A conjecture on the squares of primes of the form 6k - 1

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. In this paper I make a conjecture on the squares of primes of the form 6k - 1, conjecture that states that by a certain deconcatenation of those numbers (each one in other two numbers) it will be obtained similar results.

Conjecture:

For any square of a prime p of the form p = 6*k - 1 is true at least one of the following six statements:

- p² can be deconcatenated into a prime and a number congruent to 2, 3 or 5 modulo 6;
- (2) p^2 can be deconcatenated into a semiprime q^r where $r q = 8^k$ and a number congruent to 2, 3 or 5 modulo 6;
- (3) p^2 can be deconcatenated into a semiprime 3*q, where q is of the form 10*k + 7, and a number congruent to 1 modulo 6;
- (4) p^2 can be deconcatenated into a number of the form 49 + 120*k and a number congruent to 0 modulo 6;
- (5) p^2 can be deconcatenated into a number of the form 121 + 48*k and a number congruent to 0 modulo 6;
- (6) p^2 is a palindromic number.

Examples for case (1):

:	for $5^2 = 25$ we got 5 prime and $2 \equiv 2 \pmod{6}$;												
:	for $17^2 = 289$ we got 89 prime and $2 \equiv 2 \pmod{6}$;												
:	for $23^2 = 529$ we got 29 prime and $5 \equiv 5 \pmod{6}$;												
:	for $29^2 = 841$ we got 41 prime and $8 \equiv 2 \pmod{6}$;												
:	$53^2 = 2809$ we got 809 prime and $2 \equiv 2 \pmod{6}$;												
:	$71^2 = 5041$ we got 41 prime and $50 \equiv 2 \pmod{6}$;												
:	for $83^2 = 6889$ we got 89 prime and $68 \equiv 2 \pmod{6}$;												
:	for $107^2 = 11449$ we got 449 prime and $11 \equiv 5 \pmod{6}$;												
:	for $167^2 = 27889$ we got 89 prime and $278 \equiv 2 \pmod{6}$;												
:	for $173^2 = 29929$ we got 29 prime and $29 \equiv 5 \pmod{6}$ also												
	101 175 2 25525 we get 25 prime and 25 = 5 (mod 6) arbor												
	929 prime and $2 \equiv 2 \pmod{6}$;												
:													
:	929 prime and $2 \equiv 2 \pmod{6}$; for $179^2 = 32041$ we got 41 prime and $320 \equiv 2 \pmod{6}$; for $191^2 = 36481$ we got 6481 prime and $3 \equiv 3 \pmod{6}$;												
: : :	929 prime and $2 \equiv 2 \pmod{6}$; for $179^2 = 32041$ we got 41 prime and $320 \equiv 2 \pmod{6}$;												
: : :	929 prime and $2 \equiv 2 \pmod{6}$; for $179^2 = 32041$ we got 41 prime and $320 \equiv 2 \pmod{6}$; for $191^2 = 36481$ we got 6481 prime and $3 \equiv 3 \pmod{6}$;												
::	929 prime and $2 \equiv 2 \pmod{6}$; for $179^2 = 32041$ we got 41 prime and $320 \equiv 2 \pmod{6}$; for $191^2 = 36481$ we got 6481 prime and $3 \equiv 3 \pmod{6}$; for $197^2 = 38809$ we got 809 prime and $38 \equiv 2 \pmod{6}$; for $227^2 = 51529$ we got 29 prime and $515 \equiv 5 \pmod{6}$; for $233^2 = 54289$ we got 89 prime and $542 \equiv 2 \pmod{6}$;												
::	929 prime and $2 \equiv 2 \pmod{6}$; for $179^2 = 32041$ we got 41 prime and $320 \equiv 2 \pmod{6}$; for $191^2 = 36481$ we got 6481 prime and $3 \equiv 3 \pmod{6}$; for $197^2 = 38809$ we got 809 prime and $38 \equiv 2 \pmod{6}$; for $227^2 = 51529$ we got 29 prime and $515 \equiv 5 \pmod{6}$;												

Examples for case (2):

:	for $47^2 = 2209$ we got $209 = 11*19$ where $19 - 11 = 8*1$ and 2
	$\equiv 2 \pmod{6};$
:	for $59^2 = 3481$ we got $481 = 13*37$ where $37 - 13 = 8*3$ and 3
	\equiv 3 (mod 6);
:	for $131^2 = 17161$ we got $161 = 7*23$ where $23 - 7 = 8*2$ and
	$17 \equiv 5 \pmod{6};$
:	for $149^2 = 22201$ we got $2201 = 31*71$ where $71 - 31 = 8*5$
	and $2 \equiv 2 \pmod{6}$.

Examples for case (3):

```
: for 41^2 = 1681 we got 681 = 3*227 and 1 \equiv 1 \pmod{6};

: for 89^2 = 7921 we got 921 = 3*307 and 7 \equiv 1 \pmod{6}.
```

Examples for case (4):

:	for	83^2 =	= 6	889 we	got	t 889	$\theta = 4$	9 +	- 12	20*	7 and	6 ≡ C) (m	lod	6));
:	for	113^2	=	12769	we	got	769	=	49	+	120*6	and	12	≡	0	(mod
	6);															
:	for	137^2	=	18769	we	got	769	=	49	+	120*6	and	18	≡	0	(mod
	6);															
:	for	257^2	=	66049	we	got	6049	=	49	+	120*50) and	16	≡	0	(mod
	6);															
:	for	263^2	=	69169	we	got	9169	=	49	+	120*70	5 and	16	≡	0	(mod
	6).															

Examples for case (5):

: for $251^2 = 63001$ we got 3001 = 121 + 48*60 and $6 \equiv 0 \pmod{6}$.

Examples for case (6):

: 11^2 = 121; : 101^2 = 10201.

Note:

This conjecture is verified up to p = 269.