Prime Number Sieve Using LCM Function

Predrag Terzic
Podgorica, Montenegro
pedja.terzic@hotmail.com

July 21, 2014

Abstract

Prime number sieve using LCM function is introduced . Keywords: Prime numbers, Sieve AMS Classification : 11A41

1 Introduction

French amateur mathematician Benoit Cloitre conjectured following :
Let $a_{1}=1$, for $n>1, a_{n}=a_{n-1}+\operatorname{lcm}\left(a_{n-1}, n\right)$ [1], then $a_{n+1} / a_{n}-1$ consists of 1's or primes only. In this note we present prime number sieve based on variation of this conjecture.

2 Main Result

Definition : Let $\mathrm{b}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}-2}+\operatorname{lcm}\left(\mathrm{n}-1, \mathrm{~b}_{\mathrm{n}-2}\right)$ with $\mathrm{b}_{1}=2, \mathrm{~b}_{2}=2$ and $\mathrm{n}>2$.
Let $a_{n}=b_{n+2} / b_{n}-1$

Conjecture :

1. Every term of this sequence, a_{i}, is either prime or 1 .
2. Every odd prime number is member of this sequence.
3. Every new prime in sequence is a next prime from the largest prime already listed .

Maxima implementation of sieve :

load(functs);
n:1000;
b1:2;
b2:2;
max:2;
k:3;
i:1;
while $\max <=\mathrm{n}$ do (if $\mathrm{i}=1$ then(print(max), $\mathrm{i}: 0), \mathrm{b} 3: \mathrm{b} 1+\mathrm{lcm}(\mathrm{k}-1, \mathrm{~b} 1)$, $\mathrm{a}: \mathrm{b} 3 / \mathrm{b} 1-1, \mathrm{k}: \mathrm{k}+1$, b1:b2, b2:b3, if $\max <a$ then (max:a, i:1));

References

[1] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A135504.

