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 This chapter further extends the results obtained in chapters 4 and 5 (from linear 

equation to linear systems). Each algorithm is thoroughly proved and then an example is 

given. 

 Five integer number algorithms to solve linear systems are further given. 

 

 Algorithm 1. (Method of substitution) 

 (Although simple, this algorithm requires complex computations but is, 

nevertheless, easy to implement into a computer program). 

 Some integer number equation are initially solved (which is usually simpler) by 

means of one of the algorithms 4 or 5. (If there is an equation of the system which does 

not have integer systems, then the integer system does not have integer systems, then 

Stop.) The general integer solution of the equation will depend on n 1 integer number 

parameters (see [5]): 

   (p1)  xi1 fi1
(1) k1

(1),...,kn 1

(1) , i 1,n ,  

where all functions fi1
(1)

 are linear and have integer number coefficients. 

 This general integer number system (p1)  is introduced into the other m 1  

equations of the system. We obtain a new system of m 1  equations with n 1  unknown 

variables: 

   
1

(1)

ik , i1 1,n 1,  

which is also to be solved with integer numbers. The procedure is similar. Solving a new 

equation, we obtain its general integer solution: 

   (p2 )  ki2
(1) fi2

(2) k1

(2),...,kn 2

(2) , i2 1,n 1 ,  

where all functions fi2
(2 )

 are linear, with integer number coefficients. (If, along this 

algorithm we come across an equation, which does not have integer solutions, then the 

initial system does not have integer solution. Stop.) 

 In the case that all solved equations had integer system at step ( ),  1j j r  

( r being of the same rank as the matrix associated to the system) then: 

   (p j )  ki j
( j 1) fi j

( j ) k1

( j ),...,kn j

( j )
, i j 1,n j 1 ,   

fi j
( j )  are linear functions and have integer number coefficients.  
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 Finally, after r steps, and if all solved equations had integer solutions, we obtain 

the integer solution of one equation with n r 1 unknown variables. 

 The system will have integer solutions if and only if in this last equation has 

integer solutions.  

 If it does, let its general integer solution be: 

   (pr )  ( 1) ( ) ( ) ( )

1 1,...,
r r

r r r r

i i nk f k k , ir 1,n r 1,  

where all fir
(r )  are linear functions with integer number coefficients. 

 We’ll present now the reverse procedure as follows. 

 We introduce the values of kir
(r 1) , ir 1,n r 1, at step pr  in the values of  

   
1

( 2)

r

r

ik , ir 1 1,n r 2  

from step (pr 1) . 

 It follows: 

 
1 1 1

( 2) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )

1 1 1 1 1,..., ,..., ,..., ,...,
r r r

r r r r r r r r r r r

i i n r n r n r i n rk f f k k f k k g k k , 

ir 1 1,n r 1 , from which it follows that gir
(r 1)  are linear functions with integer 

number coefficients. 

 Then follows those (pr 2 )  in (pr e)  and so on, until we introduce the values 

obtained at step (p2 )  in those from the step (p1) .  

 It will follow:   

   xi j gi
1 k1

(r ),...,kn r

(r )   

notation 
1 1 ,...,i n rg k k , i 1,n , with all 

1i
g  most obviously, linear functions with 

integer number coefficients (the notation was made for simplicity and aesthetical 

aspects). This is, thus, the general integer solution, of the initial system. 

 

 The correctness of algorithm 1.  

 The algorithm is finite because it has r  steps on the forward way and r 1 steps 

on the reverse, (r ) . Obviously, if one equation of one system does not have (integer 

number) solutions then the system does not have solutions either. 

 Writing S for the initial system and S j  the system resulted from step (p j ) , 

1 j r 2 , it follows that passing from (p j )  to (p j 1)  we pass from a system S j  to a 

system S j 1  equivalent from the point of view of the integer number solution, i.e.  

   ki j
( j 1) ti j

0 ,  i j 1,n j 1 , 

which is a particular integer solution of the system S j  if and only if  

   ki j 1

( j ) hi j 1

0 , i j 1 1,n j ,  

is a particular integer solution of the system S j 1  where  

   ki j 1

0 fi j 1

( j 1) t1
0 ,...,tn j 1

0
, i j 1 1,n j .  

 Hence, their general integer solutions are also equivalent (considering these 

substitutions). Such that, in the end, resolving the initial system S  is equivalent with 

solving the equation (of the system consisting of one equation) Sr 1  with integer number 
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coefficients. It follows that the system S  has integer number solution if and only if the 

systems S j  have integer number solution, 1 j r 1 . 

 

 Example 1. By means of algorithm 1, let us calculate the integer number solution 

of the following system: 

 (S)    
  5x 7y 2z 6w 6

4x 6y 3z 11w 0
 

 Solution: We solve the first integer number equation. We obtain the general 

solution (see [4] or [5]): 

(p1)    

x t1 2t2

y t1

z t1 5t2 3t3 3

w t3

 

where t1,  t2,  t3 . 

 Substituting in the second, we obtain the system: 

 (S1)    5t1 23t2 2t3 9 0 . 

 Solving this integer equation we obtain its general integer solution: 

 (p2 )    

t1 k1

t2 k1 2k2 1

t3 9k1 23k2 7

 

where k1,  k2
. 

