Five conjectures on primes based on the observation of Poulet and Carmichael numbers

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I enunciate five conjectures on primes, based on the study of Fermat pseudoprimes and on the author's believe in the importance of multiples of 30 in the study of primes.

Conjecture 1:

For any p, q distinct primes, p > 30, there exist n positive integer such that $\mathrm{p}-30{ }^{\mathrm{n}} \mathrm{n}$ and $\mathrm{q}+30{ }^{\mathrm{n}}$ are both primes.

Note:

This conjecture is based on the observation of 2 -Poulet numbers (see my paper "A conjecture about 2-Poulet numbers and a question about primes").

Conjecture 2:

For any p, q, r distinct primes there exist n positive integer such that the numbers $30 * n-p, 30 * n-q$ and $30 * n-r$ are all three primes.

Note:

This enunciation is obviously equivalent to the enunciation that there exist m such that $p+30 * m, q+$ $30 * \mathrm{~m}$ and $\mathrm{r}+30 *_{\mathrm{m}}$ are all three primes (take $\mathrm{x}=30 *_{\mathrm{n}}-$ $\mathrm{p}, \mathrm{y}=30 *_{\mathrm{n}}-\mathrm{q}$ and $\mathrm{z}=30 *_{\mathrm{n}}-\mathrm{r}$. Then there exist k such that $30 *_{k}-30 *_{\mathrm{n}}+\mathrm{p}, 30 *_{\mathrm{k}}-30 *_{\mathrm{n}}+\mathrm{q}$ and $30 *_{\mathrm{k}}-30 *_{\mathrm{n}}+\mathrm{r}$ are all three primes).

Note:

This conjecture implies of course that for any pair of twin primes (p, q) there exist a pair of primes ($30 \mathrm{*}_{\mathrm{n}}$ p, $30 * n$ - q) so that there are infinitely many pairs of twin primes.

Note:

This conjecture is based on the observation of 3Carmichael numbers (see my paper "A conjecture about primes based on heuristic arguments involving Carmichael numbers).

Conjecture 3:

There exist an infinity of pairs of distinct primes (p, q), where $p<q$, both of the same form from the following eight ones: $30 * \mathrm{k}+1,30 * \mathrm{k}+7,30 * \mathrm{k}+11,30 * \mathrm{k}+13,30 * \mathrm{k}+17$, $30 * k+19,30 * k+23$ and $30 * k+29$ such that the number $\mathrm{p}^{*} \mathrm{q}+$ (q - p) is prime.

Note:

This conjecture is based on the observation of Carmichael numbers.

Examples:

$: \quad 31 * 151+(151-31)=4801$ prime;
$: \quad 37 * 127+(127-37)=4789$ prime;
: $41 * 101+(101-41)=4201$ prime;
$: 13 * 103+(103-13)=1429$ prime;
: $17 * 47+(47-17)=829$ prime;
: $19 * 109+(109-19)=2161$ prime;
: $23 * 53+(53-23)=1249$ prime.

Conjecture 4:

There exist an infinity of pairs of distinct primes (p, q), where $p<q$, both of the same form from the following eight ones: $30 * \mathrm{k}+1,30 * \mathrm{k}+7,30 * \mathrm{k}+11,30 * \mathrm{k}+13,30 * \mathrm{k}+17$, $30 * \mathrm{k}+19,30 * \mathrm{k}+23$ and $30 * \mathrm{k}+29$ such that the number $\mathrm{p} * \mathrm{q}$ (q - p) is prime.

Note:

This conjecture is based on the observation of Carmichael numbers.

Examples:

```
: 31*61 - (61 - 31) = 1861 prime;
: 7*37 - (37 - 7) = 229 prime;
: 11*41 - (41 - 11) = 421 prime;
: 13*73 - (73 - 13) = 919 prime;
: 17*47 - (47 - 17) = 769 prime;
: 19*139 - (139 - 19) = 2521 prime;
: 23*293-(293-23) = 6469 prime.
```


Conjecture 5:

For any p prime there exist an infinity of primes $q, q>p$, where p and q are both of the same form from the following eight ones: $30 * \mathrm{k}+1,30 * \mathrm{k}+7,30 * \mathrm{k}+11,30 * \mathrm{k}+13,30 * \mathrm{k}+$ $17,30 * k+19,30 * k+23$ and $30 * k+29$ such that the number p*q - (q - p) is prime.

