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Used notations.

0.1 Reminder about the notations used.

For the purpose of this study, we utilise the usual mathematial notations and

symbols. However it is suitable to de�ne preisely some of them.

In propositional alulus, a proposition P is either true or false by de�ni-

tion. As the purpose of mathematis is to logially link propositions from one

to another to derive a onlusion, itself fromulated as a proposition, we will need

the logial onnetors

� negation symbol ¬

� onjontion symbol "and" ∧

� disjontion "inlusive or" symbol ∨

as well as the relation symbols

� impliation symbol =⇒

� equivalene symbol ⇐⇒

We will also resort to utilise the following logial quanti�ers

� universal "For all..." ∀

� existential "There exists at least one..." ∃

� existential "There exists one and only one..." ∃!

Usual notations used in Set Theory will be utilised. The membership symbol,

and its negation, of an element a ontained in a set A are respetively denoted

∈ and 6∈. Also, the inlusion symbol of a set A in a set B and its negation are

respetively denoted ⊂ and 6⊂. Lastly, depending on our needs, we denote the

intersetion and union operators of sets respetively

�

⋂

or ∩

�

⋃

or ∪.

iii



iv USED NOTATIONS.

Let A and B be two sets, not neessarily distint, and let a ∈ A and b ∈ B any

two elements of these two sets, the ordered pair (a, b) belongs to the set A× B,

usually alled the Cartesian produt of the set A by the set B. This notion

of Cartesian produt an be of ourse extended to a produt of more than two

sets.

In a subset Aj×Bk of the Cartesian produt A×B, we an de�ne the binary

relation R

(∀a ∈ A) (∀b ∈ B) ((aRb) ⇐⇒ ((a, b) ∈ Aj × Bk))

This de�nition leads rather naturally to the notion of equivalene relation.

A binary relation R on a set A is an equivalene relation if and only if

(∀a ∈ A) (aRa)
(

∀(a, b) ∈ A2
)

((aRb) ⇐⇒ (bRa))
(

∀(a, b, c) ∈ A3
)

((aRb) ∧ (bRc) =⇒ (aRc))

The de�nition of the equivalene relations leads in its turn to the one of equiv-

alene lass. The equivalene lass of an element a ∈ A generated by the

equivalene relation R is the set, whih we denote R (a)

((∀b ∈ A) (b ∈ R (a))) ⇐⇒ (aRb)

and we have

R (a) ⊂ A

The set of equivalene lasses R (aj) generated by the equivalene relation R
on the set A est son quotient set, whih is denoted A/R.

The set A has a number of elements, �nite or in�nite, and in this last ase,

ountable or unountable. This number is de�ned as the ardinal of the set

and denoted |A|.
We will be interested more spei�ally in the following sets

� N Set of the natural integers.

� Z Set of the rational integers.

� Q Set of the rationnal numbers.

� R Set of the real numbers.

In the sets Z, Q et R, the elements, in other word numbers, other than the null

element an be positive or negative. Eah set A hosen among these sets ontains

the subset of its negative numbers, whih we denote A−
, the null element, whih

we denote 0 and the subset of its positive numbers, whih we denote A+
. We

have

A = A− ∪ {0} ∪A+



0.1. REMINDER ABOUT THE NOTATIONS USED. v

The notion of absolute value follows naturally

(

∀a ∈ A−
)

(|a| = −a)
(

∀a ∈ A+
)

(|a| = a)

As well, for eah set A, hosen among any of the here-above mentioned sets, we

will denote the set of its non zero A∗

(a ∈ A∗) ⇐⇒ (a 6= 0)

and

A = A∗ ∪ {0}

We will use the internal binary operations usually applied to the elements of

these sets, the numbers. These operations are denoted

� + for the addition

� × for the multipliation.

However, we will most of the time omit this symbol, as is ustomary.

We will also use the notations

� − for the soustration

� / for the division.

After reminding the de�nition of the Eulidean division in the set Z

(∀a ∈ Z) (∀b ∈ Z) (∃q ∈ Z) (∃r ∈ Z) (a = bq + r)

we are using, whenever r = 0, the symbol | for the exat division in this same

set and we denote

((∀a ∈ Z∗) (∀b ∈ Z∗) (b|a)) ⇐⇒ ((∃!c ∈ N∗) (a = bc))

The Eulidean division by a given prime number pn in Z leads to the de�nition

of the equivalene relation, whih we denote R = pn

(∀a ∈ Z) (∀b ∈ Z) (apnb) ⇐⇒ pn| (a− b)

This equivalene relation generates in its turn pn equivalene lasses, as the

remainder r of Eulidean division by the prime number pn an take pn values

among the integers 0, 1, 2, · · · , pn−2 et pn−1. These pn equivalene lasses are

the elements of the quotient set, whih we denote

Z/pnZ = {0, 1, 2, · · · , pn−2, pn−1}

We utilise the usual notations of the ongruene theory

(a ∈ Z) (b ∈ Z) (c ∈ Z∗) (a ≡ b [c] ⇐⇒ c|a− b)

The interval, with the two elements a et b of a set K as endpoints are denoted
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� ]a, b[ for an open

� [a, b] for a losed

� ]a, b] et [a, b[ for the semi-open.

We will make use of funtions in their usual de�nition. Let K and K′
be two

sets and F the set of funtions f , whih map an element k of K to an element

k′ of K′
. We denote

fK −→ K′

k 7−→ k′ = f(k)

In what follows, the sets K and K′
will be most of the time the set R itself, or

one of its subsets.



Introdution and preliminary

remarks.

Prime numbers appear to be distributed randomly within the set of natural

numbers. It was proved long ago that, given an interval [0, pk[ in the set of real

numbers R, where pk and pk+1 are two onseutive prime numbers, every natural

integer belonging to the interval [pk, p
2
k+1[ taken in R is either prime or a multiple

of at least one of the prime numbers belonging to the interval [0, pk[. Besides,

a theorem, postulated by Joseph Bertrand and proved by Pafnuty Thebyhev

[1℄ [2℄ states that

Theorem 1 of Bertrand Thebyhev For all natural integer n > 1, there
exists at least a prime integer that belongs to the interval ]n, 2n].

Also, the de�nition of the ongruene between two numbers a and b, the two
of them being non zero, modulo a third natural integer c, non zero itself, whih

we usually write as follows

(a ∈ N∗) (b ∈ N∗) (c ∈ N∗) ((a ≡ b [c]) ⇐⇒ (c|a− b))

leads us to onsider that a funtion Fc ould exist suh as

Fc : R −→ R

x 7−→ Fc(x)

for whih

(a ∈ N∗) (b ∈ N∗) (c ∈ N∗) (Fc(a) = Fc(b) ⇐⇒ c|a− b)

Suh a funtion is evidently periodi, with period C. We endeavour in the fol-

lowing pages to reate one possible of these funtions Fc and to study some of

its property, emphasizing on symetry properties in partiular.

Then, in the following hapters, we will �rst onsider the strong Goldbah on-

jeture

Conjeture 1 strong of Goldbah Every even natural integer n > 4 is the

sum of two prime numbers.

vii



viii INTRODUCTION AND PRELIMINARY REMARKS.

We will also try and prove the following theorem, by utilising some properties

of the periodi funtions Spn−1
and Spn

, whih we will introdue later and the

periods of whih will be respetively denoted TSpn
and TSpn−1

Theorem 2 For all prime integer pn and its assoiated funtion Spn
, let the

set of the intervals

[kpn, (k + 1) pn[

where k is any natural integer, and let M1 be the natural integer

M1 =
1

4
TSpn−1

then, for all k < M1, there exists at least one natural integer

a ∈ [kpn, (k + 1) pn[

suh that

Spn
(a) 6= 0

whih an be otherwise formulated

(∀k ∈ N) (k < M1) (∃a ∈ ([kpn, (k + 1) pn[∩N)) (Spn
(a) 6= 0)

One onsequene of this theorem is another theorem that we enuniate here-

under

Theorem 3 of Bertrand-Thebyhev extended Given a prime number pn,
there exists at least one prime number in eah interval

[kpn, (k + 1) pn[

for eah non zero natural integer k suh that

(k + 1) pn < p2n+1

This theorem is somewhat similar to the Bertrand-Chebyshev theorem.

These results will enable us, to �nish with, to draw some onlusions on two

onjetures, one due to Adrien-Marie Legendre [3℄.

Conjeture 2 of Legendre For all natural integer n > 2, there exists at least

a prime integer that belongs to the interval [n2, (n+ 1)2].

the other to Henri Broard [4℄.

Conjeture 3 of Broard For all prime integer pn > 2, there exists at least

four prime integers that belong to the interval [p2n, p
2
(n+1)].



De�nitions.

0.2 De�nitions.

We de�ne some sets and some funtions that we will have to use.

0.2.1 Finite sets πpn
of prime numbers

let πpn
be the set that ontains all the prime numbers pj (distint from 1) and

less than or equal to a given prime number pn

πpn
= {pj| (c|pj ⇐⇒ c ∈ {1, pj}) ∧ (pj 6 pn)}

The set πpn
is totally ordered, within the de�nition of the relation <.We note

that it is also a well ordered set, as it has a least element denoted p1 = 2. So

we have

p1 = 2

p2 = 3

p3 = 5

p4 = 7

. . .

pn = supπpn

We pose |(πpn
)| = n

0.2.2 The elementary funtions

We need to de�ne some funtions, some properties of whih will be put forward

in our study.

The funtions sa,pj
et sa,pj

.

For eah prime number pj ∈ πpn
, we de�ne here-under the funtions sa,pj

and

sa,pj
, where a ∈ N

sa,pj
: R −→ [−1, 1]

x 7−→ sa,pj
(x)

ix



x DEFINITIONS.

with

sa,pj
(x) = sin

π

pj
(a+ x)

This funtion vanishes for eah and every (a+ x) multiple of pj.

sa,pj
: R −→ [−1, 1]

x 7−→ sa,pj
(x)

with

sa,pj
(x) = sin

π

pj
(a− x)

This funtion vanishes for eah and every (a− x) multiple of pj.

The periods of these two funtions, whih we respetively denote Tsa,pj
and

Tsa,pj
are both equal to 2pj.

We will denote for a = 0

s0,pj
(x) = spj

(x) = sin
π

pj
(x)

and for a = 2m

s2m,pj
(x) = sin

π

pj
(2m− x)

The funtions ca,pj
and ca,pj

.

Similarly, we de�ne the funtions ca,pj
et ca,pj

respetively as

ca,pj
: R −→ [−1, 1]

x 7−→ ca,pj
(x)

with

ca,pj
(x) = cos

π

pj
(a+ x)

This funtion vanishes for eah and every (a+ x) odd multiple of

1
2pj .

ca,pj
: R −→ [−1, 1]

x 7−→ ca,pj
(x)

with

ca,pj
(x) = cos

π

pj
(a+ x)

This funtion vanishes for eah and every (a− x) odd multiple of

1
2pj .

The periods of these two funtions, whih we respetively denote Tca,pj
and

Tca,pj
are both equal to 2pj.
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We will denote for a = 0

c0,pj
(x) = cpj

(x) = cos
π

pj
(x)

and for a = 2m

c2m,pj
(x) = cos

π

pj
(2m− x)

It might be useful to reall that the sin and os funtions are respetively odd

and even.

0.2.3 The produt funtions.

We need to de�ne the produt funtions of a �nite number of funtions sa,pj
.

We so de�ne

Spn
: R −→ [−1, 1]

x 7−→ Spn
(x)

(1)

with

Spn
(x) =

j=n
∏

j=1

sin
π

pj
(x) =

j=n
∏

j=1

spj
(x)

where the prime number pj belongs to the set πpn
, whih we de�ne as as the

referene set of the funtion Spn
.

Similarly, let S2m,pn
be the funtion

S2m,pn
: R −→ [−1, 1]

x 7−→ S2m,pn
(x)

with

S2m,pn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

s2m,pj
(x)

We note that

(2m− x = X) ⇐⇒


S2m,pn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

sin
π

pj
(x) = Spn

(X)





and hene

TS2m,pn
= TSpn
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These two funtions are sharing interesting properties of symmetry.

Finally, we onstrut a third funtion Gm,pn

Gm,pn
: R −→ [−1, 1]

x 7−→ Gm,pn
(x)

with

Gm,pn
(x) = Spn

(x)× S2m,pn
(x)

=





j=n
∏

j=1

spj
(x)









j=n
∏

j=1

sin
π

pj
(2m− x)





=

j=n
∏

j=1

spj
(x) s2m,pj

(x)

We will utilise as well the produt funtions of a �nite number of funtions

ca,pj
. We so de�ne

Cpn
: R −→ [−1, 1]

x 7−→ Cpn
(x)

with

Cpn
(x) =

j=n
∏

j=1

cos
π

pj
(x) =

j=n
∏

j=1

cpj
(x)

where the prime number pj belongs to the set πpn
, whih we de�ne as as the

referene set of the funtion Cpn
.

We are now going to study these various funtions.



Chapter 1

Some properties of the

funtion Spn.

1.1 Purpose of the hapter

Study of some properties of the funtion Spn
. A speial property of funtions Spn

when n ≤ 5. A simple explanation of the distribution of some prime numbers

less than 49.

