A formula which conducts to primes or to a type of composites that could form a class themselves

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I present a very simple formula which conducts often to primes or composites with very few prime factors; for instance, for the first 27 consecutive values introduced as "input" in this formula were obtained 10 primes, 4 squares of primes and 12 semiprimes; just 2 from the numbers obtained have three prime factors; but the most interesting thing is that the composites obtained have a special property that make them form a class of numbers themselves.

Observation:

The numbers $C=3^{\wedge} 3^{*}\left(3^{\wedge} 3+n * 10\right)+n * 10$, where n is a positive integer of the form $4+9 * k$, or in other words $C=$ $2520 * k+1849$, are very often primes or numbers with very few prime factors, composites that have certain very interesting properties. Let's see the case of the first 27 consecutive such numbers C; we will consider all 27 numbers but we will list them separatelly in three different lists: the case C is prime or square of prime, the case C is Coman semiprime and the case of the other numbers C (note that a Coman semiprime is a semprime p*q with the property that p $q+1$ is a prime or a square of prime; this is a class of numbers that I met it often in my research, for instance in the study of 2 -Poulet numbers, many of these semiprimes having this property, but as well in the study of the prime factors of Carmichael numbers):

The case C is prime or square of prime:

```
: for k = 0 we have C = 43^2 where 43 prime;
: for k = 1 we have C = 4369 prime;
: for k = 2 we have C = 83^2 where 83 prime;
: for k = 3 we have C = 97^2 where 97 prime;
: for k = 5 we have C = 14449 prime;
: for k = 7 we have C = 19489 prime;
: for k = 11 we have C = 29569 prime;
: for k = 12 we have C = 32089 prime;
: for k = 16 we have C = 42169 prime;
: for k = 19 we have C = 223^2 where 223 prime;
: for k = 20 we have C = 52249 prime;
: for k = 23 we have C = 59809 prime;
```

: for $k=25$ we have $C=64849$ prime;
: for $k=26$ we have $C=67369$ prime.

The case C is Coman semiprime:

```
: for \(k=4\) we have \(C=79 * 151\) and \(151-79+1=73\)
    prime;
: for \(k=6\) we have \(C=71 * 239\) and \(239-71+1=13^{\wedge} 2\),
    where 13 prime;
: for \(k=8\) we have \(C=13 * 1693\) and \(1693-13+1=41^{\wedge} 2\),
    where 41 prime;
: for \(k=13\) we have \(C=53 * 653\) and \(653-53+1=601\)
    prime;
: for \(k=14\) we have \(C=107 * 347\) and \(347-107+1=241\)
    prime;
: for \(k=15\) we have \(C=31 * 1279\) and \(1279-31+1=1249\)
    prime;
: for \(k=24\) we have \(C=157 * 397\) and \(397-157+1=241\)
    prime.
```


The other numbers C:

```
: for k = 9 we have C = 19*1291 and 1291 - 19 + 1 = 19*67
    and 67-19 + 1 = 7^2, where 7 prime;
: for k = 10 we have C = 11*2459 and 2459 - 11 + 1 =
    31*79 and 79 - 31 + 1 = 7^2, where 7 prime;
    for k=17 we have C = 23*29*67 and 23*29 - 67 + 1 =
    6 0 1 ~ p r i m e , ~ 2 9 * 6 7 - 2 3 ~ + ~ 1 ~ = ~ 1 7 * 1 1 3 ~ w h e r e ~ 1 1 3 ~ - ~ 1 7 ~ + ~ 1 ~ = ~
    97 prime and 23*67 - 28=17*89 where 89-17 + 1 = 73
    prime;
: for k = 18 we have C = 17*2777 and 2777 - 17 + 1 =
    11*251 and 251 - 11 + 1 = 241 prime;
: for k = 21 we have C = 11*13*383 and 11*13 - 383 + 1 =
    -239 prime in absolute value, 11*383 - 13 + 1 = 4201
    prime, 13*383 - 11 + 1 = 4969 prime;
: for k = 22 we have C = 59*971 and 971 - 59 + 1 = 11*83
    and 83-11 + 1 = 73 prime;
: for k = 27 we have C = 47*1487 and 1487 - 47 + 1 =
    11*131 and 131 - 11 + 1 = 11^2, where 11 prime.
```


Note:

It can be seen that also "the other numbers C " have special properties; for instance, the semiprimes can be considered a kind of "extended Coman semiprimes" because of the iterative process that ends also in a prime or in a square of prime: let $N=p 1 * q 1 ;$ than $p 1-q 1+1=p 2 * q 2$ then $p 2-q 2+1=$ p3*q3 and so on until is obtained a prime. On the other side, the numbers with three prime factors obtained $p^{*} q^{*} r$ have the property that $p^{*} q-r+1, p^{*} r-q+1$ and $q^{*} r-p$ +1 are primes or (extended) Coman semiprimes.

