A METHOD TO SOLVE THE DIOPHANTINE EQUATION

$$
a x^{2}-b y^{2}+c=0
$$

Florentin Smarandache, Ph D
Associate Professor
Chair of Department of Math \& Sciences
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail:smarand@unm.edu

ABSTRACT
 We consider the equation

(1) $a x^{2}-b y^{2}+c=0$, with $a, b \in \mathbf{N}^{*}$ and $c \in \mathbf{Z}^{*}$.

It is a generalization of the Pell's equation: $x^{2}-D y^{2}=1$. Here, we show that: if the equation has an integer solution and $a \cdot b$ is not a perfect square, then (1) has an infinitude of integer solutions; in this case we find a closed expression for $\left(x_{n}, y_{n}\right)$, the general positive integer solution, by an original method. More, we generalize it for any Diophantine equation of second degree and with two unknowns.

INTRODUCTION

If $a b=k^{2}$ is a perfect square $(k \in \mathrm{~N})$ the equation (1) has at most a finite number of integer solutions, because (1) become:
(2) $(a x-k y)(a x+k y)=-a c$

If (a, b) does not divide c , the Diophantine equation does not have solutions.
METHOD TO SOLVE. Suppose that (1) has many integer solutions. Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ be the smallest positive integer solutions for (1), with $0 \leq x_{0}<x_{1}$. We construct the recurrent sequences:

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha x_{n}+\beta y_{n} \tag{3}\\
y_{n+1}=\gamma x_{n}+\delta y_{n}
\end{array}\right.
$$

making condition (3) verify (1). It results:

$$
\left\{\begin{array}{l}
a \alpha \beta=b \gamma \delta \tag{4}\\
a \alpha^{2}-b \gamma^{2}=a \\
a \beta^{2}-b \delta^{2}=-b
\end{array}\right.
$$

having the unknowns $\alpha, \beta, \gamma, \delta$.
We pull out $a \alpha^{2}$ and $a \beta^{2}$ from (5), respectively (6), and replace them in (4) at the square; we obtain

$$
\begin{equation*}
a \delta^{2}-b \gamma^{2}=a \tag{7}
\end{equation*}
$$

We subtract (7) from (5) and find:

$$
\begin{equation*}
\alpha= \pm \delta \tag{8}
\end{equation*}
$$

Replacing (8) in (4) we obtain:

$$
\begin{equation*}
\beta= \pm \frac{b}{a} \gamma \tag{9}
\end{equation*}
$$

Afterwards, replacing (8) in (5), and (9) in (6) we find the same equation:

$$
a \alpha^{2}-b \gamma^{2}=a
$$

Because we work with positive solutions only, we take

$$
\left\{\begin{array}{l}
x_{n+1}=a_{0} x_{n}+\frac{b}{a} \gamma_{0} y_{n} \\
y_{n+1}=\gamma_{0} x_{n}+\alpha_{0} y_{n}
\end{array}\right.
$$

where $\left(a_{0}, \gamma_{0}\right)$ is the smallest, positive integer solution of (10) such that $a_{0} \gamma_{0} \neq 0$.
Let $\left(\begin{array}{cc}\alpha_{0} & \frac{b}{a} \gamma_{0} \\ \gamma_{0} & \alpha_{0}\end{array}\right) \in \mathrm{M}_{2}(\mathbf{Z})$. It is evident that if $\left(x^{\prime}, y^{\prime}\right)$ is an integer solution for (1) then $A\binom{x^{\prime}}{y^{\prime}}, A^{-1}\binom{x^{\prime}}{y^{\prime}}$ is another one - where A^{-1} is the inverse matrix of A, i.e. $A^{-1} \cdot A=A \cdot A^{-1}=I$ (unit matrix). Hence, if (1) has an integer solution it has an infinity. (Clearly $A^{-1} \in \mathrm{M}_{2}(\mathrm{Z})$).

