An Application of Hardy-Littlewood Conjecture

JinHua Fei
ChangLing Company of Electronic Technology Baoji Shannxi P.R.China
E-mail: feijinhuayoujian@msn.com

Abstract. In this paper, we assume that weaker Hardy-Littlewood Conjecture, we got a better upper bound of the exceptional real zero for a class of prime number module.

Keyword. Hardy-Littlewood Conjecture, Exceptional real Zero
MR(2000) Subject Classification 11P32, 11M20

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and in all of mathematics. It states: Every even integer greater than 2 can be expressed as the sum of two primes.

In 1923, Hardy and Littlewood conjectured

$$
\sum_{\substack{3 \leq p_{1}, p_{2} \leq N \\ p_{1}+p_{2}=N}} 1 \approx \frac{N}{\varphi(N)} \prod_{p \nmid N}\left(1-\frac{1}{(p-1)^{2}}\right) \frac{N}{\log ^{2} N}
$$

where N is even integer and $N \geq 6, p_{1}, p_{2}$ are the prime numbers, $\varphi(n)$ is Euler function.

Under a weaker assumption, we got a better upper bound of the exceptional real zero for a class of the prime number module.

Weaker Hardy-Littlewood Conjecture. Let N is even integer and $N \geq 6$, p_{1}, p_{2} are the prime numbers. There is an absolute constant $\delta>0$, we have

$$
\sum_{\substack{3 \leq p_{1}, p_{2} \leq N \\ p_{1}+p_{2}=N}} 1 \geq \frac{\delta N}{\log ^{2} N}
$$

Under the above conjecture, we have the following theorem
Theorem. Let q is a prime number and $q \equiv 3(\bmod 4)$, it has exceptional real character χ, and its Dirichlet $L(s, \chi)$ function has an exceptional real zero β. If Weaker Hardy-Littlewood Conjecture is correct, then there is a positive constant c, we have

$$
\beta \leq 1-\frac{c}{\log ^{2} q}
$$

Now, we do some preparation work.

Lemma 1.

$$
\sum_{k=1}^{m} e\left(\frac{k n}{m}\right)=\left\{\begin{array}{l}
m \quad \text { if } n \equiv 0(\bmod m) \\
0 \quad \text { otherwise }
\end{array}\right.
$$

where $e(x)=e^{2 \pi i x}$
The lemma 1 is obvious
Lemma 2. There is a constant $c_{1}>0$ such that

$$
\pi(x)=L i x+O\left(x \exp \left(-c_{1} \sqrt{\log x}\right)\right)
$$

uniformly for $x \geq 2$. Where Lix $=\int_{2}^{x} \frac{d u}{\log u}$, and $\exp (x)=e^{x}$
The lemma 2 follows from the References [2], Theorem 6.9 of the page 179.
It is easy to see that

$$
\text { Lix }=\int_{2}^{x} \frac{d u}{\log u}=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

Lemma 3. Let c_{2} be the positive constant. if $(a, q)=1$, then

$$
\pi(x ; q, a)=\frac{\operatorname{Lix}}{\varphi(q)}-\frac{\chi(a)}{\varphi(q)} \int_{2}^{x} \frac{u^{\beta-1}}{\log u} d u+O\left(x \exp \left(-c_{2} \sqrt{\log x}\right)\right)
$$

when there is an exceptional character χ modulo q and β is the concomitant zero.

The lemma 3 follows from the References [2], Corollary 11.20 of the page 381

It is easy to see that

$$
\int_{2}^{x} \frac{u^{\beta-1}}{\log u} d u=\frac{x^{\beta}}{\beta \log x}+O\left(\frac{x^{\beta}}{\log ^{2} x}\right)
$$