1.2 Some properties of the funtion Spn

We reall the de�nition of the fumtion Spn

Spn
: R −→ [−1, 1]

x 7−→ Spn
(x)

with

Spn
(x) =

j=n
∏

j=1

spj
(x)

and

spj
(x) = sin

π

pj
(x)

1.2.1 Period and parity

The period of the funtion Spn
, whih we denote TSpn

, is two times the produt

of the periods Tspj
, where pj are all the elements of the set πpn

. We then have

TSpn
= 2×

j=n
∏

j=1

pj

1



2 CHAPTER 1. SOME PROPERTIES OF THE FUNCTION SPN
.

The funtion Spn
is the produt of funtions sin and is odd when n is odd and

even when n is even. Inside the interval [0, TSpn
[, we note that the funtion Spn

vanishes when x equals all the non-prime integer, as well as all the elements of

πpn
. In partiular

Spn
(0) = Spn

(
TSpn

4
)

= Spn
(
TSpn

2
)

= Spn
(
3TSpn

4
)

= Spn
(TSpn

)

= 0

For instane, we show the respetive graphs of the funtions S3 (see �gure-1.1

page-9)

S3 (x) = sin
(π

2
x
)

sin
(π

3
x
)

whih is an even funtion, and the funtion S5 (see �gure-1.2 page-9),

S5 (x) = sin
(π

2
x
)

sin
(π

3
x
)

sin
(π

5
x
)

whih is an odd funtion.

1.2.2 Some symmetry properties

We now propose to study some properties some simple symmetry properties of

the funtion S(pn) in the interval [0, TSpn
[. We will limit ourselves to study

these properties in the neighbourhood of the natural integers

TSpn

4 and

TSpn

2 .

Let xp and xq be two real numbers suh that

(

1

2
(xp + xq) = lTSpn

)(

l ∈ {
1

4
,
1

2
}

)

⇐⇒ (xp + xq = kTSpn
)

(

k ∈ {
1

2
, 1}

)

We have

Spn
(xq) = Spn

(kTSpn
− xp)

=

j=n
∏

j=1

(

sin
π

pj
(kTSpn

− xp)

)

=

j=n
∏

j=1

(

sin

(

k
π

pj
TSpn

−
π

pj
xp

))

Let us pose for all pj > 2

2hj + 1 =
1

4pj
TSpn
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with

hj ∈ N∗

then

sin

(

k
π

pj
TSpn

−
π

pj
xp

)

= sin

(

4k (2hj + 1)π −
π

pj
xp

)

Besides, when pj = 2

sin

(

k
π

pj
TSpn

−
π

pj
xp

)

= sin
(

k
π

2
TSpn

−
π

2
xp

)

= sin
(

2k (2h+ 1)π −
π

2
xp

)

with h ∈ N∗
We then obtain the following results

Cas k = 1
2

sin

(

4k (2hj + 1)π −
π

pj
xp

)

= sin

(

2 (2hj + 1)π
π

pj
− xp

)

= sin

(

−
π

pj
xp

)

sin
(

2k (2h+ 1)π −
π

2
xp

)

= sin
(

(2h+ 1)π −
π

2
xp

)

= sin
(π

2
xp

)

hene

Spn
(xq) = Spn

(kTSpn
− xp)

= sin
(

xp

π

2

)

j=n
∏

j=2

(

sin

(

−
π

pj
xp

))

= (−1)
n−1

j=n
∏

j=1

(

sin
π

pj
xp

)

Cas k = 1

sin

(

4k (2hj + 1)π −
π

pj
xp

)

= sin

(

4 (2hj + 1)π
π

pj
− xp

)

= sin

(

−
π

pj
xp

)



4 CHAPTER 1. SOME PROPERTIES OF THE FUNCTION SPN
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sin
(

2k (2h+ 1)π −
π

2
xp

)

= sin
(

2 (2h+ 1)π −
π

2
xp

)

= sin
(

−
π

2
xp

)

hene

Spn
(xq) = Spn

(kTSpn
− xp)

= sin
(

−xp

π

2

)

j=n
∏

j=2

(

sin

(

−
π

pj
xp

))

= (−1)
n

j=n
∏

j=1

(

sin
π

pj
xp

)

Conlusion

Inside the interval [0, TSpn
[, we an write

(

xp + xq =
1

4
TSpn

)

=⇒



Spn
(xq) = (−1)

n−1
j=n
∏

j=1

(

sin
π

pj
xp

)





or, formulated otherwise

(

xp + xq =
1

4
TSpn

)

=⇒
(

Spn
(xq) = (−1)

n−1
Spn

(xp)
)

(1.1)

and likewise

(

xp + xq =
1

2
TSpn

)

=⇒



Spn
(xq) = (−1)n

j=n
∏

j=1

(

sin
π

pj
xp

)





whih we an also write

(

xp + xq =
1

2
TSpn

)

=⇒ (Spn
(xq) = (−1)

n
Spn

(xp)) (1.2)

1.2.3 A speial property of the fontion Spn
when n ≤ 5.

Let sαj ,pj
be a funtion suh that

sαj ,pj
(x) = sin

(

π

pj
(x− αj)

)

= spj
(x− αj)

where αj is a natural integer that belongs to the interval [0, 2pj[. We now de�ne

the funtions Upn

Upn
: R −→ [−1, 1]

x 7−→ Upn
(x)
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where

Upn
(x) = s2 (x) spn

(x)

j=n−1
∏

j=2

sαj ,pj
(x)

Let us �rst onsider the ase where n = 5 ⇐⇒ pn = 11. Let us look for a

funtion U11 that vanishes for eah natural integer in the interval [0, 11[ and let

us write

(∀x ∈ {0, 1, 2, · · · , 9, 10})



U11 = s2 (x) s11 (x)

j=4
∏

j=2

sαj ,pj
(x) = 0





We note that

s11 (0) = 0

(∀x ∈ {0, 2, 4, 6, 8, 10}) (s2 (x) = 0)

(∀x ∈ {1, 3, 5, 7, 9}) (s2 (x) 6= 0)

(∀x ∈ {1, 3, 5, 7, 9}) ((s11 (x) 6= 0))

At least one funtion sαj ,pj
must vanish when x is equal to one of the odd natural

integer in the interval [0, 11[. There are three suh funtions, with pj ∈ {3, 5, 7}.
We must have

(∀x ∈ {1, 3, 5, 7, 9}) (∃!j ∈ {2, 3, 4})
(

sαj ,pj
(x) = spj

(x− αj) = 0
)

We then have a produt of three funtions sαj ,pj
,whih must vanish for �ve

distint natural integer. But the di�erene between any two of these natural

integers is a power of 2, with the exeption of the pairs (1, 7) et (3, 9), for whih
only the funtions s1,3 et s3 are respetively anelled out. The funtions sα3,5

et sα4,7, as for them, are only anelled out respetively by one and only one

natural integer remaining in the set {1, 3, 5, 7, 9}.
Suh funtion U11, whih must vanish for every integer in the interval [0, 11[,

therefore annot exist.

Consequently, there exists neessarily in eah interval [11k, 11 (k + 1) [, k ∈
N , at least one natural integer for whih the funtion S11 does not vanish. These

integers are prime number for eah interval, the upper endpoint 11 (k + 1) of
whih is ≤ 132.

We show in the same manner that for eah and every pn < 11, there is at

least one natural integer in eah interval [kpn, (k + 1) pn[, k ∈ N, for whih the

funtion Spn
does not vanish. These natural integers are prime integers for eah

interval the upper endpoint (k + 1) pn of whih is ≤ p2n+1.

When pn ≤ 5, we have
j=n
∏

j=1

pj < p2n+1

In the speial ase where n = 3, pn = 5, then

TS5 = 2 (2× 3× 5)
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and

TS5

2
< 72 ⇐⇒ (2× 3× 5) < 72

In the interval [0, TS5

2 [

(

xp + xq =
TS5

2

)

⇐⇒



S5 (xq) =
(

−13
)

j=3
∏

j=1

(

sin
π

pj
xp

)





whih implies

((

xp + xq =
TS5

2

)

∧ (xp 6= 0)

)

⇐⇒ (xq 6= 0)

but xp and xq are neessarily prime numbers, as they are no multiple of 2, 3
and 5, and at the same time less than 72. In this simple ase, if xp is prime

number stritly greater than 5, then xq = 30− xp is also a prime number.

1.2.4 Number of natural integers for whih the funtion

Spn
does not vanish in the interval [0, TSpn

[

Let us onsider an odd prime integer pn and its assoiated funtion Spn
. Let in

the interval

[0, TSpn[

be the set Bpn
of the natural integers, the least divisor of whih is greater

than pn. In this manner, Bp4
= B7 is the set of the natural integers less than

TSp4
= 420 that are not divisible by any of the prime integers that are stritly

less than p4, to name them 2, 3 and 5.

Let us onsider the set B2 of the natural integers non multiple of 2 (i.e. all

the odd numbers), inluding 1, in the interval [0, TSpn
[; Its ardinal |B2| is equal

to

|B2| =

(

1−
1

2

)

TSpn

In the same way, the set B3 of the integers non multiple of 3, inluding 1, subset
of the set B2, has his ardinal equal to

|B3| =

(

1−
1

3

)

|B2|

=

(

1−
1

3

)[(

1−
1

2

)

TSpn

]

=

(

1−
1

2

)(

1−
1

3

)

TSpn
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Step by step, we an alulate the number |Bpn
| of natural integers non multiple

of pn, inluding 1
- hosen in the set of natural integers non multiple of pn−1, pn−1 being the larger

prime number less than pn
- themselves hosen in the set of the natural integers non multiple of pn−2, pn−2

being the larger prime number less than pn−1

- · · ·
- themselves hosen in the set of the natural integers non multiple of pn−(j−1),

pn−(j−1) being the larger prime number less than pn−j

- themselves hosen in the set of the natural integers non multiple of 2 that is

|Bpn
| =

(

1−
1

pn

)

∣

∣Bpn−1

∣

∣TSpn

=

(

1−
1

2

)(

1−
1

3

)

....

(

1−
1

pn

)

TSpn

=

j=n
∏

j=1

(

1−
1

pj

)

TSpn

Now, let us reall that

TSpn
= 2

j=n
∏

j=1

pj

we �nd

|Bpn
| =





j=n
∏

j=1

(

1−
1

pj

)







2

j=n
∏

j=1

pj





= 2

j=n
∏

j=1

(pj − 1)

By analogy with the usual de�nition of the Euler produt, we de�ne the �nite

Euler produt of rank n
j=n
∏

j=1

(

1−
1

pj

)

Remark

The proportion of natural integers, whih we denote δn, for whih the funtion

Spn
does not vanish in the interval [0, TSpn

[ is naturally

δn =
TSpn

|Bpn
|

=

j=n
∏

j=1

1
(

1− 1
pj

)



8 CHAPTER 1. SOME PROPERTIES OF THE FUNCTION SPN
.

but

lim
l→+∞

k=l
∑

k=0

(

1

pkj

)

=
1

(

1− 1
pj

)

and therefore

δn =

j=n
∏

j=1

1
(

1− 1
pj

) =

j=n
∏

j=1

lim
l→+∞

k=l
∑

k=0

(

1

pkj

)

If now n approahes ∞, then



 lim
n→+∞

δn = lim
n→+∞

j=n
∏

j=1

lim
l→+∞

k=l
∑

k=0

(

1

pkj

)



⇐⇒



 lim
n→+∞

δn =

+∞
∑

j=1

(

1

j

)

= ∞
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0 1 2 3 4 5 6 7 8 9 10 11 12-1-2-3-4-5-6-7-8-9-10-11-12
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Figure 1.1: Graph of the funtion S3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30-2-4-6-8-10-12-14-16-18-20-22-24-26-28-30

1

-1

x

y

Figure 1.2: Graph of the funtion S5
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Chapter 2

Some properties of the

funtion Gm,pn.

It is aknowledged that Christian Goldbah stated the following onjeture

Conjeture 4 strong of Goldbah For all natural integer m > 2, the even

natural integer 2m is the sum of two prime numbers.

For this onjeture, we develop an approah in the two following hapters that

ould lead to a rigorous proof. The hosen path for our study is based on the

idea that it is possible to onstrut a funtion de�ned on R, whih would be

symmetri with respet to a given natural integer m, the properties of whih

should enable us to better understand the reasons why this onjeture is likely

to be true. One we have built this funtion, we will study some of its prop-

erties. In partiular, we will try to show that this funtion does not vanish at

some natural and relative integers in its domain.

Let

πpn
= {pj| (c|pj ⇐⇒ c ∈ {1, pj}) ∧ (pj ≤ pn)}

be the set that ontains all the prime numbers pj less than or equal to pn and the

funtion Spn
, whih we already de�ned (see formula 1 page-xi). Spn

is a periodi

funtion with period TSpn
(see formula 1.2.1 page-1). In a way similar to the

one used to onstrut the funtion Spn
, we will onstrut the new funtions

gm,pj
and Gm,pn

. Let us begin with the funtion gm,pj

gm,pj
: R −→ [−1, 1]

x 7−→ gm,pj
(x)

with

gm,pj
(x) = sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

11
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where m ∈ N∗
Using the notations already introdued, this funtion an also be

written

gm,pj
(x) = spj

(x) spj
(2m− x)

= spj
(x) s2m,pj

(x)

Then, let us de�ne the funtion Gm,pn

Gm,pn
: R −→ [−1, 1]

x 7−→ Gm,pn
(x)

with

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

where m ∈ N∗
This funtion an also be written

Gm,pn
(x) = Spn

(x)Spn
(2m− x)

= Spn
(x)S2m,pn

(x)

and also

Gm,pn
(x) =

j=n
∏

j=1

gm,pj
(x)

We expet that the study of this funtion will provide us with some insight on

the strong Goldbah onjeture and its likelihood.

2.1 About some properties of funtions gm,pj et

Gm,pn

Funtions gm,pj
and Gm,pn

display properties of symmetry and periodiity that

we will look into here-under.