 The reverse way. Substituting (p2 )  in (p1)  we obtain: 

     

x 3k1 4k2 2

y k1

z 31k1 79k2 23

w 9k1 23k2 7

 

where k1,  k2
, which is the general integer solution of the initial system (S) . Stop. 

 

 Algorithm 2. 

 Input 

 A linear system (1) without all aij 0 . 

 Output 

 We decide on the possibility of an integer solution of this system. If it is possible, 

we obtain its general integer solution. 

 

 Method 

 1. t 1,  h 1,  p 1 

 2. (A) Divide each equation by the largest co-divisor of the coefficients of the 

unknown variables. If you do not obtain an integer quotient for at least one equation, then 

the system does not have integer solutions. Stop.  
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     (B) If there is an inequality in the system, then the system does not have integer 

solutions. Stop. 

     (C) If repetition of more equations occurs, keep one and if an equation is an 

identity, remove it from the system. 

 3. If there is (i0, j0 )  such that ai0 j0 1  then obtain the value of the variable 

x j0 from equation i0 ; statement (Tt ) . 

 Substitute this statement (where possible) in the other equations of the system and 

in the statement (Tt 1) , (Hh )  and (Pp )  for all i,  h , and p . Consider t : t 1 , remove 

equation (i0 )  from the system. If there is no such a pair, go to step 5. 

4. Does the system (left) have at least one unknown variable? If it does, consider  

the new data and go on to step 2. If it does not, write the general integer solution of the 

system substituting k1,  k2,...  for all variables from the right term of each expression 

which gives the value of the unknowns of the initial system. Stop. 

5. Calculate 

1 2 2
1 2, ,

min mod ,  0ij ij ij
i j j

a r a r a r a  

and determine the indices i,  j1,  j2  as well as the r  for which this minimum can be 

calculated. (If there are more variables, choose one arbitrarily.) 

6. Write: x j2 th
aij1 r

aij2

xij2 , statement (Hh ) . Substitute this statement (where  

possible in all the equations of the system and in the statements (Tt ),  (Hh)  and (Pp )  for 

all t,  h , and p . 

7. (A) If a 1 , consider x j2 : th ,  h : h 1 , and go on to step 2. 

(B) If a 1 , then obtain the value of x j1  from the equation (i) ; statement 

(Pp ) . Substitute this statement (where possible in the other equations of the 

system and in the relations (Tt ),  (Hh)  and (Pp 1)  for all t,  h , and p . 

Remove the equation (i)  from the system. 

Consider h : h 1,  p : p 1 , and go back to step 4. 

 

The correctness of  algorithm 2. Let consider system (1). 

 

Lemma 1. We consider the algorithm at step 5. Also, let 

1 2 2 1 2,  mod ,  0 ,  ,  ,  1,2,3,...ij ij ijM r a r a r a i j j . 

Then  M Ø . 

Proof: 

Obviously, M is finite and M * . Then, M  has a minimum if and only if  

 M Ø . We suppose, conversely, that  M Ø . Then  

aij2 0(modaij2 ),   i,  j1,  j2 .  

It follows as well that  

aij2 0(modaij1 ),   i,  j1,  j2 .  
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That is  

aij1 aij2 ,   i,  j1,  j2 . 

 We consider an i0  arbitrary but fixed. It is clear that  

(ai0 1,...,ai0n ) : ai0 j 0,  j   

(because the algorithm has passed through the sub-steps 2(B) and 2(C). But, because it 

has also passed through step 3, it follows that  

ai0 j 1,  j , 

but as it previously passed through step 2(A), it would result that  

ai0 j 1,  j . 

 This contradiction shows that the assumption is false. 

 

 Lemma 2.  Let’s consider 
0 1 2

(mod )i j ija r a . Substitute  

x j2 th
ai0 j r

ai0 j2

x j1   

in system (A) obtaining system (B). Then  

x j x j
0,  j 1,n   

is the particular integer solution of (A) if and only if  

x j x j
0 ,  j j2  and th x j2

0
ai0 j1 r

ai0 j2

  

is the particular integer solution of (B). 

 

 Lemma 3. Let a1
 and a2

 obtained at step 5. 

 Then 0 a2 a1
 

 Proof: 

 It is sufficient to show that a1 aij ,   i,  j because in order to get a2
, step 6 is 

obligatory, when the coefficients if the new system are calculated,  a1
 being equal to a 

coefficient form the new system (equality of modules), the coefficient on 0 1 (  )i j . 

 Let ai0 j0  with the property ai0 j0 a1 .  

Hence, 
0 01 mini j i ja a a . Let ai0 js  with ai0 js aijm ; there is such an element 

because ai0 jm  is the minimum of the coefficients in the module and not all ai0 j , j 1,n  

are equal (conversely, it would result that 
0 0 0

( ,...., ) ,  1,i j i n i ja a a j r , the algorithm 

passed through sub-step 2(A) has simplified each equation by the maximal co-divisor of 

its coefficients; hence, it would follow that ai0 j 1,  j 1,n , which, again, cannot be 

real because the algorithm also passed through step 3). Out of the coefficients ai0 jm  we 

choose one with the property ai0 js0
Mai0 jm  there is such an element (contrary, it would 

result 
0 0 0

( ,..., )
mi j i n i ja a a  but the algorithm has also passed through step 2(A) and it 
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would mean that ai0 jm 1  which contradicts step 3 through which the algorithm has also 

passed). 