Lemma 4. if $(n, m)=1$, then

$$
\sum_{\substack{k=1 \\(k, m)=1}}^{m} e\left(\frac{n k}{m}\right)=\mu(m)
$$

where $\mu(m)$ is Möbius function.
The lemma 4 follows from the References [1], the page 45.
Lemma 5. if χ is a primitive character modulo m, then

$$
\sum_{k=1}^{m} \chi(k) e\left(\frac{n k}{m}\right)=\bar{\chi}(n) \tau(\chi)
$$

where $\tau(\chi)=\sum_{k=1}^{m} \chi(k) e\left(\frac{k}{m}\right)$.
The lemma 5 follows from the References [1], the page 47.
Lemma 6. if m is odd square-free and χ is a primitive real character modulo m, then

$$
\tau(\chi)= \begin{cases}\sqrt{m} & \text { if } m \equiv 1(\bmod 4) \\ i \sqrt{m} & \text { if } m \equiv 3(\bmod 4)\end{cases}
$$

The lemma 6 follows from the References [1], the theorem 3.3 of the page 49.

PROOF OF THEOREM.

The first part.
By Lemma 1, when $x \geq q^{4}$, we have

$$
\begin{aligned}
& \sum_{k=1}^{q}\left(\sum_{3 \leq p \leq x} e\left(\frac{k p}{q}\right)\right)^{2}=\sum_{k=1}^{q} \sum_{3 \leq p_{1} \leq x} \sum_{3 \leq p_{2} \leq x} e\left(\frac{k\left(p_{1}+p_{2}\right)}{q}\right) \\
= & \sum_{3 \leq p_{1} \leq x} \sum_{3 \leq p_{2} \leq x} \sum_{k=1}^{q} e\left(\frac{k\left(p_{1}+p_{2}\right)}{q}\right)=q \sum_{\substack{3 \leq p_{1}, p_{2} \leq x \\
p_{1}+p_{2}=(q)}} 1 \geq q \sum_{n=1}^{\substack{\left.\frac{x}{2 q}\right]}} \sum_{\substack{3 \leq p_{1}, p_{2} \leq x \\
p_{1}+p_{2}=2 n q}} 1
\end{aligned}
$$

by Weaker Hardy-Littlewood Conjecture, the above formula

$$
\begin{aligned}
& \geq q \sum_{n=1}^{\left[\frac{x}{2 q}\right]} \frac{\delta 2 n q}{\log ^{2} 2 n q} \geq q \sum_{n=1}^{\left[\frac{x}{2 q}\right]} \frac{\delta 2 n q}{\log ^{2} x} \geq \frac{2 \delta q^{2}}{\log ^{2} x} \sum_{n=1}^{\left[\frac{x}{2 q}\right]} n \\
= & \frac{2 \delta q^{2}}{\log ^{2} x} \cdot \frac{\left[\frac{x}{2 q}\right]\left(\left[\left[\frac{x}{2 q}\right]+1\right)\right.}{2} \geq \frac{\delta x^{2}}{4 \log ^{2} x}+O\left(\frac{x q}{\log ^{2} x}\right)
\end{aligned}
$$

The second part.

When $1 \leq k \leq q-1$, we have

$$
\sum_{3 \leq p \leq x} e\left(\frac{p k}{q}\right)=\sum_{\substack{3 \leq p \leq x \\(p, q)=1}} e\left(\frac{p k}{q}\right)+1=1+\sum_{\substack{a=1 \\(a, q)=1}}^{q} e\left(\frac{a k}{q}\right) \sum_{\substack{3 \leq p \leq x \\ p \equiv a(q)}} 1
$$

by Lemma 3, Lemma 4, Lemma 5 and Lemma 6, the above formula

$$
\begin{gathered}
=1+\sum_{\substack{a=1 \\
(a, q)=1}}^{q} e\left(\frac{a k}{q}\right)\left(\frac{L i x}{\varphi(q)}-\frac{\chi(a)}{\varphi(q)} \int_{2}^{x} \frac{u^{\beta-1}}{\log u} d u+O\left(x \exp \left(-c_{2} \sqrt{\log x}\right)\right)\right) \\
=\frac{\mu(q) L i x}{q-1}-\frac{\tau(\chi) \chi(k)}{q-1} \int_{2}^{x} \frac{u^{\beta-1}}{\log u} d u+O\left(q x \exp \left(-c_{2} \sqrt{\log x}\right)\right) \\
\\
=-\frac{i \sqrt{q} \chi(k)}{q-1} \int_{2}^{x} \frac{u^{\beta-1}}{\log u} d u+O\left(\frac{x}{q \log x}+q x \exp \left(-c_{2} \sqrt{\log x}\right)\right)
\end{gathered}
$$