2.1.1 The funtions gm,pj

Periodiity

Let us reall that

Tspj
= 2pj

We have

spj
(x) = (−1) spj

(

x+
1

2
Tspj

)

= (−1) spj

(

x−
1

2
Tspj

)
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and so

spj
(2m− x) = (−1) spj

(

(2m− x) +
1

2
Tspj

)

and

spj
(2m− x) = (−1) spj

(

(2m− x)−
1

2
Tspj

)

Let us onsider the funtion gm,pj

gm,pj
(x) = spj

(x) spj
(2m− x)

then

gm,pj
(x) = (−1)

2
spj

(

x+
1

2
Tspj

)

spj

(

(2m− x) +
1

2
Tspj

)

and

gm,pj

(

x+
1

2
T spj

)

= spj

(

x+
1

2
Tspj

)

spj

(

2m−

(

x+
1

2
Tspj

))

We have then established that

gm,pj
(x) = gm,pj

(

x+
1

2
Tspj

)

and therefore, the funtion gm,pj
is periodi with period

1

2
Tspj

= Tgpj,m = pj

Symmetry

Let us begin with the de�nition of the funtion gm,pj

gm,pj
(x) = spj

(x) spj
(2m− x)

we write

gm,pj
(2m− x) = spj

(2m− x) spj
(2m− (2m− x))

hene

gm, pj (2m− x) = spj
(2m− x) spj

(x)

Commutativity of the produt of funtions spj
(2m− x) and spj

(x) allows us
to write

gm,pj
(x) = gm,pj

(2m− x)

In partiular, when x = 2m

gm,pj
(2m− 2m) = gm,pj

(2m) = gm,pj
(0)

and

spj
(2m− 2m) = spj

(0) = 0
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Zeros

For eah and every number x that anels out the funtion gm,pj
, we verify

(

gm,pj
(x) = 0

)

⇐⇒
(

spj
(x) spj

(2m− x) = 0
)

and then, these numbers are either of the form hpj or of the form 2m − lpj,
where h et l are natural integers. If the two funtions spj

et s2m,pj
vanish

simultaneously at the same natural integer, then m is neessarily a multiple of

pj . These two funtions are then non-distint. In partiular, we note that these

two funtions vanish when x = 0, x = m and x = 2m in the interval [0, 2m].
If, on the other hand, only x is multiple of pj , then, only the funtion spj

vanishes.

This funtion is distint from the funtion s2m,pj
. In partiular, in the interval

[0, 2m], the funtion s2m,pj
does not vanish when x = 0, x = m and x = 2m.

Let us now onsider the funtion gm,pj
on one of the intervals

[kpj , kpj + Tgm,pj
[

It vanishes when x = hpj. Also, assuming

m ≡ mj [pj ]

we get

(

sin

(

π

pj
(2m− x)

)

= sin (hπ) = 0

)

⇐⇒ (x = 2mj − lpj)

and then, on the onsidered interval

[kpj, kpj + Tgm,pj
[= [kpj, (k + 1) pj [

we have two natural integers, kpj et (k + 1) pj − 2mj , for whih the funtion

gm,pj
vanishes.

Example

We present, as an example for pj = 5 and m = 13,the graph of the funtion

g5,13 with period Tg5,13 = 5 in the interval [0, 26[ (see �gure-2.1 page-15) In

partiular, this graph shows the property of symmetry of this funtion in the

interval [0, 26[ et [−2, 28[, as already established in the previous pages.

2.1.2 The funtion Gm,pn

Periodiity

We already showed

Spn
(x) = (−1)Spn

(

x+
1

2
TSpn

)

= (−1)Spn

(

x−
1

2
TSpn

)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28-1-2

1

-1
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y

Figure 2.1: Graph of the funtion g5,13

and thus

Spn
(2m− x) = (−1)Spn

(

(2m− x) +
1

2
TSpn

)

and also

Spn
(2m− x) = (−1)Spn

(

(2m− x)−
1

2
TSpn

)

Therefore, we an write

Gm,pn
(x) = Spn

(x)Spn
(2m− x)

and

Gm,pn
(x) = (−1)2Spn

(

x+
1

2
TSpn

)

Spn

(

(2m− x) +
1

2
TSpn

)

)

and also

Gm,pn

(

x+
1

2
TSpn

)

= Spn

(

x+
1

2
TSpn

)

Spn

(

2m− (x+
1

2
TSpn

)

)

and lastly

Gm,pn
(x) = Gm,pn

(x +
1

2
TSpn

)

We note that the funtion Gm,pn
is periodi, with period

1
2TSpn

and we write

TGm,pn
=

1

2
TSpn
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This period is always even for all n.

Symmetry

We an also verify that in the interval [0, 2m[

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

whih an also be expressed

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
(2m− x)

)

sin

(

π

pj
x

)

and thus

(Gm,pn
(x) = Gm,pn

(2m− x)) ⇐⇒ (Gm,pn
(m− x) = Gm,pn

(m+ x))

In partiular

(Gm,pn
(m− x) 6= 0) ⇐⇒ ((Spn

(m− x) 6= 0) ∧ (Spn
(m+ x) 6= 0))

Likewise

(Gm,pn
(m− x) = 0) ⇐⇒ ((Spn

(m− x) = 0) ∧ (Spn
(m+ x) = 0))

By onstrution, the natural integerm is the entre of symmetry for the funtion

Gm,pn
in the interval [0, 2m[. In addition, we have

Gm,pn

(

m−
1

2
TGm,pn

)

= Gm,pn

(

m+
1

2
TGm,pn

)

and so, m is also the entre of symmetry for the funtion Gm,pn
in the interval

[m−
1

2
TGm,pn

,m+
1

2
TGm,pn

[

We �nally note that

Gm,pn
(−x) =

j=n
∏

j=1

sin

(

π

pj
(−x)

)

sin

(

π

pj
(2m+ x)

)

= (−1)
n

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m+ x)

)

and

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
(x)

)

sin

(

π

pj
(2m− x)

)



2.1. ABOUT SOME PROPERTIES OF FUNCTIONS GM,PJ
ET GM,PN

17

Should there exist non zero natural integers as values taken on by x

|Gm,pn
(−x)| = |Gm,pn

(x)|

then, we should have

(∀pj ∈ πpn
)

(

sin

(

π

pj
(2m+ x)

)

= sin

(

π

pj
(2m− x)

))

but

sin

(

π

pj
(2m+ x)

)

=

sin

(

π

pj
(2m− x)

)

cos

(

π

pj
(2x)

)

+ cos

(

π

pj
(2m− x)

)

sin

(

π

pj
(2x)

)

and so

(

sin

(

π

pj
(2m+ x)

)

= sin

(

π

pj
(2m− x)

))

⇐⇒

(

cos

(

π

pj
(2x)

)

= 1 ⇐⇒ sin

(

π

pj
(2x)

)

= 0

)

This neessarily implies

(∃h0 ∈ Z∗)



x = h0

j=n
∏

j=1

pj





and we verify

(∀pk ∈ πpn
) (∃h1 ∈ Z∗)



sin





π

pk
h0

j=n
∏

j=1

pj



 = sin (h1π) = 0





whih implies

Gm,pn



h0

j=n
∏

j=1

pj



 = Gm,pn



−h0

j=n
∏

j=1

pj



 = 0

On the other hand, when

(h0 ∈ Z∗)



x 6= h0

j=n
∏

j=1

pj





then

Gm,pn
(x) 6= Gm,pn

(−x)

Hene, 0 is not a entre of symmmetry for the funtion Gm,pn
.



18 CHAPTER 2. SOME PROPERTIES OF THE FUNCTION GM,PN
.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62-2-4
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Figure 2.2: Graph of the funtion G5,13 on the interval [−2, 58[

Examples

We present, as an example for pj = 5 and m = 13,the graph of the funtion

G5,13 with period TG5,13 = 5 in the interval [−2, 28[ (see �gure-2.1 page-15) In
partiular, this graph shows the property of symmetry of this funtion in the

interval [0, 26[ et [−2, 28[, as already established in the previous pages.

Other properties

Up to now, we have not made any hypothesis as regards the parameter m,

the value of whih has evidently some in�uene in the behaviour of the fun-

tion Gm,pn
and speially in the way this funtion vanishes in its domain. By

onstrution, the funtion vanishes at x when

Spn
(x) = 0

or else

Spn
(2m− x) = S2m,pn

(x) = 0

Case 1: m ≤ pn The interval [0,m[ is inluded in the interval [0, pn[. We

know that the funtion Spn
vanishes at all the natural integers in the interval

[0, pn[, save for 1. Therefore, by symmetry, the funtion Gm,pn
a priori vanishes

at all the natural integers in the interval [0, 2m[, save for 1 and 2m− 1, whih
this funtion does not neessarily vanishes at. However, if 2m − 1 is divisible
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by at least one of the prime integers less than or equal to pn, then the funtion

Gm,pn
vanishes at all the natural integers in the interval [0, 2m[. We illustrate

0 1 2 3 4 5 x

y

Figure 2.3: Graph of the funtion G5,3 on the interval [−2, 30[

this ase with the graphs of the funtions G5,3 et G5,4 on the respetive intervals

[0, 6[, [0, 8[ and [0, 10[ (see �gures 2.3 and 2.4 pages 19 and 20).

Case 2: m > pn The interval [0, pn[ is inluded in the interval [0,m[. There-
fore, the funtion Gm,pn

a priori may not vanish at all the natural integers in

the interval [0, 2m[. We illustrate this ase with the graphs of the funtions

G7,6 et G7,7 on the respetive intervals [0, 12[ and [0, 14[ (see �gures 2.5 and 2.6

pages 21 and 22). This latter ase, where the natural integerm is stritly greater

than the prime integer pn, will be the objet of the deeper study that follows.

We will show that for all prime integer Pn > 11, there exists at least one

natural integer in eah interval

[kpn, (k + 1) pn[

whih the funtion Spn
does not vanish at, when k is less than some integers,

the value of whih depends on pn. Moreover, when

(k + 1) pn < p2n+1

suh integer is prime. We also note that every natural integer whih the funtion

Spn
vanishes at, anels out the funtion Gm,pn

. The onverse is not true.
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0 1 2 3 4 5 6 7 8 9 x

y

Figure 2.4: Graph of the funtion G5,4 on the interval [−2, 30[

Indeed, this funtion also vanishes when we have

sin

(

π

pj
(2m− x)

)

= 0

for at least one of the prime integers pj .

The natural integers whih do not anel out the funtion Gm,pn
.

We pair eah natural integer m with the funtion

Gm,pn
(x) =

j=µ
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

and we hoose the prime integers pn and pn+1, onseutive in the set of the

prime numbers, suh that

p2n < 2m < p2n+1

then we look at the way the funtion Gm,pn
vanishes in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

This interval is entred on the natural integer m and ontains TGm,pn
natural

integers, with

TGm,pn
=

j=n
∏

j=1

pj
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-1 x

y

Figure 2.5: Graph of the funtion G7,6 on the interval [−2, 30[

Let us onsider the natural integers ak in this interval, and for all these natural

integers, their respetive remainders αk,j modulo eah of the prime integers pj
in the set πpn

. For eah of these natural integers, we have for eah index j

ak ≡ αk,j [pj ]

with

αk,j ∈ Z/pjZ

Let us write down eah of these natural integers ak in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

and there respetive remainders modulo pj in eah of the

∏j=n

j=1 pj rows of the

following table
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-1 x

y

Figure 2.6: Graph of the funtion G7,7 on the interval [−2, 30[

≡ [p1] ≡ [p2] ≡ [pj ] ≡ [pn]
α1,1 α1,2 . . . α1,j . . . α1,n

α2,1 α2,2 . . . α2,j . . . α2,n

α3,1 α3,2 . . . α3,j . . . α3,n

. . . . . . . . . . . . . . . . . .
αk,1 αk,2 . . . αk,j . . . αk,n

. . . . . . . . . . . . . . . . . .
α∏j=n

j=1
pj−2,1 α∏j=n

j=1
pj−2,2 . . . α∏j=n

j=1
pj−2,i . . . α∏j=n

j=1
pj−2,n

α∏j=n

j=1
pj−1,1 α∏j=n

j=1
pj−1,2 . . . α∏j=n

j=1
pj−1,i . . . α∏j=n

j=1
pj−1,n

α∏j=n

j=1
pj ,1

α∏j=n

j=1
pj ,2

. . . α∏j=n

j=1
pj ,i

. . . α∏j=n

j=1
pj ,n

Eah of the remainders αk,j an take pj distint values in the set

{0, 1, 2, · · · , j, · · · , pj − 1}

Hene, eah row of the table an be written in

∏j=n

j=1 pj di�erent ways. In

addition, we note that two distint rows ontaining exatly the same remainders

αk,j , for eah value taken by the index j, neessarily orrespond to two distint

natural integers ak1
and ak2

that are suh that

(∀pj ∈ πpn
) [(ak1

≡ ak2
[pj]) ⇐⇒ ((ak1

− ak2
) ≡ 0 [pj ])]
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We then onlude that there an only be one of suh numbers in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

Consequently, in this interval, two rows taken among the

∏j=n
j=1 pj possible rows

of the table annot be idential and the set of these rows ontain all the possible

rows that an be onstruted with the remainders αk,j . Let us onsider now the

natural integers aκ in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

whih the funtion Gm,pn
does not vanish at. For eah of them, none of the

remainders αk,j modulo pj is zero and eah of them annot take more than pj−1
di�erent values. The number of natural integers ak ontained in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

is therefore equl to

∏j=n
j=1 (pj − 1). Besides, it is lear that we must verify

(∀aκ) (∀pj ∈ πpn
) (aκ − (2m− aκ) ≡ 2m [pj ])

Let

{

p
(m)
j

}

et

{

p
q(m)
j

}

be the sets of the odd prime numbers that respetively

divide and do not divide m, and then 2m. We have

{

p
(m)
j

}

∪
{

p
q(m)
j

}

= πpn
− {2}

The set

{

p
(m)
j

}

is empty if m is itself a prime number or a multiple of prime

numbers that do not belong to πpn
. We have

(

∀p
(m)
j ∈

{

p
(m)
j

})(

2m ≡ 0 [p
(m)
j ]