 Considering q0 ai0 js0
/ ai0 jm  and r ai0 js0

q0ai0 jm , we have 

ai0 js0
r0(modai0 jm )  and 0 r0 ai0 jm ai0 j0 a1 . We have, thus, obtained an r0  with 

r0 a1
, which is in contradiction with the very definition of a1

. Thus a1 aij ,  i, j . 

 

 Lemma 4. Algorithm 2 is finite. 

 Proof: 

 The functioning of the algorithm is meant to transform a linear system of m  

equations and n  unknowns into one of m1 n1
 with m1 m , n1 n , thus, successively 

into a final linear equation with n r 1 unknowns (where r  is the rank of the 

associated matrix). This equation is solved by means of the same algorithm (which works 

as [5]). The general integer solution of the system will depend on the n 1  integer 

number independent parameters (see [6] – similar properties can be established also the 

general integer solution of the linear system). The reduction of equations occurs at steps 

2, 3 and sub-step 7(B). Step 2 and 3 are obvious and, hence, trivial; they can reduce the 

equation of the system (or even put an end to it) but only under particular conditions. The 

most important case finds its solution at step 7(B), which always reduces one equation of 

the system. As the number of equations is finite we come to solve a single integer number 

equation. We also have to show that the transfer from one system mi ni  to another 

mi 1 ni 1
 is made in a finite interval of time: by steps 5 and 6 permanent substitution of 

variables are made until we to a 1 (we to a 1  because, according to lemma 3, all 

a s are positive integer numbers and form a strictly decreasing row). 

 

 Theorem of correctness.  
Algorithm 2 correctly calculates the general integer solution of the linear system. 

 Proof: 

 Algorithm 2 is finite according to lemma 4. Steps 2 and 3 are obvious (see also 

[4], [5]). Their part is to simplify the calculations as much as possible. Step 4 tests the 

finality of the algorithm; the substitution with the parameters k1,  k2,...  has 

systematization and aesthetic reasons. The variables t,  h, p  are counter variables (started 

at step 1) and they are meant to count the statement of the type T ,H,P  (numbering 

required by the substitutions at steps 3, 6 and sub-step 7(B); h  also counts the new 

(auxiliary) variables introduced in the moment of decomposition of the system. The 

substitution from step 6 does not affect the general integer solution of the system (it 

follows from lemma 2). Lemma 1 shows that at step 5 there is always a , because 

 Ø M * . 

 The algorithm performs the transformation of a system mi ni  into another 

mi 1 ni 1 , equivalent to it, preserving the general solution (taking into account, 

however, the substitutions) (see also lemma 2). 

 

 Example 2. Calculate the integer solution of: 
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12x 7y 9z          12

      5y 8z 10w 0

                  0z  0w 0

15x       21z 69w 3

 

 Solution: 

 We apply algorithm 2 (we purposely selected an example to be passed through all 

the steps of this algorithm): 

 1. t 1,  h 1,  p 1 

 2.  (A) The fourth equation becomes 5x 7z 23w 1 

       (B) – 

       (C) Equation 3 is removed.  

 3. No; go on to step5. 

 5. a 2  and i 1,  j1 2,  j2 3 , and r 2 . 

 6. z t1 y , the statement (H1) . Substituting it in the  

   

1

1

1

12 2 9           12

         3 9 10  0

5  7 7 23  1

x y t

y t w

x y t w

 

 7. a 1  consider z t1,h : 2 , and go back to step 2. 

 2. – 

 3. No. Step 5. 

 5. a 1  and i 2,  j1 4,  j2 2 , and r 1 . 

6. y t2 3w , the statement (H2 ) . Substituting in the system: 

  

2 1

2 1

2 1

12 2 9 6 12

            3 8   0

   5  7 7 2 1

x t t w

t t w

x t t w

 

Substituting it in statement (H1) , we obtain: 

 z t1 t2 3w , statement  (H1)'
. 

7. w 3t2 8t1  statement (P1) .  

Substituting it in the system, we obtain: 

  
2 1

2 1

12 20 57 12

   5        9 1

x t t

x t t
 

Substituting it in the other statements, we obtain: 

  
2 1 1

2 1 2

10 25 ,   ( ) ''

10 24 ,   ( ) ''

z t t H

y t t H
 

  : 3,  : 2h p , and go back to step 4. 

4. Yes. 

2. – 

3. t2 1 5x 9t1 , statement (T1) . 

Substituting it (where possible) we obtain:  
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  112x 237t1 8  (the new system); 

  

1 1

1 2

1 1

 10 50 115 ,   ( ) '''

 10 50 114 ,  ( ) ''

3 15   35 ,   ( ) '

z x t H

y x t H

w x t P

 

Consider t : 2  go on to step 4. 

4. Yes. Go back to step 2. (From now on algorithm 2 works similarly with that 

from [5], with the only difference that the substitution must also be made in the 

statements obtained up to this point). 