The general positive integer solution of the equation (1) is:

$$
\begin{gathered}
\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left|x_{n}\right|,\left|y_{n}\right| \\
\left(G S_{1}\right) \text { with }\binom{x_{n}}{y_{n}}=A^{n} \cdot\binom{x_{0}}{y_{0}}, \text { for all } n \in \mathbf{Z},
\end{gathered}
$$

where by convention $A^{0}=I$ and $A^{-k}=A^{-1} \ldots A^{-1}$ of k times.
In problems it is better to write ($G S$) as:

$$
\begin{gathered}
\binom{x_{n}^{\prime}}{y_{n}^{\prime}}=A^{n} \cdot\binom{x_{0}}{y_{0}}, n \in \mathrm{~N} \\
\left(G S_{2}\right) \text { and }\binom{x_{n}^{\prime \prime}}{y_{n}^{\prime \prime}}=A^{n} \cdot\binom{x_{1}}{y_{1}}, n \in \mathrm{~N}^{*}
\end{gathered}
$$

We prove, by reduction at absurdum that $\left(G S_{2}\right)$ is a general positive integer solution for (1).

Let (u, v) be a positive integer particular solution for (1). If $\exists k_{0} \in \mathrm{~N}:(u, v)=A^{k_{0}}\binom{x_{0}}{y_{0}}$, or $\exists k_{1} \in \mathrm{~N}^{*}:(u, v)=A^{k_{1}}\binom{x_{1}}{y_{1}}$ then $(u, v) \in\left(G S_{2}\right)$. Contrary to this, we calculate $\left(u_{i+1}, v_{i+1}\right)=A^{-1}\binom{u_{i}}{v_{i}}$, for $i=0,1,2, \ldots$ where $u_{0}=u, v_{0}=v$. Clearly $u_{i+1}<u_{i}$ for all i. After a certain rank $x_{0}<u_{i_{0}}<x_{1}$ it finds either $0<u_{i_{0}}<x_{0}$, but that is absurd.

It is clear that we can put
$\left(G S_{3}\right)\binom{x_{n}}{y_{n}}=A^{n} \cdot\binom{x_{0}}{\varepsilon y_{0}}, n \in \mathrm{~N}$, where $\varepsilon= \pm 1$.
Now we shall transform the general solution ($G S_{3}$) in a closed expression.
Let λ be a real number. $\operatorname{Det}(A-\lambda \cdot I)=0$ involves the solutions $\lambda_{1,2}$ and the proper vectors $V_{1,2}$ (i.e., $A v_{i}=\lambda_{i} v_{i}, i \in 1,2$). Note $P=\binom{v_{1}}{v_{2}}^{i} \in \mathrm{M}_{2}(\square)$ Then $P^{-1} A P=\left(\begin{array}{ll}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, whence $A^{n}=P\left(\begin{array}{ll}\lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n}\end{array}\right) P^{-1}$, and replacing it in $\left(G S_{3}\right)$ and doing the computations we find a closed expression for $\left(G S_{3}\right)$.

EXAMPLES

1. For the Diophantine equation $2 x^{2}-3 y^{2}=5$ we obtain

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}
5 & 6 \\
4 & 5
\end{array}\right)^{n} \cdot\binom{2}{\varepsilon}, n \in \mathrm{~N} \text { and } \lambda_{1,2}=5 \pm 2 \sqrt{6}, v_{1,2}=(\sqrt{6}, \pm 2),
$$

whence a closed expression for x_{n} and y_{n} :

$$
\left\{\begin{array}{l}
x_{n}=\frac{4+\varepsilon \sqrt{6}}{4}(5+2 \sqrt{6})^{n}+\frac{4-\varepsilon \sqrt{6}}{4}(5-2 \sqrt{6})^{n} \\
y_{n}=\frac{3 \varepsilon+2 \sqrt{6}}{6}(5+2 \sqrt{6})^{n}+\frac{3 \varepsilon-2 \sqrt{6}}{6}(5-2 \sqrt{6})^{n}
\end{array} \quad \text { for all } n \in \mathrm{~N}\right.
$$

2. For equation $x^{2}-3 y^{2}-4=0$ the general solution in positive integer is:

$$
\left\{\begin{array}{l}
x_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n} \\
y_{n}=\frac{1}{\sqrt{3}}(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}
\end{array} \quad \text { for all } n \in \mathrm{~N}\right.
$$

that is $(2,0),(4,2),(14,8),(52,30), \ldots$

EXERCICES FOR RADERS.