)

Similarly

(

∀p
q(m)
j ∈

{

p
q(m)
j

})(

∃µj ∈ Z∗/p
q(m)
j

)(

2m ≡ µj [p
q(m)
j ]

)

We pose

∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = ρ

whih implies

∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = (n− 1)− ρ

Let us assume that there exists at least one prime integer pk ∈ πpn
that divides

2m− aκ. Then

(∃pk ∈ πpn
) ((aκ ≡ 2m [pk]) ⇔ ((2m− aκ) ≡ 0 [pk]))
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and in this ase

Gm,pn
(ak) = Gm,pn

(2m− ak) = 0

Conversely, the natural integers ak suh that

(∀pj ∈ πpn
) (aκ 6≡ 2m [pj])

satisfy

Gm,pn
(ak) = Gm,pn

(2m− ak) 6= 0

For eah of these natural integers ak, none of its remainders αk,j modulo pj is

zero. Two ases then present themselves

Case 1

({

p
(m)
j

}

= ∅
)

⇔
(∣

∣

∣

{

p
q(m)
j

}∣

∣

∣
= |πpn

− {2}| = n− 1
)

Besides, none of its remainders αk,j is equal to the remainder µj modulo pj of

2m. There are therefore only pj − 2 possible values for eah of its remainders

αk,j . The number of suh natural integers ak ontained in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

whih the funtion Gm,pn
does not vanish at in the same interval is then equal

to

ΓGm,pn
=

j=n
∏

j=2

(

p
q(m)
j − 2

)

(2.1)

As an illustration, the prime number pn and the parameterm being respetively

hosen equal to 7 an 31, the period of the funtion G31,7 is equal to

TG31,7 = 210

We verify that 72 < 62 < 112. As well, 31 /∈ π7. The ontemplated interval is

[−
1

2
210 + 31 = −74,

1

2
210 + 31 = 136[

This interval ontains

{

p
(m)
j

}

= ∅

and

{

p
q(m)
j

}

= π7 − {2} = {3, 5, 7}

Therefore,

∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = 0 et

∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = 3. The set of the natural integers that

do not anel out the funtion G31,7 in the interval [−74, 136[ is the set

{−59,−47,−41,−17,−11, 1, 19, 31, 43, 61, 73, 79, 103, 109, 121}

It ontains 15 natural integers and one an verify that

ΓG31,7
=

j=3
∏

j=2

(

p
(m)
j − 2

)

= (3− 2) (5− 2) (7− 2) = 15
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Case 2

({

p
(m)
j

}

6= ∅
)

⇔
(∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = ρ
)

⇔
(∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = (n− 1)− ρ
)

Besides, none of its remainders αk,j is equal to the remainder µj modulo p
q(m)
j

of 2m. Eah of its remainders αk,j an only take one value among pj−1 natural

integers for eah prime integer pj ∈
{

p
(m)
j

}

.

Likewise, None of its remainders αk,j is equal to the remainder µj modulo

p
q(m)
j of 2m. Eah of its remainders αk,j an only take one value among pj − 2

natural integers for eah prime integer pj ∈
{

p
q(m)
j

}

.

The number of natural integers ak ontained in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

whih the funtion Gm,pn
does not vanish at in the same interval is then equal

to

ΓGm,pn
=

k=ρ
∏

k=1

(

p
(m)
k − 1

)

l=n−ρ
∏

l=2

(

p
q(m)
l − 2

)

(2.2)

It is lear that the preeding ase is in fat a partiular ase of this present ase

where ρ = 0, and we an write

(∀n ∈ N∗)





j=n
∏

j=2

(pj − 2) ≤ ΓGm,pn
<

j=n
∏

j=2

(pj − 1)





the sets

{

p
(m)
j

}

and

{

p
q(m)
j

}

being the sets of the odd prime integers that

respetively divide and do not divide m. As an illustration, the prime number

pn and the parameter m being respetively hosen equal to 7 an 30, the period
of the funtion G30,7 is equal to

TG30,7 = 210

We verify that 72 < 62 < 112. Besides

30 ≡ 0 [3]

and

30 ≡ 0 [5]

The ontemplated interval is

[−
1

2
210 + 30 = −75,

1

2
210 + 30 = 135[

This interval ontains 210 natural integers. We have

{

p
(m)
j

}

= {3, 5}
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and

{

p
q(m)
j

}

= π5 − {2, 3, 5} = {7}

Therefore,

∣

∣

∣

{

p
(m)
j

}∣

∣

∣ = 2 and

∣

∣

∣

{

p
q(m)
j

}∣

∣

∣ = 1. The set of natural integers that

anel out the funtion G30,7 in the interval [−75, 135[ is the set

{−71,−67,−61,−53,−47, 107, 113, 121, 127, 131}

∪ {−43,−41,−37,−29,−23, 83, 89, 97, 101, 103}

∪ {−19,−13,−11,−1, 1, 59, 61, 71, 73, 79}

∪ {13, 17, 19, 23, 29, 31, 37, 41, 43, 47}

We purposely divided this set into four subsets ontaing eah 10 natural integers
for the sake of larity. This set then ontains 40 natural integers and we verify

that

ΓG30,7
=

k=2
∏

k=1

(

p
(m)
k − 1

)

l=1
∏

l=1

(

p
q(m)
l − 2

)

= (3− 1) (5− 1) (7− 2) = 40

2.2 Study on the interval [0, 2m[

The result we just obtained shows that the funtion Gm,pn
does not vanish at

a signi�ant number of natural integers in the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[

These natural integers are neessarily either prime integers that do not belong

to πpn
, or natural integers that are multiple of prime integers that do not belong

to πpn
. There exists as well two prime integers pν and pν+1, with ν ∈ N∗

, suh

that for the orresponding funtions Gm,pν
and Gm,pν+1

, we should have

TGm,pν
< 2m < TGm,pν+1

The funtion Gm,pν
does not vanish either at a signi�ant number of natural

integers in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m[

2.2.1 Zeros

let us now onsider these two funtions Gm,pn
and Gm,pν

in the losed interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

where pν is suh that

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m] ⊂ [0, 2m[
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We already showed that

TGm,pν
=

j=ν
∏

j=1

pj

One an notie that the endpoints of the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

whih we denote respetively Aν et Bν are of same parity. For these two end-

points, we have

(∀pj ≤ pν) (Aν ≡ Bν [pj])

We will assume also that the natural integer m is not prime. Let us now reall

Gm,pn
(x) = Spn

(x)S2m,pn
(x)

with

Spn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

spj
(x)

S2m,pn
(x) =

j=n
∏

j=1

sin
π

pj
(2m− x) =

j=n
∏

j=1

s2m,pj
(x)

The funtion Spn
vanishes at an natural integers belonging to the interval

[−
1

2
TGm,pν

+m,m[

and at bn natural integers belonging to the interval

]m,
1

2
TGm,pν

+m]

Symmetrially, the funtion S2m,pn
vanishes at an = bn natural integers belong-

ing to the interval

[−
1

2
TGm,pν

+m,m[

and at bn = an natural integers belonging to the interval

]m,
1

2
TGm,pν

+m]

Therefore, the number of natural integers whih the funtion Gm,pn
vanishes at

in the interval

[−
1

2
TGm,pν

+m,m[

is less than or equal to an + bn� when the number of natural integers whih the

funtion Spn
vanishes at in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]
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is itself equal to an + bn + 1.
The set of natural integers whih the funtion Spn

vanishes at in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

is also the set of natural integers the least prime divisor is less than or equal to

pn. We denote this set Cpn
and we have

|Cpn
| = an + bn + 1 (2.3)

From the foregoing, it follows that

� the number of natural integers whih the funtion Gm,pn
vanishes at in

the interval

[−
1

2
TGm,pν

+m,m[

is less than or equal to (an + bn). These natural integers are the elements

of the set whih we denote Dpn
and we have

|Dpn
| ≤ an + bn (2.4)

� the number of natural integers whih the funtion Gm,pn
does not vanish

at in the interval

[−
1

2
TGm,pν

+m,m[

is greater than

1
2TGm,pν

− (an + bn). These integers are the elements of

the set whih we denote Epn
and we have

|Epn
| >

1

2
TGm,pν

− (an + bn) (2.5)

We now de�ne in the interval [− 1
2TGm,pν

+m, 1
2TGm,pν

+m]

- the set A2 of the natural integers the least prime divisor of whih is 2, and its

omplement B2 in this interval. The ardinals of these two sets are respetively

denoted |A2| and |B2|. We have the strit equalities

|A2| =
1

2
TGm,pν

|B2| =

(

1−
1

2

)

TGm,pν

B2 is the set of the natural integers the least prime divisor is greater than 2.
- the set A3 of the natural integers the least prime divisor of whih is 3, and its
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omplement B3 in the set B2. The ardinals of these two sets are respetively

denoted |A3| and |B3| and we have yet again the strit equalities

|A3| =
1

3

(

1−
1

2

)

TGm,pν

|B3| =

(

1−
1

3

)(

1−
1

2

)

TGm,pν

B3 is the set of the natural integers the least prime divisor is greater than 3.
For the sets of natural integers the least prime divisor of whih is 5 ≤ pj ≤ pν ,
there are no longer strit equalities, exept when

m ≡ 0 [pj ]

In that manner, the set A5 is the set of the natural integers the least prime

divisor of whih is 5, and its omplement B5 in the set B3. The ardinals of

these two sets are respetively denoted |A5| and |B5| and we have the inequalities

|A5| ≤
1

5

(

1−
1

2

)(

1−
1

3

)

TGm,pν

|B5| ≥

(

1−
1

5

)(

1−
1

2

)(

1−
1

3

)

TGm,pν

B5 is the set of the natural integers the least prime divisor is greater than 5.
In general, the set Apj

is the set of the natural integers the least prime divisor

of whih is pj , and its omplement Bpj
in the set Bpj−1

. The ardinals of these

two sets are respetively denoted

∣

∣Apj

∣

∣

and

∣

∣Bpj

∣

∣

and we have the inequalities

∣

∣Apj

∣

∣ ≤
1

pj

k=j−1
∏

k=1

(

1−
1

pk

)

TGm,pν
(2.6)

∣

∣Bpj

∣

∣ ≥

k=j
∏

k=1

(

1−
1

pk

)

TGm,pν
(2.7)

For all j, Bpj
is the set of the natural integers the least prime divisor is greater

than pj . Moreover, we have

TGm,pν
= Ap1

∪ Bp1

Bp1
= Ap2

∪ Bp2

Bp2
= Ap3

∪ Bp3

· · ·

Bpj−2
= Apj−1

∪ Bpj−1

Bpj−1
= Apj

∪ Bpj
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· · ·

Bpn−1
= Apj

∪ Bpn

and thus

Bp1
= Ap2

∪Ap3
∪ Bp3

and following this path from one value of j to the next

(∀j ∈ N∗) (j ≤ n)

(

Bp1
=

k=j−1
⋃

k=2

Apk
∪ Bpj

)

Furthermore, it is lear that the sets Apj
are pairwise distint and disjoint and

that the set Cpn
of the natural integers the least prime divisor of whih is less

than or equal to pn, with 1 < j ≤ n, in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m[

is equal to

Cpn
=

j=n
⋃

j=1

Apj

with its ardinal equal to

|Cpn
| =

j=n
∑

j=1

∣

∣Apj

∣

∣

(2.8)

Lastly, the set Bpn
of the natural integers the least prime divisor of whih is

greater than pn is the omplement of the set Cpn
of the natural the integers the

least prime divisor of whih is less than or equal to pn in the set of the natural

integers belonging in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m]

and hene

|Bpn
| = TGm,pν

− (an + bn) (2.9)

let us now pose

u1 =
1

2

v1 =

(

1−
1

2

)

u2 =
1

3

(

1−
1

2

)

v2 =

(

1−
1

3

)(

1−
1

2

)
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u3 =
1

5

(

1−
1

3

)(

1−
1

2

)

=
1

p3

k=2
∏

k=1

(

1−
1

pk

)

v3 =

(

1−
1

5

)(

1−
1

3

)(

1−
1

2

)

=

k=3
∏

k=1

(

1−
1

pk

)

· · ·

uj =
1

pj

k=j−1
∏

k=1

(

1−
1

pk

)

vj =

k=j
∏

k=1

(

1−
1

pk

)

The quantities uj et vj are the terms of two sequenes

uj =
1

pj

k=j−1
∏

k=1

(

1−
1

pk

)

(2.10)

et

vj =

k=j
∏

k=1

(

1−
1

pk

)

(2.11)

and we have

(∀j ∈ N∗) (uj + vj = vj−1)

and

(∀j ∈ N∗)

(

uj =
1

pj
vj−1

)

We also pose u0 = 0 et v0 = 1 by onvention. Moreover

uj+1 =
1

pj+1

k=j
∏

k=1

(

1−
1

pk

)

=
1

pj+1

(

1−
1

pj

) k=j−1
∏

k=1

(

1−
1

pk

)

hene

(

uj+1 =
pj

pj+1

(

1−
1

pj

)

uj

)

⇐⇒

(

uj+1

uj

=
pj − 1

pj+1
<

pj
pj+1

< 1

)

whih shows that the sequene uj is dereasing. Now

(∀j ∈ N)

(

uj =
1

pj
vj−1

)

and thus

j=n
∑

j=1

uj =

j=n
∑

j=1

1

pj
vj−1

We an now proeed to the next hapter where we will present a path that ould

lead to a proof of the Goldbah's strong onjeture [5℄. We will make use of

results already widely known.
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Chapter 3

About the Goldbah's strong

onjeture

As already hinted at the end of hapter 2, let us begin with establishing some

results with the help of Franz Mertens's works [6℄

3.1 A lower bound of the sum of the inverses of

the �rst n prime numbers

Let us onsider the sum S of the inverses of the prime numbers. We have

S =
∞
∑

j=1

1

pj

and for eah prime number pj

1

1− 1
pj

=

∞
∑

k=1

1

pkj

Let pn be the nth prime number and let us hoose the integer P suh that

pn ≤ P < pn+1

then

j=n
∏

j=1

∞
∑

k=0

(

1

pj

)k

=
∑

n∈Npn

1

n

where Npn
is the set of the natural integers the greatest prime divisor is pn.

