A formula which conducts to primes or to a type of composites that could form a class themselves

Marius Coman Bucuresti, Romania email: mariuscoman13@gmail.com

Abstract. In this paper I present a very simple formula which conducts often to primes or composites with very few prime factors; for instance, for the first 27 consecutive values introduced as "input" in this formula were obtained 10 primes, 4 squares of primes and 12 semiprimes; just 2 from the numbers obtained have three prime factors; but the most interesting thing is that the composites obtained have a special property that make them form a class of numbers themselves.

Observation:

The numbers $C = 3^3 (3^3 + n*10) + n*10$, where n is a positive integer of the form 4 + 9*k, or in other words C = 2520*k + 1849, are very often primes or numbers with very few prime factors, composites that have certain very interesting properties. Let's see the case of the first 27 consecutive such numbers C; we will consider all 27 numbers but we will list them separatelly in three different lists: the case C is prime or square of prime, the case C is Coman semiprime and the case of the other numbers C (note that a Coman semiprime is a semprime p*q with the property that p - q + 1 is a prime or a square of prime; this is a class of numbers that I met it often in my research, for instance in the study of 2-Poulet numbers, many of these semiprimes having this property, but as well in the study of the prime factors of Carmichael numbers):

The case C is prime or square of prime:

:	for	k	=	0 we	have	С	= -	43^2	where	43	pr	ime;
:	for	k	=	1 we	have	С	= -	4369	prime	;		
:	for	k	=	2 we	have	С	= ;	83^2	where	83	pr	ime;
:	for	k	=	3 we	have	С	=	97^2	where	97	pr	ime;
:	for	k	=	5 we	have	С	= 1	14449) prime	∋;		
:	for	k	=	7 we	have	С	= 1	19489) prime	∋;		
:	for	k	=	11 w	e hav	e C	=	2956	59 prim	ne;		
:	for	k	=	12 w	e hav	e C	=	3208	39 prim	ne;		
:	for	k	=	16 w	e hav	e C	=	4216	59 prim	ne;		
:	for	k	=	19 w	e hav	e C	=	223′	`2 whe	re 2	223	prime;
:	for	k	=	20 w	e hav	e C	=	5224	19 prim	ne;		
:	for	k	=	23 w	e hav	e C	=	5980)9 prim	ne;		

: for k = 25 we have C = 64849 prime;

: for k = 26 we have C = 67369 prime.

The case C is Coman semiprime:

:	for $k = 4$ we have $C = 79*151$ and $151 - 79 + 1 = 73$
	prime;
:	for $k = 6$ we have $C = 71*239$ and $239 - 71 + 1 = 13^2$,
	where 13 prime;
:	for $k = 8$ we have $C = 13*1693$ and $1693 - 13 + 1 = 41^2$,
	where 41 prime;
:	for $k = 13$ we have $C = 53*653$ and $653 - 53 + 1 = 601$
	prime;
:	for $k = 14$ we have $C = 107*347$ and $347 - 107 + 1 = 241$
	prime;
:	for $k = 15$ we have $C = 31*1279$ and $1279 - 31 + 1 = 1249$
	prime;
:	for $k = 24$ we have $C = 157*397$ and $397 - 157 + 1 = 241$
	prime.

The other numbers C:

:	for $k = 9$ we have $C = 19*1291$ and $1291 - 19 + 1 = 19*67$
	and $67 - 19 + 1 = 7^2$, where 7 prime;
:	for $k = 10$ we have $C = 11*2459$ and $2459 - 11 + 1 =$
	$31*79$ and $79 - 31 + 1 = 7^2$, where 7 prime;
:	for $k = 17$ we have $C = 23*29*67$ and $23*29 - 67 + 1 =$
	601 prime, 29*67 - 23 + 1 = 17*113 where 113 - 17 + 1 =
	97 prime and $23*67 - 28 = 17*89$ where $89 - 17 + 1 = 73$
	prime;
:	for $k = 18$ we have $C = 17*2777$ and $2777 - 17 + 1 =$
	11×251 and $251 - 11 + 1 = 241$ prime;
:	for $k = 21$ we have $C = 11*13*383$ and $11*13 - 383 + 1 =$
	-239 prime in absolute value, 11*383 - 13 + 1 = 4201
	prime, 13*383 - 11 + 1 = 4969 prime;
:	for $k = 22$ we have $C = 59*971$ and $971 - 59 + 1 = 11*83$
	and 83 - 11 + 1 = 73 prime;
:	for $k = 27$ we have $C = 47*1487$ and $1487 - 47 + 1 =$
	$11*131$ and $131 - 11 + 1 = 11^2$, where 11 prime.

Note:

It can be seen that also "the other numbers C" have special properties; for instance, the semiprimes can be considered a kind of "extended Coman semiprimes" because of the iterative process that ends also in a prime or in a square of prime: let N = p1*q1; than p1-q1 + 1 = p2*q2 then p2 - q2 + 1 = p3*q3 and so on until is obtained a prime. On the other side, the numbers with three prime factors obtained p*q*r have the property that p*q - r + 1, p*r - q + 1 and q*r - p + 1 are primes or (extended) Coman semiprimes.