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Abstract: Possible solution of the Schrödinger’s cat paradox is considered.We

pointed out
that the collapsed state of the cat always shows definite and predictable

outcomes even if
cat also consists of a superposition:

cat  c1 live cat  c2 death cat .
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I. Introduction
As Weinberg recently reminded us [1], the measurement problem remains a

fundamental conundrum. During measurement the state vector of the microscopic
system collapses in a probabilistic way to one of a number of classical states, in a
way that is unexplained, and cannot be described by the time-dependent
Schrödinger equation [1].To review the essentials, it is sufficient to consider
two-state systems. Suppose a nucleus n, whose Hilbert space is spanned by
orthonormal states |sit, i  1,2,where |s1t  undecayed nucleus at instant t

and |s2t  decayed nucleus at instant t is in the superposition state,

|t n  c1|s1t  c2|s2t, |c1 |2  |c2 |2  1.
1.1

A measurement apparatus A, which may be microscopic or macroscopic, is
designed to distinguish between states |sit by transitioning at each instant t into
state |ait if it finds n is in |sit, i  1,2. Assume the detector is reliable, implying
the |a1t and |a2t are orthonormal at each instant t ,i.e., 〈a1t||a2t  0 and



that the measurement interaction does not disturb states |si  -i.e., the measurement
is “ideal”. When A measures |t n, the Schrödinger equation’s unitary time
evolution then leads to the “measurement state” |t nA :

|t nA  c1|a1t  c2|a2t, |c1 |2  |c2 |2  1.
1.2

of the composite system nA following the measurement.
Standard formalism of continuous quantum measurements [2],[3],[4],[5] leads to

a definite but unpredictable measurement outcome, either |a1t or |a2t and that
|t n suddenly “collapses” at instant t ′ into the corresponding state |sit ′. But
unfortunately equation (1.2) does not appear to resemble such a collapsed state at
instant t ′?.

The measurement problem is as follows:
(I) How do we reconcile canonical collapse models postulate’s
(II) How do we reconcile the measurement postulate’s definite outcomes with

the
“measurement state” |t nA at each instant t and
(III) how does the outcome become irreversibly recorded in light of the

Schrödinger equation’s unitary and, hence, reversible evolution?
This paper deals with only the special case of the measurement problem,

known as Schrödinger’s Cat paradox. For a good and complete explanation of this
paradox see Leggett [6] and Hobson [7].

Pic.1.1.Schrödinger’s cat.

Schrödinger’s cat: a cat, a flask of poison, and a radioactive source are placed
in a sealed box. If an internal monitor detects radioactivity (i.e. a single atom
decaying), the flask is shattered, releasing the poison that kills the cat. The
Copenhagen interpretation of quantum mechanics implies that after a while, the cat
is simultaneously alive and dead. Yet, when one looks in the box, one sees the cat
either alive or dead, not both alive and dead. This poses the question of when
exactly quantum superposition ends and reality collapses into one possibility or the



other.

The canonical collapse models.

In order to appreciate how canonical collapse models work, and what they are
able to achieve, we briefly review the GRW model. Let us consider a system of n
particles which, only for the sake of simplicity, we take to be scalar and spinless;
the GRW model is defined by the following postulates: (1) The state of the system
is represented by a wave function tx1,x2, . . . ,xn belonging to the Hilbert space
ℒ23n. (2) At random times, the wave function experiences a sudden jump of the
form:

tx1,x2, . . . ,xn → tx1,x2, . . . ,xn;
xm 

m
xmtx1,x2, . . . ,xn

‖m
xmtx1,x2, . . . ,xn‖2

,

1.3

where tx1,x2, . . . ,xn is the state vector of the whole system at time t,
immediately prior to the jump process and n

xm is a linear operator which is
conventionally chosen equal to:

m
xm  rc

2−3/4 exp −
xm −

xm
2

2rc
2 ,

1.4

where rc is a new parameter of the model which sets the width of the localization
process, and xm is the position operator associated to the m-th particle of the
system and the random variable xm corresponds to the place where the jump
occurs. (3) It is assumed that the jumps are distributed in time like a Poissonian
process with frequency   GRW this is the second new parameter of the model.
(4) Between two consecutive jumps, the state vector evolves according to the
standard Schrödinger equation.

The 1-particle master equation of the GRW model takes the form

d
dt
t  − i


H,t − Tt.