Clearly

j=P
∑

j=1

1

j
<

j=n
∏

j=1

∞
∑

k=0

(

1

pj

)k

33
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yet

1

1− 1
pj

=

∞
∑

k=1

1

pkj
= 1 +

1

pj
+

1

p2j
+ · · · = 1 +

1

pj
+

1

p2j

(

1 +
1

pj
+ · · ·

)

and

1

p2j

(

1 +
1

pj
+ · · ·

)

=
1

p2j

∞
∑

k=0

1

pkj
=

1

p2j

1

1− 1
pj

=
1

pj (pj − 1)

and thus

j=P
∑

j=1

1

j
<

j=n
∏

j=1

(

1 +
1

pj
+

1

pj (pj − 1)

)

but

1 >

∫ x=2

x=1

dx

x
∫ x=2

x=1

dx

x
>

1

2
>

∫ x=3

x=2

dx

x
· · ·

∫ x=j

x=j−1

dx

x
>

1

j
>

∫ x=j+1

x=j

dx

x
· · ·

∫ x=pn

x=pn−1

dx

x
>

1

pn
>

∫ x=pn+1

x=pn

dx

x
· · ·

∫ x=P

x=P−1

dx

x
>

1

P
>

∫ x=P+1

x=P

dx

x

and thus



1 +

∫ x=pn

x=1

dx

x
>

j=P
∑

j=1

1

j
>

∫ x=P+1

x=1

dx

x





⇐⇒


1 + [lnx]x=P
x=1 >

j=P
∑

j=1

1

j
> [lnx]x=P+1

x=1





and et



1 + ln (P ) >

j=P
∑

j=1

1

j
> ln (pn + 1)





=⇒


1 + ln (P ) >

j=P
∑

j=1

1

j
> ln (P )
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It follows

ln ln (P ) < ln

j=n
∏

j=1

(

1 +
1

pj
+

1

pj (pj − 1)

)

and we have

ln

j=n
∏

j=1

(

1 +
1

pj
+

1

pj (pj − 1)

)

=

j=n
∑

j=1

ln

(

1 +
1

pj
+

1

pj (pj − 1)

)

Let us now reall that

(∀x ∈ R)







exp (x) =
∞
∑

j=1

xj

j!



 =⇒ (exp (x) ≥ 1 + x)





and thus

exp

(

1

pj
+

1

pj (pj − 1)

)

≥ 1 +
1

pj
+

1

pj (pj − 1)

and therefore

ln ln (P ) ≤

j=n
∑

j=1

ln exp

(

1

pj
+

1

pj (pj − 1)

)

or else

ln ln (P ) ≤

j=n
∑

j=1

(

1

pj
+

1

pj (pj − 1)

)

but

j=n
∑

j=1

1

pj (pj − 1)
<

j=n
∑

j=1

1

p2j
<

∞
∑

j=1

1

p2j
< 1

and �nally



ln ln (P ) ≤ 1 +

j=n
∑

j=1

(

1

pj

)



⇐⇒



ln ln (P )− 1 ≤

j=n
∑

j=1

(

1

pj

)





(3.1)

3.2 An upper bound of the sum of the inverses

of the n �rst prime numbers

Let us pose, for 1 ≤ j ≤ n

aj =
1

ln pj

bj =
ln pj
pj
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Bj =

k=j
∑

k=1

bk

First of all, let us onsider

Bj =

k=j
∑

k=1

ln pk
pk

=

k=j
∑

k=1

ln p
1
pk

k = ln

k=j
∏

k=1

p
1
pk

k

We notie that the funtion

y = x
1
x = exp

(

1

x
lnx

)

is di�erentiable and its derivative is

d

dx
y =

d

dx

(

1

x
lnx

)

exp

(

1

x
ln x

)

=

(

1

x2
(1− lnx)

)

x
1
x

and this derivative is negative when x > e. Therefore, for all k > 2

ln pk
pk

<
ln k

k

and thus

k=m
∑

k=2

ln pk
pk

<

k=m
∑

k=2

ln k

k

but

∫ x=k

x=k−1

lnx

x
dx <

ln k

k
<

∫ x=k+1

x=k

lnx

x
dx

and hene

k=m
∑

k=2

ln k

k
<

∫ x=m+1

x=2

lnx

x
dx

and �nally

k=m
∑

k=2

ln pk
pk

<
k=m
∑

k=2

ln k

k
< [

1

2
(lnx)2]m+1

2

and

k=m
∑

k=1

ln pk
pk

<
ln 2

2
+

j=m
∑

k=2

ln k

k
<

1

2

(

(ln (m+ 1))
2 − ln 2 (ln 2− 1)

)

We numerially hek that

Bj =

k=j
∑

k=1

ln pk
pk

< ln pj
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when j ≤ 10. Let us assume that this relationship holds for m, then

Bm+1 =
k=m+1
∑

k=2

ln pk
pk

= Bm +
ln pm+1

pm+1
< ln pm +

ln pm+1

pm+1

and

Bm+1 =

k=m+1
∑

k=2

ln pk
pk

< ln pm + ln p
1

pm+1

m+1

and

Bm+1 =

k=m+1
∑

k=2

ln pk
pk

< ln pmp
1

pm+1

m+1

Let us also assume

(

p
pm

pm+1

m+1 < pm

)

⇐⇒
(

ppm

m+1 < ppm+1

m

)

or stated otherwise

pm ln pm+1 < pm+1 ln pm

yet the Identity funtion inreases faster than the ln funtion. Consequently,

there exists a prime number pn suh that

(

(∀pj > pn)

(

pj < p

pj

pj+1

j+1

))

=⇒

(

pjp
1

pj+1

j+1 < p

pj+1

pj+1

j+1 < pj+1

)

We hek in this instane that pn = p3 = 5. We thus showed that

(∀j)

(

Bj =

k=j
∑

k=1

ln pk
pk

< ln pj

)

Let now pn be the nth prime integer and let us hoose the natural integer P
suh that

pn ≤ P < pn+1

Let us onsider the sequene

(aj−1 − aj)Bj−1

and for eah of its terms, let us develop. Then

(a1 − a2)B1 =

(

1

ln p1
−

1

ln p2

)

ln p1
p1

=
1

ln p1

ln p1
p1

−
1

ln p2

ln p1
p1

=
1

p1
−

1

ln p2

ln p1
p1
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(a2 − a3)B2 =

(

1

ln p2
−

1

ln p3

)(

ln p1
p1

+
ln p2
p2

)

=
1

ln p2

(

ln p1
p1

+
ln p2
p2

)

−
1

ln p3

(

ln p1
p1

+
ln p2
p2

)

=
1

p2
+

ln p1
p1

1

ln p2
−

(

ln p1
p1

1

ln p3
+

ln p2
p2

1

ln p3

)

(a3 − a4)B3 =

(

1

ln p3
−

1

ln p4

)(

ln p1
p1

+
ln p2
p2

+
ln p3
p3

)

=
1

ln p3

(

ln p1
p1

+
ln p2
p2

++
ln p3
p3

)

−
1

ln p4

(

ln p1
p1

+
ln p2
p2

+
ln p3
p3

)

=
1

p3
+

(

ln p1
p1

1

ln p3
+

ln p2
p2

1

ln p3

)

−

(

ln p1
p1

1

ln p4
+

ln p2
p2

1

ln p4
+

ln p3
p3

1

ln p4

)

· · ·

(aj−1 − aj)Bj−1 =

(

1

ln pj−1
−

1

ln pj

) k=j−1
∑

k=1

ln pk
pk

=
1

ln pj−1

k=j−1
∑

k=1

ln pk
pk

−
1

ln pj

k=j−1
∑

k=1

ln pk
pk

=
1

pj−1
+

1

ln pj−1

k=j−2
∑

k=1

ln pk
pk

−
1

ln pj

k=j−1
∑

k=1

ln pk
pk

(aj − aj+1)Bj =

(

1

ln pj
−

1

ln pj+1

) k=j
∑

k=1

ln pk
pk

=
1

ln pj

k=j
∑

k=1

ln pk
pk

−
1

ln pj+1

k=j
∑

k=1

ln pk
pk

=
1

pj
+

1

ln pj

k=j−1
∑

k=1

ln pk
pk

−
1

ln pj+1

k=j
∑

k=1

ln pk
pk

· · ·

(an−1 − an)Bn−1 =

(

1

ln pn−1
−

1

ln pn

) k=n−1
∑

k=1

ln pk
pk

=
1

ln pn−1

k=n−1
∑

k=1

ln pk
pk

−
1

ln pn

k=n−1
∑

k=1

ln pk
pk

=
1

pn−1
+

1

ln pn−1

k=n−2
∑

k=1

ln pk
pk

−
1

ln pn

k=n−1
∑

k=1

ln pk
pk
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(

an −
1

lnP

)

Bn =

(

1

ln pn
−

1

lnP

) k=n
∑

k=1

ln pk
pk

=
1

ln pn

k=n
∑

k=1

ln pk
pk

−
1

lnP

k=n
∑

k=1

ln pk
pk

=
1

pn
+

1

ln pn

k=n−1
∑

k=1

ln pk
pk

−
1

lnP

k=n
∑

k=1

ln pk
pk

Let us make the summation

j=n−1
∑

j=1

(aj − aj+1)Bj +

(

an −
1

lnP

) k=n
∑

k=1

ln pk
pk

+
1

lnP

k=n
∑

k=1

ln pk
pk

with

k=n
∑

k=1

ln pk
pk

= Bn

and, further to what we already showed

(∀j ∈ N∗) (Bj < ln pj)

we get





j=n−1
∑

j=1

(aj − aj+1)Bj +

(

an −
1

lnP

)

Bn =

j=n
∑

j=1

1

pj
−

1

lnP
Bn





⇐⇒




j=n
∑

j=1

1

pj
=

j=n−1
∑

j=1

(aj − aj+1)Bj +

(

an −
1

lnP

)

Bn +
1

lnP
Bn





and by writing the terms expliitly

j=n
∑

j=1

1

pj
=

j=n−1
∑

j=1

(

1

ln pj
−

1

ln pj+1

)

Bj +

(

1

ln pn
−

1

lnP

)

Bn +
1

lnP
Bn

or likewise

j=n
∑

j=1

1

pj
=

j=n−1
∑

j=1

1

ln pj ln pj+1
(ln pj+1 − ln pj)Bj+

1

ln pn lnP
(lnP − ln pn)Bn+

1

lnP
Bn

and thus

j=n
∑

j=1

1

pj
<

j=n−1
∑

j=1

1

ln pj+1
(ln pj+1 − ln pj) +

1

lnP
(lnP − ln pn) +

1

lnP
Bn
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We have

1

ln pj+1
(ln pj+1 − ln pj) <

∫ x=pj+1

x=pj

1

ln x
d lnx <

1

ln pj
(ln pj+1 − ln pj)

and

1

ln pj+1

j=n−1
∑

j=1

(ln pj+1 − ln pj) <

j=n−1
∑

j=1

∫ x=pj+1

x=pj

1

lnx
d lnx

but

j=n−1
∑

j=1

∫ x=pj+1

x=pj

1

lnx
d lnx =

∫ x=pn

x=p1

1

lnx
d lnx = ln ln pn − ln ln 2

similarly

1

lnP
(lnP − ln pn) <

∫ x=P

x=pn

1

lnx
d lnx <

1

ln pn
(lnP − ln pn)

with

∫ x=P

x=pn

1

lnx
d lnx = ln lnP − ln ln pn

We �nally obtain the inequality

j=n
∑

j=1

1

pj
< ln lnP − ln ln 2 +

ln pn
lnP

(3.2)

3.3 An approximation of the value of the �nite

Euler produt of rank n

We have in general

(

∀a ∈ R+
) (

∀b ∈ R+
)

(a < b)

(

1

b
<

∫ x=b

x=a

1

x
dx <

1

a

)

and

∫ x=b

x=a

1

x
dx = ln b− ln a = ln

b

a

Let us pose

b

a
=

pj
pj − 1

=

(

1−
1

pj

)−1

we get

∀pj ∈ N
1

pj
<

∫ x=pj

x=pj−1

1

x
dx <

1

pj − 1
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or likewise

∀pj ∈ N
1

pj
< ln

pj
pj − 1

<
1

pj − 1

but

ln
pj

pj − 1
= − ln

pj − 1

pj
= − ln

(

1−
1

pj

)

and thus

∀pj ∈ N
1

pj
< − ln

(

1−
1

pj

)

<
1

pj − 1

Now let us pose

− ln

(

1−
1

pj

)

=
1

pj
+ ǫj

Clearly

0 < ǫj <
1

pj − 1
−

1

pj
<

1

(pj − 1)
2 <

1

j2

We have

−

j=n
∑

j=1

ln

(

1−
1

pj

)

=

j=n
∑

j=1

1

pj
+

j=n
∑

j=1

ǫj

but

j=n
∑

j=1

ǫj <

j=n
∑

j=1

1

j2
< 2

and hene

j=n
∑

j=1

1

pj
< −

j=n
∑

j=1

ln

(

1−
1

pj

)

<

j=n
∑

j=1

1

pj
+ 2

Yet

j=n
∑

j=1

ln

(

1−
1

pj

)

= ln

j=n
∏

j=1

(

1−
1

pj

)

and we an write

j=n
∑

j=1

1

pj
< − ln

j=n
∏

j=1

(

1−
1

pj

)

