SHORT NOTE ON GENERALIZED LUCAS SEQUENCES

Yilun Shang
Einstein Institute of Mathematics, Hebrew University of Jerusalem
Jerusalem 91904, Israel
email: shylmath@hotmail.com

Abstract

In this note, we consider some generalizations of the Lucas sequence, which essentially extend sequences to triangular arrays. Some new and elegant results are derived.

MSC 2010: 11B39, 97F60.
Keywords: Lucas number; Fibonacci number; Simson's identity; Lucas sequence.

1 Introduction

The Lucas sequences are certain integer sequences that satisfy the recurrence relation [6]

$$
x_{n}=p x_{n-1}+q x_{n-2},
$$

where p and q are fixed integers. The Fibonacci and Lucas numbers are two well-known examples which have extensive applications in algorithms, data structure and biology [5]. Inspired by the ideas in [1, 2, 3, 9], we study triangular array generalizations of the Lucas sequences defined by

$$
\begin{equation*}
f_{n}^{(k+1)}=a^{n k+k}+b^{n k+k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{n}^{(k+1)}=a^{n+k}+b^{n+k}, \tag{2}
\end{equation*}
$$

for $n \geq 0$ and $k \geq 1$, where a and b are the roots of the characteristic equation

$$
x^{2}-p x+q=0 .
$$

It is evident that $g_{k n}^{(k+1)}=f_{n}^{(k+1)}$ and when $k=1$,

$$
\begin{equation*}
f_{n}^{(2)}=a^{n+1}+b^{n+1}=g_{n}^{(2)}:=u_{n+1} \tag{3}
\end{equation*}
$$

are the fundamental Lucas numbers and generalized Lucas primordial sequence [5]. Then trivially, we have $f_{n}^{(k+1)}=u_{n k+k}$ and $g_{n}^{(k+1)}=u_{n+k}$. Some less obvious results are presented below.

2 Main results

To begin with, we present some recurrence relations for the sequences $\left\{f_{n}^{(k+1)}\right\}$ and $\left\{g_{n}^{(k+1)}\right\}$.
Proposition 1. For $k, n \geq 1$, the sequence $\left\{f_{n}^{(k+1)}\right\}$ satisfies the second order recurrence relation

$$
\begin{equation*}
f_{n+1}^{(k+1)}=u_{k} f_{n}^{(k+1)}-q^{k} f_{n-1}^{(k+1)} . \tag{4}
\end{equation*}
$$

Proof. By using (1), (2) and (3), we have

$$
\begin{aligned}
u_{k} f_{n}^{(k+1)}-q^{k} f_{n-1}^{(k+1)} & =\left(a^{k}+b^{k}\right)\left(a^{n k+k}+b^{n k+k}\right)-(a b)^{k}\left(a^{n k}+b^{n k}\right) \\
& =a^{n k+2 k}+b^{n k+2 k} \\
& =f_{n+1}^{(k+1)}
\end{aligned}
$$

as required.

Proposition 2. For $k, n \geq 1$, the sequence $\left\{g_{n}^{(k+1)}\right\}$ satisfies the second order recurrence relation

$$
\begin{equation*}
g_{n+1}^{(k+1)}=p g_{n}^{(k+1)}-q g_{n-1}^{(k+1)} \tag{5}
\end{equation*}
$$

Proof. Similarly, by using (1) and (2), we have

$$
\begin{aligned}
p g_{n}^{(k+1)}-q g_{n-1}^{(k+1)} & =(a+b)\left(a^{n+k}+b^{n+k}\right)-a b\left(a^{n-1+k}+b^{n-1+k}\right) \\
& =a^{n+1+k}+b^{n+1+k} \\
& =g_{n+1}^{(k+1)}
\end{aligned}
$$

as required.
The generating functions of the sequences $\left\{f_{n}^{(k+1)}\right\}$ and $\left\{g_{n}^{(k+1)}\right\}$ are provided in the following result. The generating function methods are of special interest in the study of integer sequences [4]. More applications may be found in e.g. $[7,8]$.
Proposition 3. For $k \geq 1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} f_{n}^{(k+1)} x^{n}=\frac{u_{k}-2 q^{k} x}{1-u_{k} x+q^{k} x^{2}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} g_{n}^{(k+1)} x^{n}=\frac{u_{k}-q u_{k-1} x}{1-p x+q x^{2}} \tag{7}
\end{equation*}
$$

