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ABSTRACT
In this paper we have proposed a semi-heuristic optimization algorithm for 
designing optimal plant layouts in process-focused manufacturing/service 
facilities. Our proposed algorithm marries the well-known CRAFT 
(Computerized Relative Allocation of Facilities Technique) with the 
Hungarian assignment algorithm. Being a semi-heuristic search, MASS 
can be potentially more efficient in terms of CPU engagement time as it 
can converge on the global optimum faster than the traditional CRAFT, 
which is a pure heuristic. We also present a numerical illustration of our 
proposed algorithm.
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INTRODUCTION 

The fundamental integration phase in the design of productive systems is the 
layout of production facilities.  A working definition of layout may be given as the 
arrangement of machinery and flow of materials from one facility to another, which 



minimizes material-handling costs while considering any physical restrictions on 
such arrangement.  

Usually this layout design is based either on considerations of machine-time cost 
and product availability; thus making the production system product-focused; or on 
considerations of quality and flexibility; thereby making the system process-
focused. It is natural that while product-focused systems are better off with a ‘line 
layout’ dictated by available technologies and prevailing job designs, process-
focused systems, which are more concerned with job organization, opt for a 
‘functional layout’. Of course, in reality the actual facility layout often lies 
somewhere in between a pure line layout and a pure functional layout format; 
governed by the specific demands of a particular production plant. Since our 
present paper concerns only functional layout design for process-focused systems, 
this is the only layout design we will discuss here.  

The main goal to keep in mind is to minimize material handling costs - therefore 
the departments that incur the most interdepartmental movement should be 
located closest to one another. The main type of design layouts is Block 
diagramming, which refers to the movement of materials in existing or proposed 
facility. This information is usually provided with a from/to chart or a load summary
chart, which gives the average number of unit loads moved between departments.
A load-unit can be a single unit, a pallet of material, a bin of material, or a crate of 
material. The next step is to design the layout by calculating the composite 
movements between departments and rank them from most movement to least 
movement. Composite movement refers to the back-and-forth movement between 
each pair of departments. Finally, trial layouts are placed on a grid that graphically 
represents the relative distances between departments. This grid then becomes 
the objective of optimization when determining the optimal plant layout.  We give a 
schematic representation of the basic operational considerations in a process-
focused system as follows: 
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In designing the optimal functional layout, the fundamental question to be 
addressed is that of ‘relative location of facilities’. The locations will depend on the 
need for one pair of facilities to be adjacent (or physically close) to each other 
relative to the need for all other pairs of facilities to be similarly adjacent (or 
physically close) to each other. Locations must be allocated based on the relative 
gains and losses for the alternatives and seek to minimize some indicative 
measure of the cost of having non-adjacent locations of facilities. Constraints of 
space prevents us from going into the details of the several criteria used to 
determine the gains or losses from the relative location of facilities and the 
available sequence analysis techniques for addressing the question; for which we 
advise the interested reader to look up any standard handbook of 
production/operations management. 

COMPUTERIZED RELATIVE ALLOCATION OF FACILITIES TECHNIQUE  
Computerized Relative Allocation of Facilities Technique (CRAFT) (Buffa, Armour 
and Vollman, 1964) is a computerized heuristic algorithm that takes in load matrix
of interdepartmental flow and transaction costs with a representation of a block 
layout as the inputs. The block layout could either be an existing layout or; for a 
new facility, any arbitrary initial layout. The algorithm then computes the 
departmental locations and returns an estimate of the total interaction costs for the 
initial layout. The governing algorithm is designed to compute the impact on a cost 
measure for two-way or three-way swapping in the location of the facilities. For 
each swap, the various interaction costs are computed afresh and the load matrix 
and the change in cost (increase or decrease) is noted and stored in the RAM. The 
algorithm proceeds this way through all possible combinations of swaps 
accommodated by the software. The basic procedure is repeated a number of 
times resulting in a more efficient block layout every time till such time when no 
further cost reduction is possible. The final block layout is then printed out to serve 
as the basis for a detailed layout template of the facilities at a later stage. Since its 
formulation, more powerful versions of CRAFT have been developed but these too 
follow the same, basic heuristic routine and therefore tend to be highly CPU-
intensive (Khalil, 1973; Hicks and Cowan, 1976). 

The basic computational disadvantage of a CRAFT-type technique is that one 
always has got to start with an arbitrary initial solution (Carrie, 1980). This means 
that there is no mathematical certainty of attaining the desired optimal solution 
after a given number of iterations. If the starting solution is quite close to the 
optimal solution by chance, then the final solution is attained only after a few 
iterations. However, as there is no guarantee that the starting solution will be close 
to the global optimum, the expected number of iterations required to arrive at the 
final solution tend to be quite large thereby straining computing resources (Driscoll 
and Sangi, 1988).  