<

j=n
∑

j=1

1

pj
+ 2

or likewise, with pn ≤ P < pn+1

ln lnP − 1 < − ln

j=n
∏

j=1

(

1−
1

pj

)

< ln lnP − ln ln 2 +
ln pn
lnP

+ 2

and, by posing e = exp(1)

ln

(

lnP

e

)

< − ln

j=n
∏

j=1

(

1−
1

pj

)

< ln

(

lnP

e

)

− ln ln 2 +
ln pn
lnP

+ 3
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There exists thus a number µn suh that

(

0 < lnµn < 3− ln ln 2 +
ln pn
lnP

)

⇐⇒

(

1 < µn < exp

(

3− ln ln 2 +
ln pn
lnP

))

and suh that

− ln

j=n
∏

j=1

(

1−
1

pj

)

= ln

(

lnP

e

)

+ lnµn = ln
(µn

e
lnP

)

Let us pose

(µn

e
= mn

)

⇐⇒

(

1

e
< mn < exp

(

2− ln ln 2 +
ln pn
lnP

))

we get

j=n
∏

j=1

(

1−
1

pj

)

=
1

mn lnP
= vn > 0 (3.3)

3.4 A possible way to a proof

Let us now revert to the Goldbah's strong onjeture and more spei�ally in

light with what we developped in the previous paragraph. Let us hoose the

natural non prime integer m, and the two onseutive prime integers pn and

pn+1, suh that

p2n < 2m < p2n+1

and the fumtion Gm,pn

Gm,pn
: R −→ [−1, 1]

x 7−→ Gm,pn
(x)

with

Gm,pn
(x) =

j=n
∏

j=1

sin

(

π

pj
x

)

sin

(

π

pj
(2m− x)

)

This funtion is periodi with period

TGm,pn
=

j=n
∏

j=1

pj

The divisors of m, whih we assumed to be omposite, belongs to the set πpn

and thus

Gm,pn
(m) = 0
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Furthermore, we know that there exists two onseutive prime integers pν and

pν+1, for whih the respetive periods TGm,pν
et TGm,pν+1

of the orresponding

funtions Gm.pν
and Gm,pν+1

are suh that

TGm,pν
< 2m < TGm,pν+1

Let uk (see the equation 2.10 page 31) et vk (see the equation 2.11 page 31) be

the two sequenes we already introdued

uk =
1

pk

k−1
∏

h=1

(

1−
1

ph

)

vk =
k
∏

h=1

(

1−
1

ph

)

We have

uk =
1

pk
vk−1

and thus

k=n
∑

k=1

uk =
k=n
∑

k=1

1

pk
vk−1

Now, in the interval

[−
1

2
TGm,pν

+m,
1

2
TGm.pν

+m] ⊂ [0, 2m]

let us onsider on the one hand the sets we already de�ned in the previous

hapter

� Apk
the set of the natural integers the least prime divisor of whih is

pk. The ardinal of this set is |Apk
|, and satis�es the inequality (see the

equation 2.6 page 29)

|Apk
| ≤

1

pk

j=k−1
∏

j=1

(

1−
1

pj

)

TGm,pν

� Bpn
the set of the natural integers the least prime divisor of whih is greater

than pk. The ardinal of this set is |Bpk
| and satis�es the inequality (see

the equation 2.7 page 29)

|Bpn
| ≥

j=n
∏

j=1

(

1−
1

pj

)

TGm,pν
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� Cpn
the set of the natural integers the least prime divisor of whih is less

than pn. The ardinal of this set is |Cpn
| (see the equation 2.3 page 30)

|Cpn
| =

k=n
∑

k=1

|Apk
|

and satis�es the inequality

|Cpn
| ≤ TGm,pν

n
∑

k=1

uk (3.4)

and on the other hand, in the interval

[−
1

2
TGm,pν

+m,m[

let us onsider the sets

� Dpn
the set of the natural integers whih the funtion Gm,pn

vanishes

at. The ardinal of this set is |Dpn
| and satis�es the inequality (see the

equation 2.4 page 28)

|Dpn
| ≤ an + bn

� Epn
the set of the natural integers whih the funtion Gm,pn

does not

vanish at. The ardinal of this set is |Epn
| and satis�es the inequality (see

the equation 2.5 page 28)

|Epn
| ≥

1

2
TGm,pν

− (an + bn)

The Goldbah's strong onjeture would be proved if we ould verify

(

|Dpn
| <

1

2
TGm,pν

)

⇐⇒ (|Epn
| > 0)

3.4.1 Considerations on the set Bpn

Let us onsider Bpn
the set of the natural integers belonging to the interval

[−
1

2
TGm,pn

+m,
1

2
TGm,pn

+m[
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the least prime divisor of whih is greater than pn We have

|Bpn
| ≥

j=n
∏

j=1

(

1−
1

pj

)

TGm,pν

with

TGm,pν
=

j=ν
∏

j=1

pj

Furthermore, we showed that (see the equation 3.3 page 42)

j=n
∏

j=1

(

1−
1

pj

)

=
1

mn lnP
= vn > 0

with

(µn

e
= mn

)

⇐⇒

(

1

e
< mn < exp

(

2− ln ln 2 +
ln pn
lnP

))

⇐⇒

(

e >
1

mn

> exp

(

−2 + ln ln 2−
ln pn
lnP

))

and

pn ≤ P < pn+1

and thus

(

|Bpn
| ≥

1

mn lnP
TGm,pν

)

=⇒



|Bpn
| ≥

exp
(

−2 + ln ln 2− ln pn

lnP

)

lnP
TGm,pν





Now, we notie that

(TGm,pν
⊂ [0, 2m]) ⇐⇒ ((∃λ ∈ Q∗) (1 ≤ λ < pν+1) (λTGm,pν

= 2m))

with p2n < 2m < p2n+1 and thus

(

p2n < λTGm,pν
< p2n+1 ⇐⇒

p2n
λ

< TGm,pν
<

p2n+1

λ

)

=⇒

(

p2n
pν+1

< TGm,pν
< p2n+1

)

and thus

|Bpn
| >

p2n
pν+1 lnP

exp

(

−2 + ln ln 2−
ln pn
lnP

)

Yet, P an take any arbitrary value between pn and pn+1. Let us hoose P = pn
and we �nally get

|Bpn
| >

p2n
pν+1 ln pn

exp (−3 + ln ln 2)
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or more expliitly

|Bpn
| >

p2n
29pν+1 ln pn

>
pn

29 lnpn

One an then see that the ardinal |Bpn
| of the set Bpn

of the natural integers

the least prime divisor is greater than pn numerially satis�es

(|Bpn
| > 1) ⇐⇒ (pn ≥ p35 = 149)

whih seems to evidene that this set is not empty as soon as pn ≥ 149.

3.4.2 Considerations on the set Cpn

Let us onsider the set Cpn
. Its ardinal satis�es the following relations

|Cpn
| = an + bn

(see the equation 2.3 page 28) and

|Cpn
| ≤ TGm,pν

k=n
∑

k=1

uk

(see the equation 3.4 page 44)

Let us fous �rst on the equation 3.4, we get

k=n
∑

k=1

uk =

k=n
∑

k=1

1

pk
vk−1 =

1

2
+

k=n
∑

k=2

1

pk
vk−1

We an also write (see the equations 2.10 et 3.3, pages 31 and 42)

k=n
∑

k=2

uk <

k=n
∑

k=1

1

mk−1pk ln pk−1

or otherwise

k=n
∑

k=2

uk <
1

e

k=n
∑

k=2

1

pk ln pk−1
<

1

e

k=n
∑

k=2

1

pk ln pk
<

1

2e

k=n
∑

k=2

pk − pk−1

pk ln pk

now

pk − pk−1

pk ln pk
<

∫ x=pk

x=pk−1

dx

x ln x
<

pk − pk−1

pk−1 ln pk−1

and

∫ x=pk

x=pk−1

dx

x lnx
=

∫ x=pk

x=pk−1

d lnx

lnx

and hene

k=n
∑

k=2

pk − pk−1

pk ln pk
<

k=n
∑

k=2

∫ x=pk

x=pk−1

d lnx

lnx
<

k=n
∑

k=2

pk − pk−1

pk−1 ln pk−1
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or else

k=n
∑

k=2

pk − pk−1

pk ln pk
<

∫ x=pn

x=p1

d lnx

lnx
<

k=n
∑

k=2

pk − pk−1

pk−1 ln pk−1

and �nally

k=n
∑

k=2

pk − pk−1

pk ln pk
< [ln lnx]x=pn

x=p1
<

k=n
∑

k=2

pk − pk−1

pk−1 ln pk−1

therefore

k=n
∑

k=2

uk <
1

2e
(ln ln pn − ln ln 2)

In the interval [− 1
2TGm,pν

+ m,m[, the number of natural integers whih the

funtion Gm,pn
vanishes at is less than or equal to an + bn. These numbers are

either even natural integers, in whih ase we have

(∀k < m)

(

2k ∈ [−
1

2
TGm,pν

+m,m[

)

(Spn
(2k) = Spn

(2m− 2k) = 0)

or odd natural integers. The ardinal of the set of these odd natural integers in

the interval

[−
1

2
TGm,pν

+m,
1

2
TGm,pν

+m[

is equal to

1
2TGm,pν

and the following inequalities are satis�ed

(

1

2
(an + bn) ≤

1

2
TGm,pν

k=n
∑

k=2

uk

)

⇐⇒

(

1

2
(an + bn) <

1

4e
(ln ln pn − ln ln 2)TGm,pν

)

Now, the ardinal of the set of the odd natural integers whih the funtion

Gm,pn
vanishes at in the interval [− 1

2TGm,pν
+m,m[ is also less than or equal

to

1
2 (an + bn). The ardinal of the set of the odd natural integers in the same

interval is

1
4TGm,pν

. Let us try and �ne the values of pn for whih

(

1

4e
(ln ln pn − ln ln 2)TGm,pν

≤
1

4
TGm,pν

)

⇐⇒ ((ln ln pn − ln ln 2) ≤ e)

We get

((ln ln pn − ln ln 2) ≤ e) ⇐⇒ (ln ln pn ≤ e + ln ln 2)

⇐⇒
(

ln pn ≤ ee+ln ln 2
)

⇐⇒
(

pn ≤ ee
e+ln ln 2

)

and we an numerially verify

ee
e+ln ln 2

= 36 465,95
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Therefore, the ardinal of the set of the odd natural integers whih the funtion

Gm,pn
vanishes at in the interval

[−
1

2
TGm,pν

+m,m[

is less than

1
4TGm,pν

for all prime integer pn < 36 466. Finally, we notie that

((

1

2
p2n < m <

1

2
p2n+1

)

∧ (pn = 36 466)

)

=⇒
(

1

2
1 329 765 293< m < 2 (1 329 765 293)

)

3.4.3 A likely onlusion

Based on the previous results, we an now state that on the one hand, the fun-

tion Gm.pn
annot vanish for all the natural integers belonging to the interval

[− 1
2TGm,pν +m, 12TGm,pν +m[ when pn < 36 466. On the other hand, in the

same interval, there exists at least a prime integer greater than pn as soon as

pn > p35 = 149. The Goldbah's strong onjeture seems to be partially proved,

at least for eah natural integer m ≤ 1
21 329 765 293 and we an fromulate the

following theorem

Theorem 4 Goldbah's partial For eah natural integer 2 ≤ m < 1
21 329 765 293,

the even natural integer 2m is the sum of two prime numbers.



Chapter 4

On an extension of the Joseph

Bertrand's onjeture

4.1 Objet of the hapter

Joseph Bertand proposed a onjeture later proved by Panufty Thebyhev,

whih we already mentioned in our introdution

Theorem 5 of Bertrand Thebyhev For eah n > 1, there exists at least

one prime integer that belongs to the interval ]n, 2n].

In a similar spirit, and based on numerial results obtained with a omputer,

we suggest the following onjeture

Conjeture 5 Let pn be a prime number, there exists at least one prime number

in eah and every interval [kpn, (k + 1) pn[ for eah and every non zero natural

integer k suh that (k + 1) pn < p2n+1.

We will try over this hapter to prove this onjeture.

4.2 Our tools.

We reall �rst the de�nition of the set πpn
that ontains eah and every prime

number pj less than or equal to a given prime number pn

πpn
= {pj| ((c|pj) ⇐⇒ (c ∈ {1, pj}) ∧ (pj ≤ pn))}

Let us onsider the funtion

Spn
: R −→ [−1, 1]

x 7−→ Spn
(x)

49
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with

Spn
(x) =

j=n
∏

j=1

spj
(x)

This funtion vanishes if and only if x is equal to one element , or the produt

of several elements, of πpn
. Its period is

TSpn
= 2

j=n
∏

j=1

pj

As the funtion Spn
is the produt of sin funtions, it is

� odd when n is odd

� even when n is even

In the interval [0, TSpn
[, we have

Spn
(TSpn

) = Spn
(
TSpn

4
) = Spn

(
TSpn

2
) = Spn

(
3TSpn

4
) = 0

We also reall that, for two natural integers xp and xq hosen in the interval

[0, TSpn
[, we have (see the equations 1.1 et 1.2 page 4)

(

xp + xq =
1

4
TSpn

)

=⇒
(

Spn
(xq) = (−1)

n−1
Spn

(xp)
)

(

xp + xq =
1

2
TSpn

)

=⇒ (Spn
(xq) = (−1)n Spn

(xp))

4.3 Towards an extension of Bertrand Theby-

hev's theorem.