2. – 

3. No. Go on to step 5. 

5. a 13  (one three) and i 1,  j1 2,  j2 1, and r 13 . 

6. x t3 2t1 , statement (H3) . 

After substituting we obtain:  

  112t3 13t1 8  (the system) 

  

3 1 1

3 1 2

3 1 1

2 3 1,  1

10 50 15 ,   ( ) ;

10 50 14 ,  ( ) ''';

3 15  5 ,   ( ) '';

  1  5       ( ) ';

IVz t t H

y t t H

w t t P

t t t T

 

7. x : t3,  h : 4  and go on to step 2. 

2. – 

3. No. go on to step 5. 

5. a 5  and i 1,  j1 1,  j2 2  and r 5  

6. t1 t4 9t3 , statement (H4 ) . 

Substituting it, we obtain : 

  5t3 13t4 8  (the system). 

  

3 4 1

3 4 2

3 4 3

3 4 1

2 3 4,  1

 10 85 15 ,   ( ) ;

 10 76 14 ,  ( ) ;

        19  2 ,    ( ) ';

3 30  5 ,    ( ) ''';

  1 14       ( ) '';

V

IV

z t t H

y t t H

x t t H

w t t P

t t t T

 

7. t1 : t4;h : 5  and go back to step 2. 

2. – 

3. No. Step 5. 

5. a 2  and i 1,  j1 2,  j2 1 and r 2 . 

6. t3 t5 3t4  statement (H5 ) . After substituting, we obtain: 

  5t5 2t4 8  (the system). 
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5 4 1

5 4 2

5 4 3

5 4 1

2 5 4 1

1 5 4 4

10 85 240 ,     ( ) ;

10 76 214 ,    ( ) ;

        19 55 ,     ( ) ;

3 30 85 ,     ( ) ;

1 14 41 ,     ( ) ''';

          9 26 ,     ( ) ';

VI

V

IV

IV

z t t H

y t t H

x t t H

w t t P

t t t T

t t t H

 

 7. t3 : t6,h : 6  and go back to step 2. 

 2. –  

 3. No. Step 5. 

 5. a 1  and i 1,  j1 2,  j2,r 1. 

 6. t4 t6 2t5  statement (H6 ) . After substituting, we obtain: 

   t5 2t6 8  (the system) 

   

5 6 1

5 6 2

'''

5 6 3

5 6 1

2 5 6 1

1 5 6 4

3 5 6

10 395 240 ,   ( ) ;

10 392 214 ,   ( ) ;

       91 55 ,     ( ) ;

3 140 85 ,      ( ) ;

   1 68 41 ,     ( ) ;

      43 26 ,     ( ) '';

        5 3 ,     

VII

IV

V

IV

z t t H

y t t H

x t t H

w t t P

t t t T

t t t H

t t t 5  ( );H

 

 7. t5 2t6 8  statement (P2 ) . Substituting it in the system we obtain: 0=0. 

 Substituting it in the other statements, it follows: 

   

z 1030t6 3170

y 918t6 2826

x 237t6 728

w  365t6 1123

 

   

2 6

1 6

3 6

4 6

177 543

112 344

 13   40

  5   16

t t

t t

t t

t t

 statements of no importance. 

 

 Consider h : 7, p : 3 , and go back to step 4. t6  

 4. No. The general integer solution of the system is: 

    

1

1

1

1

237 728

918 2826

1030 3170

 365 1123

x k

y k

z k

w k
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 where k1
 is an integer number parameter. 

 Stop. 

 

 Algorithm 3. 

 Input 

 A linear system (1) 

 Output 

 We decide on the possibility of an integer solution of this system. If it is possible, 

we obtain its general integer solution. 

 

 Method 

  

1. Solve the system in n . If it does not have solutions in n , it does not have 

solutions in n  either. Stop. 

2. f 1,  t 1,  h 1,  g 1  

3. Write the value of each main variable xi  under the form: 

E f ,  i i
: xi qij

j

x j
' qi rij

j

x j
' ri / i   

with all qij ,  qi ,  rij ,  ri ,  i in  such that all rij i ,  i 0,  ri i  (where all x j
'  of 

the right term are integer number variables: either of the secondary variables of the 

system or other new variables introduced with the algorithm). For all i , we write  

  rij f i . 

4. E f ,  i i
: rij
j

x j
' rij fY f ,  i ri 0  where Y f ,  i i

 are auxiliary integer number 

variables. We remove all the equations Ff ,  i  which are identities. 

5. Does at least one equation Ff ,  i  exists? If it does not, write the general  

integer solution of the system substituting k1 ,k2 ,...  for all the variables from the right 

term of each expression representing the value of the initial unknowns of the system. 

Stop. 

6. (A) Divide each equation Ff ,  i  by the maximal co-divisor of the coefficients 

of their unknowns. If the quotient is not an integer number for at least one i0  the system 

does not have integer solutions. Stop. 

(B) Simplify –as in m - all the fractions from the statements E f ,  i i
. 