Proof. Let $f(x)=\sum_{n=0}^{\infty} f_{n}^{(k+1)} x^{n}$. From (4), it follows that

$$
\begin{aligned}
\left(1-u_{k} x+q^{k} x^{2}\right) f(x) & =f_{0}^{(k+1)}+\left(f_{1}^{(k+1)}-f_{0}^{(k+1)} u_{k}\right) x \\
& =a^{k}+b^{k}+\left(a^{2 k}+b^{2 k}-\left(a^{k}+b^{k}\right)^{2}\right) x \\
& =u_{k}-2 q^{k} x
\end{aligned}
$$

Next, let $g(x)=\sum_{n=0}^{\infty} g_{n}^{(k+1)} x^{n}$. By virtue of (5), we obtain

$$
\begin{aligned}
\left(1-p x+q x^{2}\right) g(x) & =g_{0}^{(k+1)}+\left(g_{1}^{(k+1)}-g_{0}^{(k+1)} p\right) x \\
& =a^{k}+b^{k}+\left(a^{k-1}+b^{k-1}-\left(a^{k}+b^{k}\right)(a+b)\right) x \\
& =u_{k}-q u_{k-1} x .
\end{aligned}
$$

Finally, we derive an analogue of the famous Simson's identity [11] for the Lucas sequence. More results of this flavor can be found in [10].

Proposition 4. Define a normalized sequence by

$$
\tilde{g}_{n}^{(k+1)}=\frac{g_{n}^{(k+1)}}{a^{k}-b^{k}},
$$

then

$$
\begin{equation*}
\tilde{g}_{n-k}^{(k+1)} \tilde{g}_{n+k}^{(k+1)}-\left(\tilde{g}_{n}^{(k+1)}\right)^{2}=q^{n} . \tag{8}
\end{equation*}
$$

Proof. By definition, it suffices to prove

$$
\begin{equation*}
g_{n-k}^{(k+1)} g_{n+k}^{(k+1)}-\left(g_{n}^{(k+1)}\right)^{2}=q^{n}\left(a^{k}-b^{k}\right)^{2} . \tag{9}
\end{equation*}
$$

The right-hand side of (9) reduces to

$$
\begin{aligned}
\left(a^{n}+b^{n}\right)\left(a^{n+2 k}+b^{n+2 k}\right)-\left(a^{n+k}+b^{n+k}\right)^{2} & =(a b)^{n}\left(a^{k}-b^{k}\right)^{2} \\
& =q^{n}\left(a^{k}-b^{k}\right)^{2}
\end{aligned}
$$

as required.

References

[1] A. Bérczes, K. Liptai, I. Pink, On generalized balancing sequences. Fibonacci Quart., 48(2010) 121-128
[2] L. Carlitz, Congruence properties of certain polynomial sequences. Acta Arith., 6(1960) 149-158
[3] G.-S. Cheon, H. Kim, L. W. Shapiro, A generalization of Lucas polynomial sequence. Discrete Appl. Math., 157(2009) 920-927
[4] A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J., 32(1965) 437-446
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications. WileyInterscience, New York, 2001
[6] P. Ribenboim, The Little Book of Bigger Primes. Springer-Verlag, New York, 2004
[7] Y. Shang, A remark on the chromatic polynomials of incomparability graphs of posets. Int. J. Pure Appl. Math., 67(2011) 159-164
[8] Y. Shang, Distribution dynamics for SIS model on random networks. J. Biol. Syst., 20(2012) 213-220
[9] A. G. Shannon, Another generalization of the Fibonacci and Lucas numbers. Notes Number Theory Discrete Math., 16(2010) 11-17
[10] A. G. Shannon, R. S. Melham, Carlitz generalizations of Lucas and Lehmer sequences. Fibonacci Quart., 31/2(1993) 105-111
[11] R. Simson, An explication of an obscure passage in Albert Girard's commentary upon Simon Stevin's works. Philosophical Transactions, 48(1753) 368-377