4.3.1 The funtions Spn
et Spn−1

on the interval [0, 1

2
TSpn

[

We notie that

[0,
1

2
TSpn

[= [0,
1

4
TSpn

[∪[
1

4
TSpn

,
1

2
TSpn

[

Let now

[
l

4
TSpn−1

,
l + 1

4
TSpn−1

] (l ∈ N)

be the sequene of the under-intervals inluded in the interval [0, 12TSpn
]. There

are 2pn of these under-intervals in the interval [0, 1
2TSpn

[. Let us denote the

endpoints of these under-intervals

M0 = O0 = 0
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M1 =
1

4
TSpn−1

M2 =
2

4
TSpn−1

M3 =
3

4
TSpn−1

· · ·

Ml =
l

4
TSpn−1

· · ·

Mpn
=

pn
4
TSpn−1

· · ·

M2pn
=

2pn
4

TSpn−1

All the endpoints Ml are natural integers multiple of pn−1, and we have

[M0,M2pn
[=

l=2pn−1
⋃

l=0

[Ml,Ml+1[

and

(∀l 6≡ 0 [pn]) (Ml 6≡ 0 [pn])

The �gure 4.1 (see page 52) shows the endpoints Ml of eah under-intervals

in the irular representation of the interval [0, 12TSpn[ in the ase where

(n = 6) ⇐⇒ ((pn = 13) ∧ (pn−1 = 11))

Let us onsider now the funtion Spn−1
in the interval [0, 1

2TSpn
] and let us

assume that there exists an under-interval ]At, Bt = At + pn[, in whih this

funtion Spn−1
vanishes at eah and every natural odd integer. At is a natural

integer assumed to be non zero and is not neessarily a multiple of pn. This

under-interval ]At, Bt[ ontains pn − 1 natural integers. The divisors of eah of

these natural integers belong exlusively to the set πpn−1
. We are then faed

with two possibilities

� This under-interval ]At, Bt[ ontains a natural integer Ml. Beause of the

properties of symmetry of the funtion Spn−1
, eah natural integer Ml in

the interval [M0,M2pn−1
[ belongs to one of the under-intervals ]At, Bt[.

In partiular, the natural integer M0 = 0 belongs to one of the under-

intervals ]At, Bt[. But we know that Spn−1
(1) 6= 0. This possibility must

therefore be ruled out.

� This under-interval ]At, Bt[ does not ontain any of the natural integers

Ml. Beause of the properties of symmetry of the funtion Spn−1
, eah

under-interval ontains an under-interval ]At, Bt[.
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O0

Or

M1
M2

M3

M4

M5

M6

M7

M8

M9

M10

M11
M12 M13 M14

M15

M16

M17

M18

M19

M20

M21

M22

M23

M24
M25

Figure 4.1: The under intervals [Ml,Ml+1[ on the irular representation of the

interval

[

0, 1
2TSpn

[

Beause of the properties of symmetry of the funtion Spn−1
, eah and every of

the 2pn under-intervals [Ml,Ml+1[ inluded in the interval [0, 1
2TSpn

[ ontains
itself an under-interval ]At, Bt[. There are therefore 2pn under-intervals ]At, Bt[
in the interval [0, 12TSpn

[. We denote them

]A0, B0[

]A1, B1[

· · ·

]At, Bt[

]At+1, Bt+1[

· · ·

]A2pn−2, B2pn−2[

]A2pn−1, B2pn−1[

and we have

(∀t ∈ {0, 1, 2, · · · , 2pn − 2, 2pn − 1}) (At ∈ [Mt,Mt+1[⇐⇒ Mt < At < Mt+1)

We shall say that the set of the under-intervals ]At, Bt[ is generated by the

under-interval ]A0, B0[ and we will de�ne this set as the indexed family of the
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under-intervals {]At, Bt[}. We should note that the under-interval [M0,M1[ may

ontain several under-intervals pairwise distint, whih we will denote ]A0, B0[u,
where the index u ∈ N an take several di�erent values. Hene, eah under-

interval ]A0, B0[u generates the family {]At, Bt[u}. In all that follows, we will

hoose one of these families {]At, Bt[u}, that we will denote {]At, Bt[} for the

sake of simpliity. For eah t ∈ N suh that 0 ≤ t ≤ 2pn − 1, we have, beause
of the properties of symmetry of the funtion Spn−1

At + At+1

2
= Mt+1 =

t+ 1

4
TSpn−1

In general, for two natural integers t1 et t2, of distint parity, where

0 ≤ t1 < t2 ≤ 2pn − 1

we have

At1 +At2

2
= M t1+t2

2
+ 1

2

Hene

At+1 +At+2

2
= Mt+2

and thus

At+2 −At

2
= Mt+2 −Mt+1 =

1

4
TSpn−1

and �nally

At+2 −At =
1

2
TSpn−1

and more generally, for q ∈ N

At+2q −At =
q

2
TSpn−1

Similarly, for eah t suh that 0 ≤ t ≤ pn−1, we have, beause of the properties
of symmetry of the funtion Spn

(

1

2
(At +A2pn−1−t) =

1

4
TSpn

)

⇐⇒

(

A2pn−1−t +At =
1

2
TSpn

)

We an therefore write

(∀pj ∈ πpn
) (A2pn−1−t ≡ −At [pj ]) (4.1)

In partiular, for the natural integer αt hosen in the set Z/pnZ = {0, 1, pn− 1}

(At ≡ αt [pn]) ⇐⇒ (A2pn−1−t ≡ −αt [pn])

The �gure 4.2 shows the position of the under-intervals ]At, Bt[ in the irular

representation of the interval [M0,M2pn−1[= [0, 12TSpn
[ and in the same manner

as in the �gure 4.1, where

(pn = 13) ⇐⇒ (n = 6)
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O0

Or

A0A1A2

A3
A4

A5

A6

A7

A8

A9A10

A11 A12 A13 A14

A15A16

A17

A18

A19

A20

A21
A22

A23A24A25

Figure 4.2: The under intervals ]At, Bt[ on the irular representation of the

interval

[

0, 1
2TSpn

[

For the sake of larity, the �gure only shows the endpoint At of eah under-

interval ]At, Bt[.
Furthermore, the set of the under-intervals ]At, Bt[ ontains itself two sub-

sets the elements of whih are respetively the under-intervals ]A2τ , B2τ [ and
]A2τ+1, B2τ+1[, and we have for q ∈ N et 0 ≤ q ≤ τ ≤ pn − 1

(∀τ) (∀q)
(

A2τ+2q −A2τ =
q

2
TSpn−1

)

(∀τ) (∀q)
(

A2τ+1+2q −A2τ+1 =
q

2
TSpn−1

)

These two relations show that for two natural integers t1 et t2 with the same

parity, where

0 ≤ t1 < t2 ≤ pn − 1

At2 6≡ At1 [pn]

Let us then onsider the subset of the under-intervals ]At, Bt[ inside the interval
[0, 12TSpn

[, where t is hosen even. This set ontains pn under-intervals. The

same goes for the other subset of the under-intervals ]At, Bt[, where t is hosen
odd. There exists then pn natural integers At with a given parity. Lastly, we

note

((∀τ ∈ Z/pnZ) (∀q ∈ Z/pnZ) (q ≤ τ))
(

A2τ+2q = A2τ +
q

2
TSpn−1

)
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((∀τ ∈ Z/pnZ) (∀q ∈ Z/pnZ) (q ≤ τ))
(

A2pn−1−2τ+2q = A2pn−1−2τ +
q

2
TSpn−1

)

and thus

((∀τ ∈ Z/pnZ) (∀q ∈ Z/pnZ) (q ≤ τ))
(

∀pj ∈ πpn−1

)

(A2τ+2q ≡ −A2pn−1−2τ+2q [pj ])

We an now enuniate the following lemma

Lemme 1 Let [0, 1
2TSpn

[ be the interval Let the interval [0, 12TSpn
[, where pn ≥

13 is the prime number of rank n in the set of the prime numbers. Let in this

interval the set of the 2pn under-intervals [ l4TSpn−1,
l+1
4 TSpn−1[= [Ml,Ml+1[

and let us assume that there exists at least one under-interval ]At, Bt[, where
Bt = At + pn, in whih the funtion Spn−1

vanishes at all the natural integers

it ontains, then

� this under-interval is entirely inluded in the under-interval [Mt,Mt+1[
with Mt < At

� there exists one under-interval ]At, Bt[ in eah of the 2pn under-interval

[ l4TSpn−1,
l+1
4 TSpn−1[= [Ml,Ml+1[. We number these under-intervals

]A0, B0[, ]A1, B1[,..., ]At, Bt[,..., ]A2pn−2
, B2pn−2

[ , ]A2pn−1
, B2pn−1

[, with

(∀t ∈ {0, 1, 2, · · · , 2pn − 2, 2pn − 1}) (At ∈ [Mt,Mt+1[⇐⇒ Mt < At < Mt+1)

� The set of these under-intervals ]At, Bt[ ontains itself two subsets the ele-

ments of whih are respetively the under-intervals ]A2k, B2k[ et ]A2k+1, B2k+1[,
and we have

(∀pj ∈ πpn
) (At ≡ −A2pn−1−t [pj])

In partiular, for a given natural integer at hosen in the set

Z/pnZ = {0, 1, · · · , pn − 1}

eah of these two subsets ontains one and only one under-interval ]At, Bt[,
where

At ≡ at [pn]

and

(At ≡ at [pn]) ⇐⇒ (A2pn−1−t ≡ −at [pn])

Let us pose

1

2
TSpn−1 ≡ α [pn]

A0 ≡ a0 [pn]

then, for the index τ1 varying from 1 to pn−1

A2 = A0 +
1

2
TSpn−1 ≡ a2 = a0 + α [pn]
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A4 = A0 +
2

2
TSpn−1 ≡ a4 = a0 + 2α [pn]

A6 = A0 +
3

2
TSpn−1 ≡ a6 = a0 + 3α [pn]

· · ·

A2τ1 = A0 +
τ1
2
TSpn−1 ≡ a2τ1 = a0 + τ1α [pn]

· · ·

A2(pn−1) = A0 +
(pn − 1)

2
TSpn−1 ≡ a2(pn−1) = a0 + (pn − 1)α [pn]

Similarly, let us pose

A2pn−1 ≡ a2pn−1 = −a0 [pn]

then, for the index τ2 varying from −1 to − (pn − 1)

A(2pn−1)−2 = A2pn−1 −
1

2
TSpn−1 ≡ a2pn−3 = a2pn−1 − α [pn]

A(2pn−1)−4 = A2pn−1 −
2

2
TSpn−1 ≡ a2pn−5 = a2pn−1 − 2α [pn]

A(2pn−1)−6 = A2pn−1 −
3

2
TSpn−1 ≡ a2pn−1−7 = a2pn−1 − 3α [pn]

· · ·

A(2pn−1)−2τ2 = A2pn−1 −
τ2
2
TSpn−1 ≡ a2pn−1−2τ2 = a2pn−1 − τ2α [pn]

· · ·

A(2pn−1)−2(pn−1) = A2pn−1 −
pn − 1

2
TSpn−1 ≡ a1 = a2pn−1 − (pn − 1)α [pn]

and

a2pn−3 ≡ − (a0 + α) [pn]

a2pn−5 ≡ − (a0 + 2α) [pn]

a2pn−1−7 ≡ − (a0 + 3α) [pn]

· · ·

a2pn−1−2τ2 ≡ − (a0 + τ2α) [pn]

· · ·

a1 = a2pn−1−2(pn−1) ≡ − (a0 + (pn − 1)α) [pn]

One of the natural integers a2τ1 , whih we denote a2λ, and only one is equal to

zero, and

a2λ = a0 + λα ≡ 0 [pn]
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In the ase where a0 = 0, we then notie that

A0 ≡ 0 [pn]

and

A(2pn−1)−2τ2 ≡ a(2pn−1)−2τ2 = −τ2α [pn]

Let us pose now τ2 = pn − τ1

A(2pn−1)−2(pn−τ1) = A2τ1−1 ≡ a2τ1−1 = jα [pn]

We an �nally write

((∀τ ∈ Z/pnZ) (A0 ≡ 0 [pn]) ⇐⇒ (A2τ −A2τ−1 ≡ 0 [pn])) (4.2)

Let us onsider again the set of the under-intervals {]At, Bt[}. Let us hoose

three pair-wise distint integer indies t1, t2 et t3 suh that

M2t1 =
2t1
4

TSpn−1

M2(pn−1)−2t1 =
pn − 1− t1

4
TSpn−1

M2t2 =
2t2
4

TSpn−1

M2(pn−1)−2t2 =
pn − 1− t2

4
TSpn−1

M2t3 =
2t3
4

TSpn−1

M2(pn−1)−2t3 =
pn − 1− t3

4
TSpn−1

then

A2t1 =
2t1
4

TSpn−1 +A0

A2(pn−1)−2t1 =
2 (pn − 1− t1)

4
TSpn−1 −A0

A2t2 =
2t2
4

TSpn−1 +A0

A2(pn−1)−2t2 =
2 (pn − 1− t2)

4
TSpn−1 −A0

A2t3 =
2t3
4

TSpn−1 +A0

A2(pn−1)−2t3 =
2 (pn − 1− t3)

4
TSpn−1 −A0

We get

M2t2 −M2t1 = A2t2 −A2t1 =
2 (t2 − t1)

4
TSpn−1
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M2t3 −M2t2 = A2t3 −A2t2 =
2 (t3 − t2)

4
TSpn−1

M2t1 −M2t3 = A2t1 −A2t3 =
2 (t1 − t3)

4
TSpn−1

and likewise

M2(pn−1)−2t2−M2(pn−1)−2t1 = A2(pn−1)−2t2−A2(pn−1)−2t1 = −
2 (t2 − t1)

4
TSpn−1

M2(pn−1)−2t3−M2(pn−1)−2t2 = A2(pn−1)−2t3−A2(pn−1)−2t2 = −
2 (t3 − t2)

4
TSpn−1

M2(pn−1)−2t1−M2(pn−1)−2t3 = A2(pn−1)−2t1−A2(pn−1)−2t3 = −
2 (t1 − t3)