7. Does ri0 j0  exist having the absolute value 1? If it does not, go on to step 8. If it  

does, find the value of x j
'
 from the equation Ff ,  i0 ; write Tt  for this statement, and 

substitute it (where it is possible) in the statements E f ,  i ,  T t 1 ,  Hh ,  Gg  for all 

i,  t,  h  and g . Remove the equation Ff ,  i0 . Consider f : f 1,  t : t 1 , and go back 

to step3. 

8. Calculate  
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1 2 2
1 2, ,

min ,  (mod ),  0ij ij ij
i j j

a r r r r r r   

and determine the indices 1 2,  ,  mi j j  as well as the r  for which this minimum can be 

obtained. (When there are more variables, choose only one). 

9. (A) Write x j2
' zh

aim j1 r

a jm j2

x j1
' , where zh  is a new integer variable; statement 

Hh . 

(B) Substitute the letter (where possible) in the statements 

E f ,  i ,  Ff ,  i ,  Tt ,  Hh 1 ,  Gg  for all i,  t,  h  and g . 

(C) Consider h : h 1. 

10. (A) If a 1  go back to step 4. 

(B) If a 1  calculate the value of the variable x j
'  from the equation Ff ,  i ;  

relation Gg
1 . Substitute it (where possible) in the statements E f ,  i ,  Tt ,  Hh ,  Gg 1  

for all i,  t,  h , and g . Remove the equation Ff ,  i . Consider g : g 1,  f : f 1 and go 

back to step 3. 

 

The correctness of algorithm 3 

Lemma 5. Let i  be fixed. Then 
2

1

'
n

ij j i

j n

r x r  (with all rij ,  ri ,  i ,  n1,  n2  being 

integers, n1  n2
, 

i 0  and all x j
'  being integer variables) can have integer values if 

and only if 
1 2
,..., , |in in i ir r r . 

Proof: 

The fraction from the lemma can have integer values if and only if there is a  

z  such that  

  
2 2

1 1

' '| 0
n n

ij j i i ij j i i

j n j n

r x r z r x z r , 

which is a linear equation. This equation has integer solution 
1 2
,..., , |in in i ir r r . 

 

 Lemma 6. The algorithm is finite. It is true. The algorithm can stop at steps 1,5 or 

sub-steps 6(A). (It rarely stops at step 1). 

 One equation after another are gradually eliminated at step 4 and especially 7 and 

10(B) Ff ,  i  - the number of equation is finite.  

 If at steps 4 and 7 the elimination of equations may occur only in special cases 

elimination of equations at sub step 10 (B) is always true because, through steps 8 and 

9 we get to a 1  (see [5]) or even lemma 4 (from the correctness of algorithm 2). 

Hence, the algorithm is finite. 

 

 Theorem of Correctness. 

 The algorithm 3 correctly calculates the general integer solution of the system (1). 
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 Proof: 

 The algorithm if finite according to lemma 6. It is obvious that the system does 

not have solution in n it does not have in n  either, because n n
Z  (step 1). 

 The variables f ,  t,  h,  g  are counter variables and are meant to number the 

statements of the type E,  F,  T ,  H and G , respectively. They are used to distinguish 

between the statements and make the necessary substitutions (step 2). 

 Step 3 is obvious. All coefficients of the unknowns being integers, each main 

variable xi  will be written: 

   ' |i ij j i i

j

x c x c  

which can assume the form and conditions required in this step. 

 Step 4 is obtained from 3 by writing each fraction equal to an integer variable  

Y f ,  i  (this being xi ). 

 Step 5 is very close to the end. If there is no fraction among all E f ,  i  it means 

that all main variables xi  already have values in , while the secondary variables of 

the system can be arbitrary in , or can be obtained from the statements T ,  H or G  

(but these have only integer expressions because of their definition and because only 

integer substitutions are made). The second assertion of this step is meant to 

systematize the parameters and renumber; it could be left out but aesthetic reasons 

dictate its presence. According to lemma 5 the step 6(A) is correct. (If a fraction 

depending on certain parameters (integer variables) cannot have values in , then the 

main variable which has in the value of its expression such a fraction cannot have 

values in  either; hence, the system does not have integer system). This 6(A) also 

has a simplifying role. The correctness of step 7, trivial as it is, also results from [4] 

and the steps 8-10 from [5] or even from algorithm 2 (lemma 4).  

 Ther initial system is equivalent to the “system” from step 3 (in fact, E f ,  i  as 

well, can be considered a system) Therefore, the general integer solution is preserved 

(the changes of variables do not prejudice it (see [4], [5], and also lemma 2 from the 

correctness of algorithm 2)). From a system mi ni  we form an equivalent system 

mi 1 ni 1
 with mi 1 mi  and ni 1 ni . This algorithm works similarly to algorithm 

2. 

 

 Example 3. Employing algorithm 3, find an integer solution of the following 

system:  

   

3x1 4x2   22x4 8x5 25

6x1             46x4 12x5 2

        4x2 3x3 x4 9x5 26

 

 Solution 

1. Common resolving in 
3
 it follows: 
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x1

23x4 6x5 1

3

x2

x4 2x5 24

4

x3

11x5 2

3

 

 

2. f 1,  t 1,  h 1,  g 1  

 

3.    

x1 7x4 2x5

2x4 1

3
      E1,  1   

x2              6
x4 3x5

4
      E1,  2    

x3         4x5

x5 2

3
       E1,  3   

 

 

4.   

