A conjecture on the squares of primes of the form $6 k+1$

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I make a conjecture on the squares of primes of the form $6 k+1$, conjecture that states that by a certain deconcatenation of those numbers (each one in other two numbers) it will be obtained similar results.

Conjecture:

For any square of a prime p of the form $p=6 * k+1$ is true at least one of the following six statements:
(1) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a prime and a number congruent to 2 , 3 or 5 modulo 6;
(2) $p^{\wedge} 2$ can be deconcatenated into a semiprime $3^{\wedge} n^{*} q$ and a number congruent to 1 modulo 6;
(3) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a number n such that $n+1$ is prime or power of prime and the digit 1;
(4) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a number n such that $n+1$ is prime or power of prime and the digit 9;
(5) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a number of the form 49 + $120 * \mathrm{k}$ and a number congruent to 0 modulo 6;
(6) $\mathrm{p}^{\wedge} 2$ can be deconcatenated into a number of the form 121 + $24 * k$ and a number congruent to 0 modulo 6.

Examples for case (1):

: for $67 \wedge 2=4489$ we got 89 prime and $44 \equiv 2(\bmod 6)$;
: for $73^{\wedge} 2=5329$ we got 29 prime and $53 \equiv 5(\bmod 6)$;
: for $79^{\wedge} 2=6241$ we got 41 prime and $62 \equiv 2(\bmod 6)$;
: for $109^{\wedge} 2=11881$ we got 881 prime and $11 \equiv 2(\bmod 6)$;
: for $163^{\wedge} 2=26569$ we got 569 prime and $26 \equiv 2(\bmod 6)$;
: for $181^{\wedge} 2=32761$ we got 761 prime and $32 \equiv 5(\bmod 6)$;
: for $199^{\wedge} 2=39601$ we got 601 prime and $39 \equiv 3(\bmod 6)$.

Examples for case (2):

: for $13^{\wedge} 2=169$ we got $69=3 * 23$ and $1 \equiv 1(\bmod 6)$;
: for $37^{\wedge} 2=1369$ we got $369=3^{\wedge} 2 \star 41$ and $1 \equiv 1(\bmod 6)$;
: for $43^{\wedge} 2=1849$ we got $849=3 * 283$ and $1 \equiv 1(\bmod 6)$;
: for $61^{\wedge} 2=3721$ we got $21=3 * 7$ and $37 \equiv 1(\bmod 6)$;
: for $127 \wedge 2=16129$ we got $6129=3 \wedge 3 * 227$ and $1 \equiv 1(\bmod 6)$;
: for $193^{\wedge} 2=37249$ we got $249=3 * 83$ and $37 \equiv 1(\bmod 6)$.

Examples for case (3):

: for $19^{\wedge} 2=361$ we got $36+1=37$ prime;
: for $31^{\wedge} 2=961$ we got $96+1=97$ prime;
: for $79^{\wedge} 2=6241$ we got $624+1=625$ power of prime.
: for $139^{\wedge} 2=19321$ we got $1932+1=1933$ prime;
: for $151^{\wedge} 2=22801$ we got $2280+1=2281$ prime.

Examples for case (4):

: for $7^{\wedge} 2=49$ we got $4+1=5$ prime;
: for $97 \wedge 2=9409$ we got $940+1=941$ prime;
: for $103^{\wedge} 2=10609$ we got $1060+1=1061$ prime.

Examples for case (5):

: for $157^{\wedge} 2=24649$ we got $649=49+120 * 5$ and $24 \equiv 0$ (mod 6).

Examples for case (6):

: for $79^{\wedge} 2=6241$ we got $241=121+24 * 5$ and $6 \equiv 0(\bmod 6)$.

Note :

This conjecture is verified up to p = 199.

Note:

I mention that this conjecture and the one from my previous paper "A conjecture on the squares of primes of the form $6 \mathrm{k}-1$ " were made with the title of jocandi causa. It is not relevant if they are not true if they raise interesting questions about squares of primes.

