Two sequences of primes whose formulas contain the powers of the number 2

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I present two possible infinite sequences of primes, having in common the fact that their formulas contain the powers of the number 2.

Conjecture 1:

There exist an infinity of primes of the form $2^{\wedge} m+n \wedge 2$, where m is non-null positive integer and n odd integer.

```
The first few such primes for [m, n] = [2, n]:
: 3^2 + 4 = 13 for n = 3;
: 5^2 + 4 = 29 for n = 5;
: 7^2 + 4 = 53 for n = 7;
: 13^2 + 4 = 173 for n = 13;
: 17^2 + 4 = 293 for n = 17.
```

The first few such primes for $[m, n]=[4, n]$:
$: \quad 5^{\wedge} 2+16=41$ for $n=5$;
: $\quad 11^{\wedge} 2+16=137$ for $\mathrm{n}=11$;
: $\quad 29^{\wedge} 2+16=857$ for $n=29$;
: $31^{\wedge} 2+16=977$ for $\mathrm{n}=31$;
$: \quad 41^{\wedge} 2+16=1697$ for $\mathrm{n}=41$.
The first few such primes for $[m, n]=[8, n]$:
: $\quad 5^{\wedge} 2+256=281$ for $n=5$;
: $19^{\wedge} 2+256=617$ for $n=19$;
: $29^{\wedge} 2+256=1097$ for $\mathrm{n}=29$;
: $31^{\wedge} 2+256=1217$ for $n=31$;
$: \quad 71^{\wedge} 2+256=5297$ for $\mathrm{n}=71$.
The first few such primes for $[m, n]=[m, 1]$:
: $\quad 2^{\wedge} 1+1=3$ for $m=1$;
: $\quad 2^{\wedge} 2+1=5$ for $m=2$;
: $\quad 2^{\wedge} 4+1=17$ for $m=4$;
: $\quad 2^{\wedge} 8+1=257$ for $m=8$;
$: \quad 2^{\wedge} 16+1=65537$ for $m=16$.
The first few such primes for $[m, n]=[m, 3]$:
: $\quad 2^{\wedge} 1+9=11$ for $m=1$;
: $\quad 2^{\wedge} 2+9=13$ for $m=2$;
: $\quad 2^{\wedge} 3+9=17$ for $m=3$;
: $\quad 2^{\wedge} 5+9=41$ for $m=5$;
: $\quad 2^{\wedge} 6+9=73$ for $m=6$.

Conjecture 2:

```
There exist an infinity of primes of the form ( 2^n)^k +
2^n + 1, where n is non-null positive integer and k
positive integer.
The first few such primes for [n, k] = [n, 1]:
: 5 for n = 1;
: 17 for n = 3;
: 257 for n = 7.
The first few such primes for [n, k] = [n, 2]:
: 7 for n = 1;
: 73 for n = 3;
: 262657 for n = 9.
The first few such primes for [n, k] = [n, 3]:
: 11 for n = 1;
: 521 for n = 3;
: 32801 for n = 5.
The first few such primes for [n, k] = [1, k]:
: 5 for k = 1;
: }7\mathrm{ for k = 2;
: 11 for k = 3.
The first few such primes for [n, k] = [3, k]:
: 17 for k = 1;
: 73 for k = 2;
: 521 for k = 3.
The first few such primes for [n, k] = [5, k]:
: 32801 for k = 3;
: 1048609 for k = 4;
: 1073741857 for k=6.
```

