Nine conjectures on the infinity of certain sequences of primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. In this paper I enunciate nine conjectures on primes, all of them on the infinity of certain sequences of primes.

Conjecture 1:

For any prime p there exist an infinity of positive integers n such that the number $n * p-n+1$ is prime.

Examples:

$$
\begin{aligned}
& : \quad \text { For } p=19 \text { we have the following primes: } 2 * 19-1= \\
& 37 ; 4 * 19-3=73 ; 6 * 19-5=109 ; 7 * 19-6=127 ; \\
& 9 * 19-8=163 ; 10 * 19-9=181 \text { etc. }
\end{aligned}
$$

Conjecture 2:

For any prime p there exist an infinity of positive integers n such that the number $n * p+n-1$ is prime.

Examples:

: For $\mathrm{p}=11$ we have the following primes: $2 * 11+1=$ 23; $4 * 11+3=47 ; 5 * 11+4=59 ; 6 * 11+5=71 ;$ $7 * 11+6=83 ; 9 * 11+8=107$ etc.

Conjecture 3:

For any prime p there exist an infinity of positive integers n such that the number $n^{\wedge} 2 * p-n+1$ is prime.

Examples:

: For $\mathrm{p}=7$ we have the following primes: $3^{\wedge} 2 * 7-2=$ 61; $4^{\wedge} 2 * 7-3=109 ; 7^{\wedge} 2 * 7-6=337$; 10^2*7-9 = 691; 12^2*7 - 11 = 997 etc.

Conjecture 4:

For any prime p there exist an infinity of positive integers n such that the number $n^{\wedge} 2 * p+n-1$ is prime.

Examples:

```
: For p = 11 we have the following primes: 3^2*11 + 2
    = 101; 4^2*11 + 3 = 179; 6^2*11 + 5 = 401; 10^2*11 +
    9 = 1109; 13^2*11 + 12 = 1871 etc.
```


Conjecture 5:

For any prime p there exist an infinity of positive integers n such that the number $n * p-p+n$ is prime.

Examples:

```
: For p = 5 we have the following primes: 1*5 + 2 = 7;
    2*5 + 3 = 13; 3*5 + 4 = 19; 5*5 + 6 = 31; 6*5 + 7 =
    37; 7*5 + 8 = 43 etc.
```


Conjecture 6:

For any prime p there exist an infinity of positive integers n such that the number $n * p-p-n$ is prime.

Examples:

: For $\mathrm{p}=5$ we have the following primes: $1 * 5-2$ = 3; $2 * 5-3=7 ; 5 * 5-6=19 ; 6 * 5-7=23 ; 8 * 5-9=$ 31; 11*5-12 = 43 etc.

Conjecture 7:

For any prime p there exist an infinity of positive integers n such that the number $(\mathrm{n}-1)^{\wedge} 2^{\star} \mathrm{p}+\mathrm{n}$ is prime.

Examples:

: For $p=7$ we have the following primes: $2^{\wedge} 2^{*} 7+3=$ 31; $3^{\wedge} 2 \star 7+4=67 ; 5^{\wedge} 2 * 7+4=179 ; 6^{\wedge} 2 * 7+5=$ 257; 7^2*7 $+6=349$ etc.

Conjecture 8:

For any prime p there exist an infinity of positive integers n such that the number ($n-1)^{\wedge} 2^{\star} p-n$ is prime.

Examples:

: For $\mathrm{p}=7$ we have the following primes: $3^{\wedge} 2 * 7-4=$ 59; $4^{\wedge} 2 * 7-5=107 ; 8^{\wedge} 2 * 7-9=439 ; 9^{\wedge} 2 * 7-10=$ 557; 15^2*7 - $16=1559$ etc.

Conjecture 9:

For any two distinct primes greater than three p and q there exist an infinity of positive integers n such that the number $\left(p^{\wedge} 2-1\right) * n+q^{\wedge} 2$ is prime, also an infinity of positive integers m such that the number $\left(q^{\wedge} 2-1\right) * n+p^{\wedge} 2$ is prime.

Examples:

$: \quad \operatorname{For}(p, q)=(7,11)$ we have the following primes of the form 48*n + 121: 313, 409, 457, 601, 937, 1033 etc. and the following primes of the form 120*n + 49: 409, 769, 1009, 1129, 1249, 1489 etc.

Note

The idea of these sequences didn't come to me from "nowhere". Many from the types of primes presented in this paper are met in the study of Fermat peudoprimes.