therefore

$$
\begin{aligned}
& \left(\sum_{3 \leq p \leq x} e\left(\frac{p k}{q}\right)\right)^{2}=\left(-\frac{i \sqrt{q} \chi(k)}{q-1} \int_{2}^{x} \frac{u^{\beta-1}}{\log u} d u\right)^{2} \\
& \quad+O\left(\frac{x^{2}}{q^{\frac{3}{2}} \log ^{2} x}+q^{2} x^{2} \exp \left(-c_{2} \sqrt{\log x}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{q}{(q-1)^{2}}\left(\int_{2}^{x} \frac{u^{\beta-1}}{\log u} d u\right)^{2}+O\left(\frac{x^{2}}{q^{\frac{3}{2}} \log ^{2} x}+q^{2} x^{2} \exp \left(-c_{2} \sqrt{\log x}\right)\right. \\
& =-\frac{q}{\beta^{2}(q-1)^{2}} \frac{x^{2 \beta}}{\log ^{2} x}+O\left(\frac{x^{2}}{q \log ^{3} x}+\frac{x^{2}}{q^{\frac{3}{2}} \log ^{2} x}+q^{2} x^{2} \exp \left(-c_{2} \sqrt{\log x}\right)\right.
\end{aligned}
$$

therefore

$$
\sum_{k=1}^{q}\left(\sum_{3 \leq p \leq x} e\left(\frac{p k}{q}\right)\right)^{2}=\left(\sum_{3 \leq p \leq x} 1\right)^{2}+\sum_{k=1}^{q-1}\left(\sum_{3 \leq p \leq x} e\left(\frac{p k}{q}\right)\right)^{2}
$$

by Lemma 2, the above formula

$$
=\frac{x^{2}}{\log ^{2} x}-\frac{q x^{2 \beta}}{\beta^{2}(q-1) \log ^{2} x}+O\left(\frac{x^{2}}{\log ^{3} x}+\frac{x^{2}}{\sqrt{q} \log ^{2} x}+q^{3} x^{2} \exp \left(-c_{3} \sqrt{\log x}\right)\right)
$$

We integrated the first part and second part

$$
\begin{gathered}
\frac{x^{2 \beta}}{\log ^{2} x} \leq\left(1-\frac{\delta}{4}\right) \frac{x^{2}}{\log ^{2} x}+O\left(\frac{x^{2}}{\log ^{3} x}+\frac{x^{2}}{\sqrt{q} \log ^{2} x}+q^{3} x^{2} \exp \left(-c_{3} \sqrt{\log x}\right)\right) \\
x^{2 \beta-2} \leq 1-\frac{\delta}{4}+O\left(\frac{1}{\log x}+\frac{1}{\sqrt{q}}+q^{3} \log ^{2} x \exp \left(-c_{3} \sqrt{\log x}\right)\right)
\end{gathered}
$$

we take $\log x=\left(\frac{4}{c_{3}} \log q\right)^{2}$, then

$$
x^{2 \beta-2} \leq 1-\frac{\delta}{4}+\frac{c_{4}}{\log ^{2} q}
$$

we take $\log q \geq \sqrt{\frac{8 c_{4}}{\delta}}$, then

$$
x^{2 \beta-2} \leq 1-\frac{\delta}{8}
$$

$$
\beta-1 \leq \frac{\log \left(1-\frac{\delta}{8}\right)}{2 \log x}=-\frac{\log \left(\frac{8}{8-\delta}\right)}{2 \log x}
$$

therefore

$$
\beta \leq 1-\frac{c}{\log ^{2} q}
$$

This completes the proof of Theorem.

REFERENCES

[1] Henryk Iwaniec, Emmanuel Kowalski, Analytic Number Theory, American mathematical Society, 2004.
[2] Hugh L. Montgomery, Robert C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, 2006.