 In this paper we propose and illustrate the Modified Assignment (MASS) algorithm 
as an extension to the traditional CRAFT, to enable faster convergence to the 
optimal solution. This we propose to do by marrying CRAFT technique with the 
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Hungarian assignment algorithm. As our proposed algorithm is semi-heuristic, it is 
likely to be less CPU-intensive than any traditional, purely heuristic CRAFT-type 
algorithm.  

THE HUNGARIAN ASSIGNMENT ALGORITHM 

A general assignment problem may be framed as a special case of the balanced 
transportation problem with availability and demand constraints summing up to 
unity. Mathematically, it has the following general linear programming form:

                                   Minimize  CijXij

                                   Subject to Xij = 1, for each i, j = 1, 2 …n              

In terms of the classical assignment problem, Cij is the cost of assigning the i
th
 job 

to the j
th
 individual and Xij is the number of assignments of the i

th
 job to the j

th

individual. In words, the problem may be stated as assigning each of n individuals 
to n jobs so that exactly one individual is assigned to each job in such a way as to 
minimize the total cost.  

To ensure satisfaction of the basic requirements of the assignment problem, the 
basic feasible solutions of the corresponding balanced transportation problem 
must be integer valued. However, any such basic feasible solution will contain (2n 
– 1) variables out of which (n – 1) variables will be zero thereby introducing a high 
level of degeneracy in the solution making the usual solution technique of a 
transportation problem very inefficient. 

This has resulted in mathematicians devising an alternative, more efficient 
algorithm for solving this class of problems, which has come to be commonly 
known as the Hungarian assignment algorithm. This algorithm is based on the 
following optimality theorem:  

Theorem: If a constant number is added to any row and/or column of the cost 
matrix of an assignment-type problem, then the resulting assignment-type problem 
has exactly the same set of optimal solutions as the original problem and vice 
versa. 

Proof: Let Ai and Bj (i, j = 1, 2 … n) be added to the ith row and/or jth column 
respectively of the cost matrix. Then the revised cost elements are Cij

*
 = Cij + Ai

+Bj. The revised cost of assignment is Cij
*
Xij =  (Cij + Ai + Bj) Xij = CijXij + 

Ai Xij + Bj Xij. But by the imposed assignment constraint Xij = 1 (for i, j = 1, 2 
… n), we have the revised cost as CijXij + Ai + Bj i.e. the cost differs from the 
original by a constant. As the revised costs differ from the originals by a constant, 
which is independent of the decision variables, an optimal solution to one is also 
optimal solution to the other and vice versa. 
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The optimality theorem can be used in two different ways to solve the assignment 
problem. First, if in an assignment problem, some cost elements are negative, the 
problem may be converted into an equivalent assignment problem by adding a 
positive constant to each of the entries in the cost matrix so that they all become 
non-negative.  Next, the important thing to look for is a feasible solution that has 
zero assignment cost after adding suitable constants to the rows and columns. 
Since it has been assumed that all entries are now non-negative, this assignment 
must be the globally optimal one (Mustafi, 1996).  

Given a zero assignment, a straight line is drawn through it (a horizontal line in 
case of a row and a vertical line in case of a column), which prevents any other 
assignment in that particular row/column.  The governing algorithm then seeks to 
find the minimum number of such straight lines, which would cover all the zero 
entries to avoid any redundancy. Let us say that k such lines are required to cover 
all the zeroes. Then the necessary condition for optimality is that number of zeroes 
assigned is equal to k and the sufficient condition for optimality is that k is equal to 
n for an n x n cost matrix.  

MASS (MODIFIED ASSIGNMENT) ALGORITHM 

The basic idea of our proposed algorithm is to develop a systematic scheme to 
arrive at the initial input block layout to be fed into the CRAFT program so that the 
program does not have to start off from any initial (and possibly inefficient) 
solution. Thus, by subjecting the problem of finding an initial block layout to a 
mathematical scheme, we in effect reduce the purely heuristic algorithm of CRAFT 
to a semi-heuristic one. Our proposed MASS algorithm follows the following 
sequential steps:

Step 1: We formulate the load matrix such that each entry lij represents the load 
carried from facility i to facility j. 

Step 2: We insert lij = M, where M is a large positive number, into all the vacant 
cells of the load matrix signifying that no inter-facility load transportation is required 
or possible between the i

th
 and j

th
 vacant cells.