4 11 1, 1

4 5 12 1, 2

5 13 1, 3

2          3 1 0    

  2 4     0    

           3 2 0    

x y F

x x y F

x y F

 

5. Yes. 

6. – 

7. Yes: r35 1 . Then 5 133 2x y  the statement T1 . Substituting it in the  

others, we obtain: 

x1 7x4 6y13 4
2x4 1

3
               E1,  1   

x2                        6
x4 6y13 4

4
     E1,  2    

x3         12y13 8
3y13 2 2

3
       E1,  3   

 

Remove the equation F1, 3 . 

Consider f : 2,  t : 2 ; go back to step 3. 

3  

x1 7x4 6y13 4
2x4 1

3
               E2,  1   

x2               y13+5
x4 2y13

4
              E2,  2    

x3         11y13 8                              E2,  3   
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4.      
4 21 2, 1

4 13 22 2, 2

2          3 1 0    

  2 4     0    

x y F

x y y F
 

5. Yes. 

6. – 

7. Yes r24 1 . We obtain   x4 2y13 4y22
statement T2

. Substituting it in  

the others we obtain: 

13 22
1 22 13 2, 1

2 22 13 2, 2

3 13 2, 3

4 8 1
28 20   '  

3

        +5                             '   

          11 8                          '  

y y
x y y E

x y y E

x y E

 

Remove the equation  F2, 2
 

Consider f : 3,  t : 3  and go back to step 3. 

 3.   

       

13 22
1 13 22 3, 1

2 13 22 2, 2

3 13 3, 3

2 2 1
22 30     

3

       5                            

          11 8                          

y y
x y y E

x y y E

x y E

 

4.  13 22 31 3, 12 2  3 1 0    y y y F  

5. Yes. 

6. – 

7. No. 

8. a 1  and im 1,  j1 31,  j2 22 , and r 1 . 

9. (A)  y22 z1 y31
 (statement H1 ). 

(B) Substituting it in the others we obtain: 

13 1 31
1 13 1 31 3, 1

2 13 1 31 3, 2

3 13 3,

2 2 2 1
22 30 30 4   '  

3

               5                                     '  

11                         8                                     

y z y
x y z y E

x y z y E

x y E  3 '  

 

13 1 31 3, 1

4 13 1 13 2

 2 2 1 0    '

 2 4 4        '

y z y F

x y z y T
 

 

(C) Consider h : 2  

10. (B) y13 1 2y13 2z1 , statement G1 . 

Substituting it in the others we obtain: 
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1 13 1 3,1

2 13 1 3,2

3 13 3,3

4 13 1 2

22 13 1 1

 40 92 +27      ''  

  3   3 4          ''  

11         8          ''

6 12 4               ''

2 3   1             '

x y z E

x y z E

x y E

x y z T

y y z H

 

Remove equation F3, 1
. 

Consider g : 2,  f : 4  and go back to step 3. 

3.   

       

1 13 1 4,1

2 13 1 4,2

3 13 4,3

40 92 27          

    3    3 4            

11            8           

x y z E

x y z E

x y E

 

4. - 

5. No. The general solution of the initial system is: 

1 1 2 4,1

2 1 2 4,2

3 1 4,3

4 1 2 2

5 1

40 92 27,         from    

    3   3   4,         from    

11              8,          from   

   6 12   4,          from     ''

   3              2,          fro

x k k E

x k k E

x k E

x k k T

x k 1m        T

 

where k1,k2
. 

 

 Algorithm 4 

 Input 

 A linear system (1) with not all aij 0 . 

 Output  

We decide on the possibility of integer solution of this system. If it is possible, we 

obtain its general integer solution. 

 

 Method 

 1. h 1,  v 1 . 

2. (A) Divide every equation i  by the largest co-divisor of the coefficients of the 

unknowns. If the quotient is not an integer for at least one i0  then the system 

does not have integer solutions. Stop. 

 

(B) If there is an inequality in the system, then it does not have integer 

solutions 

 

(C) In case of repetition, retain only one equation of that kind. 
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(D) Remove all the equations which are identities. 

3. Calculate 
,

min ,  0ij ij
i j

a a a  and determine the indices i0, j0  for which this 

minimum can be obtained. (If there are more variables, choose one, at 

random.) 

4. If a 1  go on to step 6. 

If a 1 , then: 

(A) Calculate the value of the variable x j0  from the equation i0  note this 

statement Vv . 

 

(B) Substitute this statement (where possible) in all the equations of the 

system as well as in the statements Vv 1 , Hh , for all v  and h . 

 

(C) Remove the equation i0  from the system. 

 

(D) Consider v : v 1 . 

5. Does at least one equation exist in the system? 

(A) If it does not, write the general integer solution of the system substituting 

k1,  k2,...  for all the variables from the right term of each expression 

representing the value of the initial unknowns of the system. 

     (B) If it does, considering the new data, go back to step 2. 

6. Write all ai0 j ,  j j0  and bi0  under the form : 

ai0 j ai0 j0qi0 j ri0 j , with ri0 j ai0 j . 

0 0 0 0 0i j i j i ib a q r , with 
0 0 0i i jr a . 

