ON TWO OF ERDÖS'S OPEN PROBLEMS

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

Abstract

. This short note presents some remarks and conjectures on two open problems proposed by P. Erdös.

First Problem.

In one of his books ("Analysis...") Mr. Paul Erdös proposed the following problem:
"The integer n is called a barrier for an arithmetic function f if $m+f(m) \leq n$ for all $m<n$.

Question: Are there infinitely many barriers for $\varepsilon v(n)$, for some $\varepsilon>0$? Here $v(n)$ denotes the number of distinct prime factors of n."

We found some results regarding this question, which results make us to conjecture that there is a finite number of barriers, for all $\varepsilon>0$.

Let $R(n)$ be the relation: $m+\varepsilon v(m) \leq n, \forall m<n$.
Lemma 1.1. If $\varepsilon>1$ there are two barriers only: $n=1$ and $n=2$ (which we call trivial barriers).

Proof. It is clear for $n=1$ and , $n=2$ because $v(0)=v(1)=0$.
Let's consider $n \geq 3$. Then, if $m=n-1$ we have $m+\varepsilon v(m) \geq n-1+\varepsilon>n$, contradiction.

Lemma 1.2. There is an infinity of numbers which cannot be barriers for $\varepsilon v(n)$, $\forall \varepsilon>0$.

Proof. Let's consider $s, k \in \mathrm{~N}^{*}$ such that $s \cdot \varepsilon>k$. We write n in the form $n=p_{i_{1}}^{\alpha_{i}} \cdots p_{i_{s}}^{\alpha_{i_{s}}}+k$, where for all $j, \alpha_{i_{j}} \in \mathrm{~N}^{*}$ and $p_{i_{j}}$ are positive distinct primes.

Taking $m=n-k$ we have $m+\varepsilon v(m)=n-k+\varepsilon \cdot s>n$.
But there exists an infinity of n 's because the parameters $\alpha_{i_{1}}, \ldots, \alpha_{i_{s}}$ are arbitrary in N^{*} and $p_{i_{1}}, \ldots, p_{i_{s}}$ are arbitrary positive distinct primes, also there is an infinity of couples (s, k) for an $\varepsilon>0$, fixed, with the property $s \cdot \varepsilon>k$.

Lemma 1.3. For all $\varepsilon \in(0,1]$ there are nontrivial barriers for $\varepsilon v(n)$.

Proof. Let t be the greatest natural number such that $t \varepsilon \leq 1$ (always there is such t).

Let n be from $\left[3, \ldots, p_{1} \cdots p_{t} p_{t+1}\right)$, where $\quad p_{i}$ is the sequence of the positive primes. Then $1 \leq v(n) \leq t$.

All $n \in\left[1, \ldots, p_{1} \cdots p_{t} p_{t+1}\right]$ is a barrier, because: $\forall 1 \leq k \leq n-1$, if $m=n-k$ we have $m+\varepsilon v(m) \leq n-k+\varepsilon \cdot t \leq n$.

Hence, there are at list $p_{1} \cdots p_{t} p_{t+1}$ barriers.
Corollary. If $\varepsilon \rightarrow 0$ then n (the number of barriers) $\rightarrow \infty$.
Lemma 1.4. Let's consider $n \in\left[1, \ldots, p_{1} \cdots p_{r} p_{r+1}\right]$ and $\varepsilon \in(0,1]$. Then: n is a barrier if and only if $R(n)$ is verified for $m \in n-1, n-2, \ldots, n-r+1$.

Proof. It is sufficient to prove that $R(n)$ is always verified for $m \leq n-r$.
Let's consider $m=n-r-u, u \geq 0$. Then $m+\varepsilon v(m) \leq n-r-u+\varepsilon \cdot r \leq n$.

Conjecture.

We note $I_{r} \in\left[p_{1} \cdots p_{r}, \ldots, \cdot p_{1} \cdots p_{r} p_{r+1}\right)$. Of course $\bigcup_{r \geq 1} I_{r}=\mathrm{N} \backslash\{0,1\}$, and $I_{r_{1}} \cap I_{r_{2}}=\Phi$ for $r_{1} \neq r_{2}$.

Let $\mathrm{N}_{r}(1+t)$ be the number of all numbers n from I_{r} such that $1 \leq v(n) \leq t$.
We conjecture that there is a finite number of barriers for $\varepsilon v(n), \forall \varepsilon>0$; because

$$
\lim _{r \rightarrow \infty} \frac{\mathrm{~N}_{r}(1+t)}{p_{1} \cdots p_{r+1}-p_{1} \cdots p_{r}}=0
$$

and the probability (of finding of $r-1$ consecutive values for m, which verify the relation $R(n)$) approaches zero.

Second Problem.

Paul Erdös has proposed another problem:
(1) "Is it true that $\lim _{n \rightarrow \infty} \max _{m<n}(m+d(m))-n=\infty$?, where $d(m)$ represents the number of all positive divisors of m."
We clearly have :
Lemma 2.1. $(\forall) n \in \mathrm{~N} \backslash 0,1,2,(\exists)!s \in \mathrm{~N}^{*},(\exists)!\alpha_{1}, \ldots, \alpha_{s} \in \mathrm{~N}, \alpha_{s} \neq 0$, such that $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}+1$, where p_{1}, p_{2}, \ldots constitute the increasing sequence of all positive primes.

Lemma 2.2. Let $s \in \mathrm{~N}^{*}$. We define the subsequence $n_{s}(i)=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}+1$, where $\alpha_{1}, \ldots, \alpha_{s}$ are arbitrary elements of N , such that $\alpha_{s} \neq 0$ and $\alpha_{1}+\ldots+\alpha_{s} \rightarrow \infty$ and we order it such that $n_{s}(1)<n_{s}(2)<\ldots$ (increasing sequence).

We find an infinite number of subsequences $\quad n_{s}(i)$, when s traverses N^{*}, with the properties:
a) $\lim _{i \rightarrow \infty} n_{s}(i)=\infty$ for all $s \in \mathrm{~N}^{*}$.
b) $n_{s_{1}}(i), i \in \mathrm{~N}^{*} \cap n_{s_{2}}(j), j \in \mathrm{~N}^{*}=\Phi$, for $s_{1} \neq s_{2}$ (distinct subsequences).
c) $\mathrm{N} \backslash 0,1,2=\bigcup_{s \in \mathrm{~N}^{*}} n_{s}(i), i \in \mathrm{~N}^{*}$

Then:
Lemma 2.3. If in (1) we calculate the limit for each subsequence $n_{s}(i)$ we obtain:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\max _{m<p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}}(m+d(m))-p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}-1\right) \geq \lim _{n \rightarrow \infty} p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}+\left(\alpha_{1}+1\right) \ldots\left(\alpha_{s}+1\right)-p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}-1= \\
& =\lim _{n \rightarrow \infty}\left(\left(\alpha_{1}+1\right) \ldots\left(\alpha_{s}+1\right)-1\right)>\lim _{n \rightarrow \infty}\left(\alpha_{1}+\ldots+\alpha_{s}\right)=\infty
\end{aligned}
$$

From these lemmas it results the following:
Theorem: We have $\varlimsup \varlimsup_{n \rightarrow \infty} \max _{m<n}(m+d(m))-n=\infty$.

REFERENCES

[1] P. Erdös - Some Unconventional Problems in Number Theory Mathematics Magazine, Vol. 57, No.2, March 1979.
[2] P. Erdös - Letter to the Author - 1986: 01: 12.
[Published in "Gamma", XXV, Year VIII, No. 3, June 1986, p. 5.]