Solve the Diophantine equations:
3. $x^{2}-12 y^{2}+3=0$
[Remark: $\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}7 & 24 \\ 2 & 7\end{array}\right)^{n} \cdot\binom{3}{\varepsilon}=?, n \in \mathrm{~N}$]
4. $x^{2}-6 y^{2}-10=0$
[Remark: $\left.\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}5 & 12 \\ 2 & 5\end{array}\right)^{n} \cdot\binom{4}{\varepsilon}=?, n \in \mathrm{~N}\right]$
5. $x^{2}-12 y^{2}-9=0$
[Remark: $\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}7 & 24 \\ 2 & 7\end{array}\right)^{n} \cdot\binom{3}{\varepsilon}=$?, $\left.n \in \mathrm{~N}\right]$
6. $14 x^{2}-3 y^{2}-18=0$

GENERALIZATIONS

If $f(x, y)=0$ is a Diophantine equation of second degree and with two unknowns, by linear transformation it becomes

$$
\text { (12) } a x^{2}+b y^{2}+c=0, \text { with } a, b, c \in \mathbf{Z} \text {. }
$$

If $a b \geq 0$ the equation has at most a finite number of integer solutions which can be found by attempts.

It is easier to present an example:
7. The Diophantine equation
(13) $9 x^{2}+6 x y-13 y^{2}-6 x-16 y+20=0$ becomes
(14) $2 u^{2}-7 v^{2}+45=0$, where
(15) $u=3 x+y-1$ and $v=2 y+1$

We solve (14). Thus:
(16) $\left\{\begin{array}{l}u_{n+1}=15 u_{n}+28 v_{n} \\ v_{n+1}=8 u_{n}+15 v_{n}\end{array}, n \in \mathrm{~N}\right.$ with $\left(u_{0}, v_{0}\right)=(3,3 \varepsilon)$

First solution:
By induction we prove that for all $n \in \mathrm{~N}$ we have that v_{n} is odd, and u_{n} as well as v_{n} are multiple of 3. Clearly $v_{0}=3 \varepsilon, u_{0}$. For $n+1$ we have: $v_{n+1}=8 u_{n}+15 v_{n}=$ even + odd $=$ odd , and of course u_{n+1}, v_{n+1} are multiples of 3 because u_{n}, v_{n} are multiple of 3 too.

Hence, there exist x_{n}, y_{n} in positive integers for all $n \in \mathrm{~N}$:
(17) $\left\{\begin{array}{l}x_{n}=\left(2 u_{n}-v_{n}+3\right) / 6 \\ y_{n}=\left(v_{n}-1\right) / 2\end{array}\right.$
(from (15)). Now we'll find the $\left(G S_{3}\right)$ for (14) as closed expression, and by means of (17) it results the general integer solution of the equation (13).

Second solution:

Another expression of the $\left(G S_{3}\right)$ for (13) will be obtained if we transform (15) as $u_{n}=3 x_{n}+y_{n}-1$ and $v_{n}=2 y_{n}+1$ for all $n \in \mathrm{~N}$. Whence, using (16) and doing the computation, we find
(18) $\left\{\begin{array}{l}x_{n+1}=11 x_{n}+11 x_{n}+\frac{52}{3} y_{n}+\frac{11}{3} \\ y_{n+1}=12 x_{n}+19 y_{n}+3\end{array} \quad n \in \mathrm{~N}\right.$, with $\left(x_{0}, y_{0}\right)=(1,1)$ or $(2,-2)$
(two infinitude of integer solutions).