7. Write x j0 qi0 j
j j0

x j qi0 th , statement Hh . 

Substitute (where possible) this statement in all the equations of the system as 

well as in the statement Vv ,  Hh , for all v  and h . 

8. Consider  

x j0 : th ,  h : h 1,

ai0 j : ri0 j ,  j j0 ,

ai0 j0 : ai0 j0 ,  bi0 : ri0 ,

 

and go back to step 2 

 

The correctness of Algorithm 4 

This algorithm extends the algorithm from [4] (integer solutions of equations to 

integer solutions of linear systems). The algorithm was thoroughly proved in our previous 

article; the present one introduces a new cycle – having as cycling variable the number of 

equations of system – the rest remaining unchanged, hence, the correctness of algorithm 

4 is obvious. 
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Discussion 

1. The counter variables h  and v  count the statements H  and V , respectively, 

differentiating them (to enable the substitutions); 

2. Step 2 ((A)+(B) + (C)) is trivial and is meant to simplify the calculations (as 

algorithm 2); 

3. Sub-step 5 (A) has aesthetic function (as all the algorithms described). 

Everything else has been proved in the previous chapters (see [4], [5], and 

algorithm 2). 

 

Example 4. Let us use algorithm 4 to calculate the integer solution of the 

following linear system: 

1 3 4

1 2 4 5

3       7 6         2

4 3      6 5  19

x x x

x x x x
 

 Solution 

 1.  h 1,  v 1 

2. – 

3. a 3  and i 1,  j 1  

4. 3 1. Go on to step 6. 

6.  Then, 
7 3 ( 3) 2

  6 3 2 0

2 3 0 2

 

7.  x1 =3x3 2x4 t1  statement H1 . Substituting it in the second equation we 

obtain: 

4t1 3x2 12x3 x4 5x5 19  

8.  x1 : t1,  h : 2,  a12 : 0,  a13 : 2,   a14 : 0,   a11 : 3,  b : 2 .  

Go back to step 2. 

2. The equivalent  system was written: 

1 3

1 2 3 4 5

3            3                2

4 3 12 5 19

t x

t x x x x
 

3. a 1,  i 2,  j 4  

4. 1=1 

(A) Then:  4 1 2 3 54 3 12 5 19x t x x x  statement V1 . 

(B) Substituting it in H1 , we obtain:  

x1 7t1 6 x2 21x3 10x5 38,    H1  

(C) Remove the second equation of the system. 

(D) Consider: v : 2 . 

5. Yes. Go back to step 2. 

 

2. The equation 1 33  2 2t x  is left. 

3. a 2  and i 1,  j 3 
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4. 2 2 , go to step 6. 

6.    

3 2 2 1

2 2( 1) 0
 

7.  x3 2t1 t2 1 statement H2 . 

     Substituting it in H1 ' ,  V1
, we obtain: 

  
1 1 2 2 5 1

4 1 2 2 5 1

35 6 21 10 59   ''

20 3 12 5 31    '

x t x t x H

x t x t x V
 

8.  x3 : t2, h : 3,  a11:= 1,   a13 : 2,  b1:=0  , (the others being all = 0). Go back 

to step 2. 

2. The equation 5t1 2t2 0  was obtained. 

3.  a 1 , and i 1,  j 1  

4.  1=1 

(A) Then t1 2t2  statement V2 . 

(B) After substitution, we obtain: 

1 2 2 5 1

4 2 2 5 1

3 2 2

 49 6 10 +59     ''';  

28 3 5  31     '' ; 

3                                 ';

x t x x H

x t x x V

x t H

 

(C) Remove the first equation from the system. 

(D)  v : 3 
5.  No. The general integer solution of the initial system is: 

 

x1 49k1 6k2 10k3 59 

x2              k2      

x3 3k1                       1       

x4 28k1 3k2 5k3 31         

x5                          k3       

 

where k1,  k2,k3

3 . 

Stop. 

 

 Algorithm 5 

Input 
A linear system (1) 

Output  

    We decide on the possibility of an integer solution of this system. If it is 

possible, we obtain its general integer solution. 

Method 

1. We solve the common system in 
n
, then it does not have solutions in 

n
, 

then it does not have solutions in 
n
 either. Stop. 

2. f 1,  v 1,  h 1  

3. Write the value of each main variable xi  under the form: 
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 ' '

, : /f i i ij j i ij j i ii
j j

E x q x q r x r ,  

with all qij ,  qi ,  rij ,  ri ,  i  from  such that all rij i ,   ri i , 
i

 

(where all '

jx S  of the right term are integer variables: either from the 

secondary variables of the system or the new variables introduced with the 

algorithm). For all i , we write rij f i  

4. E f ,  i i
: rij
j

x j ri, j f y f ,i ri 0  where y f ,i  are auxiliary integer variables. 

Remove all the equations Ff ,  i  which are identities. 

5. Does at least one equation Ff ,  i  exist? If it does not, write the general integer 

solution of the system substituting k1,  k2,...  for all the variables of the right 

number of each expression representing the value of the initial unknowns of 

the system. Stop. 

6. (A) Divide each equation Ff ,  i  by the largest co-divisor of the coefficients of 

their unknowns. If the quotient is an integer for at least one i0  then the system 

does not have integer solutions. Stop. 