1.5

Here H is the standard quantum Hamiltonian of the particle, and T represents the
effect of the spontaneous collapses on the particle’s wave function. In the position
representation, this operator becomes:

〈x|Tt|y   1 − exp − x − y
2

4rc
2 〈x|t|y.

1.6

Another modern approach to stochastic reduction is to describe it using a



stochastic nonlinear Schrödinger equation, an elegant simplied example of which is
the following one particle case known as Quantum Mechanics with Universal
Position Localization [QMUPL]:

d|tx  − i

H − kq − 〈qt 

2dt |txdt  2k q − 〈qt dWt|tx.
1.7

Here q is the position operator, 〈qt   〈t |
q|t  it is its expectation value, and k is a

constant, characteristic of the model, which sets the strength of the collapse
mechanics, and it is chosen proportional to the mass m of the particle according to
the formula: k  m/m00, where m0 is the nucleon’s mass and 0 measures the
collapse strength. It is easy to see that Eqn.(1.5) contains both non-linear and
stochastic terms, which are necessary to induce the collapse of the wave function.

For an examle let us consider a free particle (H  p2/2m), and a Gaussian state:

tx  exp −atx − xt2  iktx .
1.8

It is easy to see that tx given by Eq.(1.6) is solution of Eq.(1.5), where

dat

dt
 k − 2i

m at
2, dxt

dt
 

m kt 
k

2Reat
Ẇt,

dkt

dt
 − k

Imat
Reat

Ẇt.
1.9

The CSL model is defined by the following stochastic differential equation in the
Fock space:

d|tx  − i

H − k Mx − 〈Mtx

2
dt |txdt 

 2k Mx − 〈Mtx dWtx|tx.

1.10

II.Generalized Gamow theory of the alpha decay via tunneling using GRW
collapse model.

By 1928, George Gamow had solved the theory of the alpha decay via
tunneling [7]. The alpha particle is trapped in a potential well by the nucleus.
Classically, it is forbidden to escape, but according to the (then) newly discovered
principles of quantum mechanics, it has a tiny (but non-zero) probability of
"tunneling" through the barrier and appearing on the other side to escape the
nucleus. Gamow solved a model potential for the nucleus and derived, from first
principles, a relationship between the half-life of the decay, and the energy of the
emission.



The -particle has total energy E and is incident on the barrier from the right to

left.

Рiс.2.1.The particle has total energy E and

is incident on the barrier Vx from right to left.

The Schrödinger equation in each of regions I  x|x  0, II  x|0 ≤ x ≤ l
and III  x|x  l takes the folloving form

∂2x
∂x2

 2m
2

E − Uxx  0,
2.1

where

Ux 

0 for x  0

U0 for 0 ≤ x ≤ l

0 for x  l

2.2

The solutions reads [8]:

IIIx  C expikx  C− exp−ikx,

IIx  B expk ′x  B− exp−k ′x,

Ix  Acoskx  A
2
expikx  exp−ikx,

2.3

where

k  2


2mE ,

k ′  2


2mU0 − E .
2.4

At the boundary x  0 we have the following boundary conditions:



I0|x0  II0|x0,
∂Ix
∂x x0


∂IIx
∂x x0

.
2.5

At the boundary x  l we have the following boundary conditions

IIl|xl  IIIl|xl,
∂IIx
∂x xl


∂IIIx
∂x xl

.
2.6

From the boundary conditions (2.5)-(2.6) one obtains [8]:

B  A
2

1  i k
k ′

,B−  A
2

1 − i k
k ′

,

C  Achk ′l  iDshk ′l,C−  iASshk ′lexpikl,

D  1
2

k
k ′
− k ′

k
,S  1

2
k
k ′

 k ′
k

.

2.7

From (2.7) one obtain the conservation law

|A|2  |C |2 − |C− |2.

Let us introduce now a function EIIx, l  2x, lE2x, l where

E2x, l 
rc

2−1/4 exp − x2

2rc
2 for −   x  l

2

rc
2−1/4 exp − x − l2

2rc
2 for l

2
≤ x  

2x, l 
1 for x ∈ 0, l
0 for x ∉ 0, l

2.8

Assumption 2.1. We assume now that:
(i) at instant t  0 the wave function Ix experiences a sudden jump of the

form

Ix → I
#x 

I
x Ix

‖I
x Ix‖2

, 2.9

where I
x  is a linear operator which is chosen equal to:



I
x   rc

2−1/41
x , lexp −

x 2

2rc
2 ;

2.10

where

1x, l 
1 for x ∈ −l, 0,

0 for x ∉ −l, 0.

