SHORT NOTE ON GENERALIZED LUCAS SEQUENCES

Yilun Shang

Einstein Institute of Mathematics, Hebrew University of Jerusalem Jerusalem 91904, Israel email: shylmath@hotmail.com

Abstract

In this note, we consider some generalizations of the Lucas sequence, which essentially extend sequences to triangular arrays. Some new and elegant results are derived.

MSC 2010: 11B39, 97F60.

Keywords: Lucas number; Fibonacci number; Simson's identity; Lucas sequence.

1 Introduction

The Lucas sequences are certain integer sequences that satisfy the recurrence relation [6]

$$x_n = px_{n-1} + qx_{n-2},$$

where p and q are fixed integers. The Fibonacci and Lucas numbers are two well-known examples which have extensive applications in algorithms, data structure and biology [5]. Inspired by the ideas in [1, 2, 3, 9], we study triangular array generalizations of the Lucas sequences defined by

$$f_n^{(k+1)} = a^{nk+k} + b^{nk+k}, (1)$$

and

$$g_n^{(k+1)} = a^{n+k} + b^{n+k}, (2)$$

for $n \ge 0$ and $k \ge 1$, where a and b are the roots of the characteristic equation

$$x^2 - px + q = 0.$$

It is evident that $g_{kn}^{(k+1)} = f_n^{(k+1)}$ and when k = 1,

$$f_n^{(2)} = a^{n+1} + b^{n+1} = g_n^{(2)} := u_{n+1}$$
(3)

are the fundamental Lucas numbers and generalized Lucas primordial sequence [5]. Then trivially, we have $f_n^{(k+1)} = u_{nk+k}$ and $g_n^{(k+1)} = u_{n+k}$. Some less obvious results are presented below.

2 Main results

To begin with, we present some recurrence relations for the sequences $\{f_n^{(k+1)}\}\$ and $\{g_n^{(k+1)}\}$.

Proposition 1. For $k, n \ge 1$, the sequence $\{f_n^{(k+1)}\}$ satisfies the second order recurrence relation

$$f_{n+1}^{(k+1)} = u_k f_n^{(k+1)} - q^k f_{n-1}^{(k+1)}.$$
(4)

Proof. By using (1), (2) and (3), we have

$$u_k f_n^{(k+1)} - q^k f_{n-1}^{(k+1)} = (a^k + b^k)(a^{nk+k} + b^{nk+k}) - (ab)^k (a^{nk} + b^{nk})$$
$$= a^{nk+2k} + b^{nk+2k}$$
$$= f_{n+1}^{(k+1)}$$

as required. \Box

Proposition 2. For $k, n \ge 1$, the sequence $\{g_n^{(k+1)}\}$ satisfies the second order recurrence relation

$$g_{n+1}^{(k+1)} = pg_n^{(k+1)} - qg_{n-1}^{(k+1)}.$$
(5)

Proof. Similarly, by using (1) and (2), we have

$$\begin{split} pg_n^{(k+1)} - qg_{n-1}^{(k+1)} &= (a+b)(a^{n+k} + b^{n+k}) - ab(a^{n-1+k} + b^{n-1+k}) \\ &= a^{n+1+k} + b^{n+1+k} \\ &= g_{n+1}^{(k+1)} \end{split}$$

as required. \Box

The generating functions of the sequences $\{f_n^{(k+1)}\}\$ and $\{g_n^{(k+1)}\}\$ are provided in the following result. The generating function methods are of special interest in the study of integer sequences [4]. More applications may be found in e.g. [7, 8].

Proposition 3. For $k \ge 1$, we have

$$\sum_{n=0}^{\infty} f_n^{(k+1)} x^n = \frac{u_k - 2q^k x}{1 - u_k x + q^k x^2},\tag{6}$$

and

$$\sum_{n=0}^{\infty} g_n^{(k+1)} x^n = \frac{u_k - q u_{k-1} x}{1 - p x + q x^2}.$$
(7)

Proof. Let $f(x) = \sum_{n=0}^{\infty} f_n^{(k+1)} x^n$. From (4), it follows that

$$(1 - u_k x + q^k x^2) f(x) = f_0^{(k+1)} + (f_1^{(k+1)} - f_0^{(k+1)} u_k) x$$

= $a^k + b^k + (a^{2k} + b^{2k} - (a^k + b^k)^2) x$
= $u_k - 2q^k x.$

Next, let $g(x) = \sum_{n=0}^{\infty} g_n^{(k+1)} x^n$. By virtue of (5), we obtain

$$(1 - px + qx^2)g(x) = g_0^{(k+1)} + (g_1^{(k+1)} - g_0^{(k+1)}p)x$$

= $a^k + b^k + (a^{k-1} + b^{k-1} - (a^k + b^k)(a+b))x$
= $u_k - qu_{k-1}x$.

Finally, we derive an analogue of the famous Simson's identity [11] for the Lucas sequence. More results of this flavor can be found in [10].

Proposition 4. Define a normalized sequence by

$$\tilde{g}_n^{(k+1)} = \frac{g_n^{(k+1)}}{a^k - b^k},$$

then

$$\tilde{g}_{n-k}^{(k+1)}\tilde{g}_{n+k}^{(k+1)} - (\tilde{g}_n^{(k+1)})^2 = q^n.$$
(8)

Proof. By definition, it suffices to prove

$$g_{n-k}^{(k+1)}g_{n+k}^{(k+1)} - (g_n^{(k+1)})^2 = q^n(a^k - b^k)^2.$$
(9)

The right-hand side of (9) reduces to

$$(a^{n} + b^{n})(a^{n+2k} + b^{n+2k}) - (a^{n+k} + b^{n+k})^{2} = (ab)^{n}(a^{k} - b^{k})^{2}$$
$$= q^{n}(a^{k} - b^{k})^{2}$$

as required. \square

References

A. Bérczes, K. Liptai, I. Pink, On generalized balancing sequences. *Fi-bonacci Quart.*, 48(2010) 121–128

- [2] L. Carlitz, Congruence properties of certain polynomial sequences. Acta Arith., 6(1960) 149–158
- [3] G.-S. Cheon, H. Kim, L. W. Shapiro, A generalization of Lucas polynomial sequence. *Discrete Appl. Math.*, 157(2009) 920–927
- [4] A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J., 32(1965) 437–446
- [5] T. Koshy, Fibonacci and Lucas Numbers with Applications. Wiley-Interscience, New York, 2001
- [6] P. Ribenboim, *The Little Book of Bigger Primes*. Springer-Verlag, New York, 2004
- [7] Y. Shang, A remark on the chromatic polynomials of incomparability graphs of posets. *Int. J. Pure Appl. Math.*, 67(2011) 159–164
- [8] Y. Shang, Distribution dynamics for SIS model on random networks. J. Biol. Syst., 20(2012) 213–220
- [9] A. G. Shannon, Another generalization of the Fibonacci and Lucas numbers. Notes Number Theory Discrete Math., 16(2010) 11–17
- [10] A. G. Shannon, R. S. Melham, Carlitz generalizations of Lucas and Lehmer sequences. *Fibonacci Quart.*, 31/2(1993) 105–111
- [11] R. Simson, An explication of an obscure passage in Albert Girard's commentary upon Simon Stevin's works. *Philosophical Transactions*, 48(1753) 368–377