 

x2/(.75, .25), x3/(1, 0), x4/(.375, .625), x5/(0.125, 0.875) }, F(      ) 

={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17), x4/(.34, .66), x5/(0.5, 0. 5) }} 

 

Clearly,        ( ( ))( ) +      ( ( ))( ) = 1, for i = 1, 2, 

3, 4, 5 which satisfies the property of intuitionistic fuzzy 

soft set. Therefore, Norm (F, A) is an intuitionistic fuzzy 

soft set. 

 

VI.  CONCLUSION 

In this paper, we have extended the two operations of 

intuitionistic fuzzy set introduced by Wang et al.[ 18] to 

the case of intuitionistic fuzzy soft sets. Then we have 

introduced the concept of normalization of intuitionistic 

fuzzy soft sets and studied several properties of these 

operations. 
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