A conjecture on the squares of primes of the form 6k + 1

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. In this paper I make a conjecture on the squares of primes of the form 6k + 1, conjecture that states that by a certain deconcatenation of those numbers (each one in other two numbers) it will be obtained similar results.

Conjecture:

For any square of a prime p of the form p = 6*k + 1 is true at least one of the following six statements:

- p² can be deconcatenated into a prime and a number congruent to 2, 3 or 5 modulo 6;
- (2) p^2 can be deconcatenated into a semiprime 3^n*q and a number congruent to 1 modulo 6;
- (3) p² can be deconcatenated into a number n such that n + 1 is prime or power of prime and the digit 1;
- (4) p^2 can be deconcatenated into a number n such that n + 1 is prime or power of prime and the digit 9;
- (5) p^2 can be deconcatenated into a number of the form 49 + 120*k and a number congruent to 0 modulo 6;
- (6) p^2 can be deconcatenated into a number of the form 121 + 24*k and a number congruent to 0 modulo 6.

Examples for case (1):

:	for	67^2 =	4489 w	e got	89	prime	and 44	≡ 2	(moc	a 6);	
:	for	73^2 =	5329 w	e got	29	prime	and 53	≡ 5	(moc	d 6);	
:	for	$79^{2} =$	6241 w	e got	41	prime	and 62	≡ 2	(moc	d 6);	
:	for	109^2 =	= 11881	we g	ot	881 pr	ime and	11 ≡	2 ((mod	6);
:	for	163^2 =	= 26569	we g	ot	569 pr	ime and	26 ≡	2 ((mod	6);
:	for	181^2 =	= 32761	we g	ot '	761 pr	ime and	32 ≡	5 ((mod	6);
:	for	199^2 =	= 39601	we g	ot	601 pr	ime and	39 ≡	: 3 ((mod	6).

Examples for case (2):

:	for $13^2 = 169$ we got $69 = 3*23$ and $1 \equiv 1 \pmod{6}$;
:	for $37^2 = 1369$ we got $369 = 3^2 \cdot 41$ and $1 \equiv 1 \pmod{6}$;
:	for $43^2 = 1849$ we got $849 = 3 \times 283$ and $1 \equiv 1 \pmod{6}$;
:	for $61^2 = 3721$ we got $21 = 3*7$ and $37 \equiv 1 \pmod{6}$;
:	for $127^2 = 16129$ we got $6129 = 3^3 \times 227$ and $1 \equiv 1 \pmod{6}$;
:	for $193^2 = 37249$ we got $249 = 3*83$ and $37 \equiv 1 \pmod{6}$.

Examples for case (3):

```
: for 19^2 = 361 we got 36 + 1 = 37 prime;
: for 31^2 = 961 we got 96 + 1 = 97 prime;
: for 79^2 = 6241 we got 624 + 1 = 625 power of prime.
: for 139^2 = 19321 we got 1932 + 1 = 1933 prime;
: for 151^2 = 22801 we got 2280 + 1 = 2281 prime.
```

Examples for case (4):

```
: for 7^2 = 49 we got 4 + 1 = 5 prime;
: for 97^2 = 9409 we got 940 + 1 = 941 prime;
: for 103^2 = 10609 we got 1060 + 1 = 1061 prime.
```

Examples for case (5):

: for $157^2 = 24649$ we got 649 = 49 + 120*5 and $24 \equiv 0 \pmod{6}$.

Examples for case (6):

: for $79^2 = 6241$ we got 241 = 121 + 24*5 and $6 \equiv 0 \pmod{6}$.

Note:

This conjecture is verified up to p = 199.

Note:

I mention that this conjecture and the one from my previous paper "A conjecture on the squares of primes of the form 6k - 1" were made with the title of *jocandi causa*. It is not relevant if they are not true if they raise interesting questions about squares of primes.