(B) Simplify – as previously ((A)) all the functions in the relations E f ,  i i
. 

7. Calculate 
,

min ,  0ij ij
i j

a r r , and determine the indices i0,  j0  for which this 

minimum is obtained. 

8. If a 1 , go on to step 9. 

If a 1 , then: 

(A) Calculate the value of the variable x j0
'

 from the equation Ff ,  i  write 

Vv  for this statement. 

(B) Substitute this statement (where possible) in the statement E f ,  i , 

Vv 1 , Hh , for all i,  v , and h . 

(C) Remove the equation E f ,  i . 

(D) Consider v : v 1,  f : f 1 and go back to step 3. 

9. Write all 
0 0,  i jr j j  and ri0 under the form: 

ri0 j i0
qi0 j ri0 j

'
, with ri0 j

'

i ; 

ri0 j i0
qi0 ri0

'
, with ri0

'

i . 

10. (A) Write x j0
' qi0 j

j j0

x j
' qi0 th  statement hH . 

(B) Substitute this statement (where possible) in all the statements E f ,  i , 

Ff ,  i , Vv , Hh 1 . 
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(C) Consider h : h 1 and go back to step 4. 

 

The correctness of the algorithm is obvious. It consists of the first part of  

algorithm 3 and the end part of algorithm 4. Then, steps 1-6 and their correctness were 

discussed in the case of algorithm 3. The situation is similar with steps 7-10. (After 

calculating the real solution in order to calculate the integer solution, we resorted to the 

procedure from 5 and algorithm 5 was obtained). This means that all these insertions 

were proven previously. 

 

 Example 5 

 Using algorithm 5, let us obtain the general integer solution of the system: 

   
3x1       6x3 2x4         0

      4x2 2x3        7x5 1   
 

 Solution 

1. Solving in 5  we obtain: 

3 4
1

3 5
2

6 2

3

2 7 1

4

x x
x

x x
x

 

2. f 1,  v 1,  h 1  

3. E1,1 : x1 2x3

2x4

3
 

      E1,2 : x2       x5

2x3 3x5 1

4
 

4. 1,1 4 11: 2 3 0F x y  

F1,2 :2x3 3x5 4y12 1 0  

5. Yes 

6. – 

7. i 2  and i0 2,  j0 3  

8. 2 1  

9. 3 2 1 1  

               
4 2 ( 2)

1 2 0 1
 

10. x3 x5 2y12 t1  statement H1 . After substitution: 

4
1,1 1 5 12 1

5 12 1
1,2 2 5

1,2 5 1

2
' : 2 4 2

3

4 2 1
' :                     

4

' : 2 1 0

x
E x x y t

x y t
E x x

F x t

 

Consider h : 2  and go back to step 4. 
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4.  1,1 4 11' : 2 3 0F x y  

     1,2 1 5' : 2 1 0F t x  

5.  Yes. 

6. – 

7. a 1  and i0 2 , j0 5  

(A)  x5 2t1 1statement V1
 

(B) Substituting it, we obtain: 

4
1,1 1 1 12

1,2 2 1 12

1 3 1 12

2
'' :  6 2 4

3

'' :  2 1   

' :  3 1 1 2  

x
E x t y

E x t y

H x t y

 

(C) Remove the equation F1,2
. 

(D) Consider 2,  2v f  and go back to step 3. 

3.  4
2,1 1 1 12

2
:  6 4 2

3

x
E x t y  

      E2,2 :  x2 2t1 y12 1  

4.   2,1 4 12:  2 3 0F x y  

5. Yes. 

6. – 

7. a 2  and  i0 1,  j0 4  

8. 2 1  

9. 3 2 (1) 1 

10. (A) x4 y21 t2  statement H2  

(B) After substitution, we obtain: 

21 2
2,1 1 1 12

2,1 21 2

2 2
' :  6 4 2

3

' :  2 0

y t
E x t y

F y t

 

Consider  h : 3,  and go back to step 4. 

4. 2,1 21 2' :  2 0F y t  

5. Yes 

6. – 

7. a 1  and i0 1,  j0 21 (two, one). 

(A) y21 2t2  statement V2 . 

(B) After substitution, we obtain: 

  

(C) Remove the equation 2,1F . 

(D) Consider v 3,  f 3 and go back to step 3. 
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3. E3,1 :  x1 6t1 4y12 2t2 2  

    E3,2 :  x2 2t1 y12           1 

4. – 

5. No. The general integer solution of the system is: 

1 1 2 3 3,1

2 1 2 3,2

3 1 2 1

4 3 2

5 1

6 4 2 2 ,        from ;

2              1,        from ;  

3 2              1,        from  '; 

                   3         ,       from  ';      

2           

x k k k E

x k k E

x k k H

x k H

x k 1          1,        from  ;   V

 

where k1,  k2,k3 . 

Stop. 

 

 Note 1. Algorithm 3, 4, and 5 can be applied in the calculation of the integer 

solution of a linear equation. 

 

 Note 2. The algorithms, because of their form, are easily adapted to a computer 

program. 

 

 Note 3. It is up to the reader to decide on which algorithm to use. Good luck! 
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