A conjecture on the squares of primes of the form $6 k-1$

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I make a conjecture on the squares of primes of the form $6 k$ - 1, conjecture that states that by a certain deconcatenation of those numbers (each one in other two numbers) it will be obtained similar results.

Conjecture:

For any square of a prime p of the form $p=6 * k-1$ is true at least one of the following six statements:
(1) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a prime and a number congruent to 2,3 or 5 modulo 6;
(2) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a semiprime $\mathrm{q}^{\star} r$ where $r-q=$ $8^{*} k$ and a number congruent to 2 , 3 or 5 modulo 6;
(3) $p^{\wedge} 2$ can be deconcatenated into a semiprime $3 * q$, where q is of the form $10 * k+7$, and a number congruent to 1 modulo 6;
(4) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a number of the form $49+$ $120 * \mathrm{k}$ and a number congruent to 0 modulo 6;
(5) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a number of the form $121+$ $48^{*} \mathrm{k}$ and a number congruent to 0 modulo 6;
(6) $p^{\wedge} 2$ is a palindromic number.

Examples for case (1):

: for $5^{\wedge} 2=25$ we got 5 prime and $2 \equiv 2(\bmod 6)$;
: for $17^{\wedge} 2=289$ we got 89 prime and $2 \equiv 2(\bmod 6)$;
: for $23^{\wedge} 2=529$ we got 29 prime and $5 \equiv 5(\bmod 6)$;
: for $29^{\wedge} 2=841$ we got 41 prime and $8 \equiv 2(\bmod 6)$;
: for $53^{\wedge} 2=2809$ we got 809 prime and $2 \equiv 2(\bmod 6)$;
: for $71^{\wedge} 2=5041$ we got 41 prime and $50 \equiv 2(\bmod 6)$;
: for $83^{\wedge} 2=6889$ we got 89 prime and $68 \equiv 2(\bmod 6)$;
: for $107^{\wedge} 2=11449$ we got 449 prime and $11 \equiv 5(\bmod 6)$;
: for $167^{\wedge} 2=27889$ we got 89 prime and $278 \equiv 2(\bmod 6)$;
: for $173^{\wedge} 2=29929$ we got 29 prime and $29 \equiv 5(\bmod 6)$ also 929 prime and $2 \equiv 2(\bmod 6)$;
: for $179^{\wedge} 2=32041$ we got 41 prime and $320 \equiv 2(\bmod 6)$;
: for $191^{\wedge} 2=36481$ we got 6481 prime and $3 \equiv 3(\bmod 6)$;
: for $197^{\wedge} 2=38809$ we got 809 prime and $38 \equiv 2(\bmod 6)$;
: for $227^{\wedge} 2=51529$ we got 29 prime and $515 \equiv 5(\bmod 6)$;
: for $233^{\wedge} 2=54289$ we got 89 prime and $542 \equiv 2(\bmod 6)$;
: for $239^{\wedge} 2=57121$ we got 7121 prime and $5 \equiv 5(\bmod 6)$;
: for $269^{\wedge} 2=72361$ we got 61 prime and $723 \equiv 3(\bmod 6)$.

Examples for case (2):

```
:for 47^2 = 2209 we got 209 = 11*19 where 19 - 11 = 8*1 and 2
    \equiv2 (mod 6);
:for 59^2 = 3481 we got 481 = 13*37 where 37-13 = 8*3 and 3
    \equiv 3 (mod 6);
:for 131^2 = 17161 we got 161 = 7*23 where 23 - 7 = 8*2 and
    17 \equiv5 (mod 6);
: for 149^2 = 22201 we got 2201 = 31*71 where 71 - 31 = 8*5
    and 2 \equiv2 (mod 6).
```


Examples for case (3):

```
: for 41^2 = 1681 we got 681 = 3*227 and 1 \equiv1 (mod 6);
: for 89^2 = 7921 we got 921 = 3*307 and 7 \equiv 1 (mod 6).
```


Examples for case (4):

: for $83^{\wedge} 2=6889$ we got $889=49+120 * 7$ and $6 \equiv 0(\bmod 6)$;
: for $113^{\wedge} 2=12769$ we got $769=49+120 * 6$ and $12 \equiv 0(m o d$ 6) ;
: for $137^{\wedge} 2=18769$ we got $769=49+120 * 6$ and $18 \equiv 0(\bmod$ 6);
: for $257^{\wedge} 2=66049$ we got $6049=49+120 * 50$ and $6 \equiv 0$ (mod 6) ;
: for $263^{\wedge} 2=69169$ we got $9169=49+120 * 76$ and $6 \equiv 0$ (mod 6).

Examples for case (5):

: for $251^{\wedge} 2=63001$ we got $3001=121+48 * 60$ and $6 \equiv 0(\bmod$ 6).

Examples for case (6):

```
: 11^2 = 121;
: 101^2 = 10201.
```


Note:

This conjecture is verified up to $p=269$.