Let $A=\left(\begin{array}{ccc}11 & \frac{52}{3} & \frac{11}{3} \\ 12 & 19 & 3 \\ 0 & 0 & 1\end{array}\right)$, then $\left(\begin{array}{l}x_{n} \\ y_{n} \\ 1\end{array}\right)=A^{n}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ or
(19) $\left(\begin{array}{l}x_{n} \\ y_{n} \\ 1\end{array}\right)=A^{n}\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$, always $n \in \mathrm{~N}$.

From (18) we have always $y_{n+1} \equiv y_{n} \equiv \ldots \equiv y_{0} \equiv 1(\bmod 3)$, hence always $x_{n} \in \mathbf{Z}$. Of course, (19) and (17) are equivalent as general integer solution for (13).
[The reader can calculate A^{n} (by the same method liable to the start on this note) and find a closed expression for (19).].

More generally:
This method can be generalized for the Diophantine equations:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} X_{i}^{2}=b, \text { with all } a_{i}, b \in \mathbf{Z} \tag{20}
\end{equation*}
$$

If always $a_{i} a_{j} \geq 0,1 \leq i<j \leq n$, the equation (20) has at most a finite number of integer solutions.

Now, we suppose $\exists i_{0}, j_{0} \in\{1, \ldots, n\}$ for which $a_{i_{0}} a_{j_{0}}<0$ (the equation presents at least a variation of sign). Analogously, for $n \in \mathrm{~N}$, we define the recurrent sequences:

$$
\begin{equation*}
x_{h}^{(n+1)}=\sum_{i=1}^{n} \alpha_{i h} x_{i}^{(n)}, 1 \leq h \leq n \tag{21}
\end{equation*}
$$

considering $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ the smallest positive integer solution of (20). Replacing (21) in (20), it identifies the coefficients and it looks for n^{2} unknowns $\alpha_{i h}, \quad 1 \leq, i, h \leq n$. (This calculation is very intricate, but it can be done by means of a computer.) The method goes on similarly, but the calculations become more and more intricate - for example to calculate A^{n}, one must use a computer.
(The reader will be able to try this for the Diophantine equation $a x^{2}+b y^{2}-c z^{2}+d=0$, with $a, b, c \in \mathrm{~N}^{*}$ and $d \in \mathbf{Z}$)

REFERENCES

[1] M. Bencze - Applicații ale unor șiruri de recurență în teoria ecuațiilor Diophantine - Gamma (Braşov), XXI-XXII, Anul VII, Nr. 4-5, 1985, pp. 15-18.
[2] Z. I. Borevich, I.R. Shafarevich - Teoria numerelor - EDP, Bucharest, 1985.
[3] A. Kenstam - Contributions to the Theory of the Diophantine Equations $A x^{2}-B y^{2}=C$.
[4] G. H. Hardy and E. M. Wright - Introduction to the theory of numbers Fifth edition, Clarendon Press, Oxford, 1984.
[5] N. Ivăşchescu - Rezolvarea ecuațiilor în numere întregi - This is his work for obtaining the title of professor grade 2 , (coordinator G. Vraciu), Univ. Craiova, 1985.
[6] E. Landau - Elementary Number Theory - Chelsea, 1955.
[7] Calvin T. Long - Elementary Introduction to Number Theory - D. C. Heath, Boston, 1965.
[8] L. J. Mordell - Diophantine equations - London, Academia Press, 1969.
[9] C. Stanley Ogibvy, John T. Anderson - Excursions in number theory Oxford University Press, New York, 1966.
[10] W. Sierpinski - Oeuvres choisiers - Tome I, Warszawa, 1974-1976.
[11] F. Smarandache - Sur la resolution d'équation du second degré a dex inconnues dans Z in the book "Généralizations et généralités" -
Ed. Nouvelle, Fes, Marocco; MR: 85, H: 00003.
[Published in "Gazeta Matematică", Serie 2, Vol. 1, Nr. 2, 1988, pp. 151-7; Translated in Spanish by Francisco Bellot Rasado, "Un metodo de resolucion de la ecuacion diofantica", Madrid.