4
TSpn−1

Let us now assume

A2t1 ≡ 0 [pn]

then

A2t2 =
2 (t2 − t1)

4
TSpn−1

A2t3 =
2 (t3 − t1)

4
TSpn−1

and we have

((A2t1 ≡ 0 [pn]) ∧ (A2t2 +A2t3 ≡ 0 [pn])) =⇒ (t2 + t3 ≡ 2t1 [pn]) (4.3)

Let us pose now t1 = 0. We already showed that (see the equation 4.2 page 57)

(∀j ∈ Z/pnZ) (A2t1 = A0 ≡ 0 [pn] ⇐⇒ A2t2 −A2t2−1 ≡ 0 [pn])

and in this ase

A2t2−1 = A2(pn−1)−2t3

and thus

A2t2 −A2t2−1 = A2t2 −A2(pn−1)−2t3 =
2t2
4

TSpn−1 −
2 (pn − 1− t3)

4
TSpn−1

and �nally

A2t2 −A2t2−1 =
2 (t2 − (pn − 1− t3))

4
TSpn−1 =

2 (t2 − pn + 1 + t3)

4
TSpn−1

We should therefore have

t2 + t3 + 1 ≡ 0 [pn]

This leads us to a ontradition as we also showed (see the equation 4.3 page 58)

((A2t1 ≡ 0 [pn]) ∧ (A2t2 +A2t3 ≡ 0 [pn])) =⇒ (t2 + t3 ≡ 2t1 = 0 [pn])

Consequently

(∀]At, Bt[∈ {]At, Bt[}) ((At ≡ 0 [pn]) ⇐⇒ (t 6= 0)) (4.4)

This result, obtained for a given family {]At, Bt[u}, is valid for eah and every

of these families and we an enuniate the following theorem
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Theorem 6 For all prime integer pn and its assoiated funtion Spn
, let the

set of the intervals

[kpn, (k + 1) pn[

where k is any natural integer, and let the natural integer

M1 =
1

4
TSpn−1

then

(∀k ∈ N) (k < M1) (∃a ∈ ([kpn, (k + 1) pn[∩N)) (Spn
(a) 6= 0)

Among other onsequenes, the onjeture that we set out above is veri�ed and

we an enuniate what is now a theorem

Theorem 7 Let pn be a given prime integer, there exists at least one prime

integer in eah interval [kpn, (k + 1) pn[ for all non-zero natural integer k suh

that (k + 1) pn < p2n+1.

A formula an be derived from the latter theorem. Let us onsider the following

sequene of the under-intervals

[pn, 2pn[

[2pn, 3pn[

· · ·

[kpn, (k + 1) pn[

· · ·

[(pn − 1) pn, p
2
n[

Eah of these under-intervals ontains at least one prime integer that we respe-

tively denote pν+1, pν+2, · · · , pν+k+1, · · · , pν+pn
, and we of ourse have

pn+1 ≤ pν+1 ≤ 2pn

pn+2 ≤ pν+2 ≤ 3pn

· · ·

pn+k+1 ≤ pν+k+1 ≤ (k + 1) pn

· · ·

pn+pn
≤ pν+pn

≤ p2n

and �nally





j=n+pn
∏

j=n+1

pj ≤ pn!p
pn−1
n



⇐⇒





j=n+pn
∏

j=n+1

pj ≤ (pn − 1)!ppn

n





(4.5)
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Chapter 5

Some thoughts on two other

onjetures.

5.1 A onjeture proposed by Jean Marie legen-

dre.

Jean Marie Legendre proposed the following onjeture.

Conjeture 6 of Legendre For all natural integer n > 2, there exists at least

a prime integer that belongs to the interval [n2, (n+ 1)2].

We give an approah that ould lead to a rigorous proof of this onjeture. We

reall the de�nition of the funtion Spn

Spn
: R −→ [−1, 1]

x 7−→ Spn
x

with

Spn
(x) =

j=n
∏

j=1

spj
(x)

and

spj
(x) = sin

π

pj
(x)

We will use the following theorem, whih we previously proved (see the theo-

rem 7 page 59).

Theorem 8 Let pn be a given prime number, there exists at least one prime

integer in eah interval [kpn, (k + 1) pn[ for all non-zero natural integer k suh

that (k + 1) pn < p2n+1.

Eah and every divisor of both the natural integers k and k+1 belongs to πpn
.

Neither of these two natural integers is divisible by a prime number greater
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than pn. The union of the intervals

⋃

∞

j=1[pj , pj+1[ is the set of the real numbers
greater than or equal to 2. We have

∞
⋃

j=1

[pj , pj+1[= R+ − {1}

We hek �rst of all that

12 < 3 < 22

22 < 5 < 7 < 32

32 < 11 < 13 < 42

. . .

Let us onsider, whih is always possible, the natural integer m suh that

pj ≤ m < m+ 1 ≤ pj+1. Then

p2j ≤ m2 < (m+ 1)2 ≤ p2j+1

The interval [p2j , p
2
j+1] ontains a �nite set of intervals [kpj , (k + 1) pj [, where

k ∈ N . There then exists a natural integer K suh that

Kpj < p2j+1 < (K + 1)pj

Let us onsider m2
and

(m+ 1)
2
= m2 + 2m+ 1

It is lear that

(∃k ∈ N)
(

m2 ∈ [kpj , (k + 1) pj[
)

In order for the Legendre's onjeture to be true, we simply have to show that

(∀k ∈ N)
(

m2 ∈ [kpj , (k + 1)pj [
)

=⇒
(

(m+ 1)2 ≥ (k + 2) pj

)

and then invoke the here-above mentioned theorem (see the theorem 7 page 59).

We just have to show that.

2m+ 1 > 2pj

One an see that the latter inequality is always true. Indeed

2m+ 1 > 2pj ⇐⇒ m ≥ pj

whih is our prerequisite. The onjeture is therefore proved whenever

m+ 1 < Kpj
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Kpj being the largest natural integer multiple of pj less than p2i+1.

We now have to look into the intervals

[(K − 1)pj ,Kpj[

and

[Kpj, (K + 1)pj[

where

p2i+1 ∈ [Kpj, (K + 1)pj [

We have

Kpj < p2i+1 < (K + 1)pj

and thus the natural integers

p2i+1 − (2m+ 1)

and

(m+ 1)2 − (2m+ 1)

that is to say m2
, are both stritly less than Kpj. Indeed

(m ≥ pj) ⇐⇒
(

p2i+1 − 2m ≤ p2i+1 − 2pj
)

⇐⇒
(

p2i+1 − (2m+ 1) < p2i+1 − 2pj
)

and thus

(m+ 1)2 − (2m+ 1) < p2i+1 − (2m+ 1) < Kpj

This ompletes the proof of this onjeture and allows to enuniate what is now

a theorem

Theorem 9 of Legendre For all natural integer n > 2, there exists at least a

prime integer that belongs to the interval [n2, (n+ 1)2].

5.2 A onjeture proposed by Henri Broard.

For his part, Henri Broard proposed this other onjeture

Conjeture 7 of Broard For all prime integer pn > 2, there exists at least

four prime integers that belong to the interval [p2n, p
2
(n+1)].

We will show that there exists at least four under-intervals [kpn, (k+1)pn[, with
k ∈ N, that are inluded in the interval [p2n, p

2
n+1[, for eah prime integer pn.

these under-intervals are expliitly of the form

[(pn + k)pn, (pn + k + 1)pn[ (k ∈ N∗)
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We know that

(∀n ∈ N∗) (pn+1 − pn ≥ 2) ⇐⇒
(

p2n+1 ≥ p2n + 4pn + 1
)

but p2n + 4pn is the upper endpoint of the fourth under-interval

[(pn + k)pn, (pn + k + 1)pn[ (k = 3)

Eah of these under-interval ontains at least one prime integer, further to the

here-above mentioned theorem (see the theorem 7 page 59). The onjeture is

therefore proved and we end up with the following theorem

Theorem 10 of Broard For all prime integer pn > 2, there exists at least

four prime integers that belong to the interval [p2n, p
2
(n+1)].



Chapter 6

Lemma relating to the

funtion S1
pn.

The funtions Spn
et S1

pn
vanish at the same odd natural integers in the interval

[0, TSpn
[. The study of some properties of the funtion S1

pn
may thus give us

an insight on the behaviour of the funtion Spn
itself.

6.1 One property of the funtion S1
pn.

Given a prime number pn ≥ 13, let us onsider the funtion S1
pn

in the losed

interval [kpn, (k + 1) pn]

S1
pn

(x) =

j=n
∏

j=2

sin

(

π

pj
x

)

and let us assume that this funtion vanishes at all the odd natural integers mh

in this interval, with h ∈ N∗
. These natural integers are of the form

mh =

(

k=n
∏

k=2

pak

k

)(

k=ν
∏

k=n+1

pak

k

)

Thus, there exists at least one funtion spj
that vanishes at eah of these natural

integers mh. We have

spj
(mh) = sin

π

pj
(mh) = 0

As mh is odd, we have for eah prime integer pj that divide pj
(

spj
(mh) = sin

π

pj
(mh) = 0

)

⇐⇒

(

spj

(

1

2
mh

)

= sin
π

2

(

mh

pj

)

= ±1

)
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and we an write

spj

(

1

2
mh

)

= ±1 ⇐⇒ cpj

(

1

2
mh

)

= 0

Let us onsider then the funtion C1
pn

suh that

C1
pn

(x) =

j=n
∏

j=2

cos

(

π

pj
x

)

This funtion vanishes at eah number

1
2mh in the losed interval

[
1

2
kpn,

1

2
(k + 1) pn]

All these numbers are stritly rational and we have

(∀h)

(

(mh+1 −mh = 2) ⇐⇒

(

1

2
mh+1 −

1

2
mh = 1

))

and

(∀h)

((

mh ±
1

2

)

∈ N

)

Furthermore, we note that

C1
pn

(x) = C1
pn

(

x+
1

2
−

1

2

)

=

j=n
∏

j=2

cos

(

π

pj

(

x+
1

2

)

−
1

2

)

Let us now onsider

cos

(

π

pj

(

x−
1

2

))

= cos

(

π

pj

(

x−
1

2

)

+ (2lj + 1)
π

2
− (2lj + 1)

π

2

)

with lj ∈ N. Then

cos

(

π

pj

(

x−
1

2

))

= cos

(

π

pj

(

x−
1

2

)

+ (2lj + 1)
π

pj

pj
2

− (2lj + 1)
π

2

)

= cos

(

π

pj

((

x−
1

2

)

+ (2lj + 1)
pj
2

)

− (2lj + 1)
π

2

)

and

cos

(

π

pj

(

x−
1

2

))

= ± sin

(

π

pj

(

x+
1

2
((2lj + 1) pj − 1)

))

Therefore

j=n
∏

j=2

cos

(

π

pj

(

x−
1

2

))

= ±

j=n
∏

j=2

sin

(

π

pj

(

x+
1

2
((2lj + 1) pj − 1)

))
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Let us pose

α =
1

2
((2lj + 1) pj − 1)

and let us hose α suh that α is independent from the index j, then α an be

equal to

α =
1

2





j=n
∏

j=2

pj − 1





and we write

j=n
∏

j=2

cos

(

π

pj

(

x−
1

2

))

= ±

j=n
∏

j=2

sin

(

π

pj
(x+ α)

)

In partiular, whenever the funtion S1
pn

vanishes at eah of the odd natural

integers mh in the interval [kpn, (k + 1) pn] then the funtion C1
pn

vanishes at

eah of the rational numbers

1
2mh in the interval [ 12kpn

, 1
2 (k + 1) pn] and, in this

same interval, we have

j=n
∏

j=2

cos

(

π

pj

(

1

2
mh

))

= ±

j=n
∏

j=2

sin

(

π

pj

(

1

2
(mh + 1) + α

))

= 0

This means that the funtion S1
pn

vanishes at eah of the integers in the interval

[ 12 (kpn + 1) + α, 1
2 ((k + 1) pn + 1) + α]. Hene the following lemma

Lemme 2 Let a prime number pn ≥ 13 and the funtion S1
pn
, if this funtion

vanishes at all the odd natural numbers of the interval [kpn, (k + 1) pn], then

there exists a number α = 1
2

(

∏j=n
j=2 pj − 1

)

suh that the funtion S1
pn

vanishes

at all the natural integers of the interval [ 12 (kpn + 1)+α, 1
2 ((k + 1) pn + 1)+α].

Let us pose

1

2
(kpn + 1) + α = a

1

2
((k + 1) pn + 1) + α = b

It is lear that one and only on of the two numbers a and b is a natural integer

depending on the parity of the natural integer k. Let now mh1
and mh2

be

two distint natural integers hosen in the interval [kpn, (k + 1) pn] suh that

mh1
< mh2

, then their respetive images in the interval [a, b] are α+ 1
2 (mh1

+ 1)
and α+ 1

2 (mh2
+ 1). These images are distint and we have

α+
1

2
(mh2

+ 1)− α+
1

2
(mh1

+ 1) =
1

2
mh2

−
1

2
mh1

> 0

Thus, the funtion S1
13 vanishes at all the odd natural integers in the inter-

val [2184, 2197[, where k = 168, and all the natural integers of the interval

[8599.5, 8606] (see �gure 6.1 page 68). Similarly, the same funtion vanishes at

all the odd natural integers in the interval [9113, 9126[, where k = 701, and all

the natural integers of the interval [12064, 12070.5] (see �gure 6.2 page 68).
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2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 x

8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 x

Figure 6.1: The funtion S1
13 on the intervals [2184, 2197[ et [8599.5, 8606[

9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 x

12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 x

Figure 6.2: The funtion S1
13 on the intervals [9113, 9126[ et [12064, 12070.5[
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