Step 3: We solve the problem on the lines of a standard assignment problem 
using the Hungarian assignment algorithm treating the load matrix as the cost 
matrix.

Step 4: We draft the initial block layout trying to keep the inter-facility distance dij
*

between the i
th
 and j

th
assigned facilities to the minimum possible magnitude, 

subject to the available floor area and architectural design of the shop floor. 

Step 5: We proceed using the CRAFT program to arrive at the optimal layout by 
iteratively improving upon the starting solution provided by the Hungarian 
assignment algorithm till the overall load function L =  lijdij

*
 subject to any 
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particular bounds imposed on the problem. 

The Hungarian assignment algorithm will ensure that the initial block layout is at 
least very close to the global optimum if not globally optimal itself. Therefore the 
subsequent CRAFT procedure will converge on the global optimum much faster 
starting from this near-optimal initial input block layout and will be much less CPU-
intensive than any traditional CRAFT-type algorithm. Thus MASS is not a stand-
alone optimization tool but rather a rider on the traditional CRAFT that tries to 
ensure faster convergence to the optimal block layout for process-focused 
systems, by making the search semi-heuristic.  

That MASS will be an improvement over traditional CRAFT in terms of 
computational efficiency is rather intuitive. At its worst the computational efficiency 
of MASS will be same as that of traditional CRAFT (in the rather unlikely scenario 
that the CRAFT heuristic chances upon the best possible layout in its very first 
iteration). In all other scenarios, MASS will give an initial solution to CRAFT which 
is much more likely to be closer to the global optimal than any random initial 
solution as under traditional CRAFT. 

We provide a numerical illustration of the MASS algorithm in the Appendix by 
designing the optimal block layout of a small, single-storied, process-focused 
manufacturing plant with six different facilities and a rectangular shop floor design. 
The model can however be extended to cover bigger plants with a higher number 
of facilities. Also the MASS approach we have advocated here can even be 
extended to deal with the multi-floor version of CRAFT (Johnson, 1982) by 
constructing a separate assignment table for each floor subject to any 
predecessor-successor relationship among the facilities. 
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APPENDIX: NUMERICAL ILLUSTRATION OF MASS 

We consider a small, single-storied process-focused manufacturing plant with a 
rectangular shop floor plan having six different facilities. We mark these facilities 
as FI, FII, FIII, FIV, FV and FVI. The architectural design requires that there be an 
aisle of at least 2 meters width between two adjacent facilities and the total floor 
area of the plant is 64meters x 22meters. Based on the different types of jobs 
processed, the loads to be transported between the different facilities are supplied 
in the load matrix below: 

We put in a very large positive value M in each of the vacant cells of the load 
matrix to signify that no inter-facility transfer of load is required or is permissible for 
these cells: 
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Next we apply the standard Hungarian assignment algorithm to obtain the initial 
solution: 

Above is the assignment table after first iteration. There are two rows and three 
columns that are covered i.e. k = 5. But as this is a 6x6 load matrix, the above 
solution is sub-optimal. So we make a second iteration: 

Now columns FI, FIII, FIV, FVI and rows FI and FVI are covered i.e. k = 6. As this is a 
6x6 load matrix the above solution is optimal. 
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The optimal assignment table (subject to the 2 meters of aisle between adjacent 
facilities) is shown below: 

Initial layout of facilities as dictated by the Hungarian assignment algorithm: 

Figure 2 

FI FIII FV

     

FII FIV FVI

The above layout conforms to the rectangular floor plan of the plant and also 
places the assigned facilities adjacent to each other with an aisle of 2 meters width 
between them. Thus FI is adjacent to FII, FIII is adjacent to FIV and FV is adjacent to 
FVI.

Based on the cost information provided in the load-matrix the total cost in terms of 
load-units for the above layout can be calculated as follows:   

International Journal of Tomography & Statistics 27



L = 2{(20 + 10) + (50 + 30) + (10 + 15)} + (44 x 25) + (22 x 40) + (22 x 15) = 2580.  

By feeding the above optimal solution into the CRAFT program the final, the global 
optimum is found in a single iteration. The final, best layout as obtained by CRAFT 
is:

Figure 3 

FI FVI FIV

     

FII FV FIII

Based on the cost information provided in the load-matrix the total cost in terms of 
load-units for the optimal layout can be calculated as follows:   

L* = 2{(10 + 20) + (15 + 10) + (5 + 30)} + (22 x 25) + (44 x 15) + (22 x 40) = 2360. 

Therefore the final solution is an improvement of just 220 load-units over the initial 
solution! This shows that this initial solution fed into CRAFT is indeed near optimal 
and can thus ensure a faster convergence. 
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