Remark 2.1. Note that: suppI
#x ⊆ −l, 0

(ii) at instant t  0 the wave function IIx experiences a sudden jump of the
form

IIx → II
# x 

II
x IIx

‖II
x IIx‖2

,
2.11

where II
x  is a linear operator which is chosen equal to:

II
x   EII

x , l;
2.12

Remark 2.2. Note that: suppII
# x ⊆ 0, l.

(iii) at instant t  0 the wave function IIIx experiences a sudden jump of the
form

IIIx → III
# x 

III
x IIIx

‖III
x IIIx‖2

, 2.13

where III
x  is a linear operator which is chosen equal to:

III
x   rc

2−1/4 exp − 
x − l2

2rc
2 .

2.14

Remark 2.3. Note that. We have choose operators (2.10),(2.12) and (2.14)
such that the boundary conditions (2.5),(2.6) is satisfied.

Definition 2.1. Let x be an solution of the Schrödinger equation (2.1). The
stationary Schrödinger equation (2.1) is a weakly well preserved in region Γ ⊆  by
collapsed wave function #x if there exist an wave function x such that the
estimate




Γ

∂2#x
∂x2

 2m
2

E − Ux#x dx  O2, 2.15

where  ≥ 1, is satisfied.
Proposition 2.1.The Schrödinger equation in each of regions I, II, III is a

weakly well preserved by collapsed wave function I
#x,II

# x and III
# x

correspondingly.
Proof. See Appendix B.
Definition 2.2.Let us consider the time-dependent Schrödinger equation:

i
∂x, t
∂t

 Hx, t,

t ∈ 0,T,x ∈3n.

2.16

The time-dependent Schrödinger equation (2.16) is a weakly well preserved by
corresponding to x, t collapsed wave function #x, t

#x1,x2, . . . ,xn, t 

x1,x2, . . . ,xn, t;
xm1 , . . . ,

xmk  


m1,...,mk

xm1 , . . . ,
xmk x1,x2, . . . ,xn, t

‖m1,...,mk
xm1 , . . . ,

xmk x1,x2, . . . ,xn, t‖2
,

m1,...,mk
xm1 , . . . ,

xmk  
i1

k

mi
xmi 

in region Γ ⊆ 3d if there exist an wave function x, t such that the estimate


Γ

i
∂#x, t
∂t

− H#x, t d3dx  O,

t ∈ 0,T,x ∈3d,

2.17

where  ≥ 1, is satisfied.
Definition 2.3. Let #x, t#x1,x2, . . . ,xd, t be a function
x1,x2, . . . ,xd, t;

x 1 , . . . ,
x d .Let us consider the Probability Current Law



∂
∂t

PΓ, t  
∂Γ

Jx1,x2, . . . ,xd, t  nd2dx  O,

Jx1,x2, . . . ,xd, t  x, t∇x, t − x, t∇x, t,

t ∈ 0,T,x ∈3d,

2.18

corresponding to Schrödinger equation (2.16). Probability Current Law (2.18) is a

weakly well preserved by corresponding to x, t collapsed wave function #x, t
in region Γ ⊆ 3d if there exist an wave function x, t such that the estimate

∂
∂t

PΓ, t  
∂Γ

J#x1,x2, . . . ,xd, t  nd2dx  O,

J#x1,x2, . . . ,xd, t  #x, t∇#x, t − #x, t∇#x, t

 O,

t ∈ 0,T,x ∈3d,

2.19

where  ≥ 1, is satisfied.
Proposition 2.2. Assume that there exist an wave function x, t such that the

estimate
(2.17) is satisfied. Then Probability Current Law (2.18) is a weakly well

preserved by corresponding to x, t collapsed wave function #x, t in region
Γ ⊆ 3d, i.e. the estimate (2.19) is satisfied on the wave function #x, t.

III. Schrödinger’s Cat paradox resolution
III.1. Resolution of the Schrödinger’s cat paradox using canonical von

Neumann
postulate
Let |s1t and |s2t be

|s1t  undecayed nucleus at instant t ,

|s2t  decayed nucleus at instant t .

3.1

In a good approximation we assume now that

|s10  
−


II

# x|xdx
3.2



and

|s20  
−


I

#x|xdx.
3.3

Remark 3.1. Note that: (i) |s20  decayed nucleus at instant 0 
 free -particle at instant 0 . (ii) Feynman propagator of a free -particle are [9]:

K2x, t,x0  m
2it

1/2
exp i


mx − x02

2t
. 3.4

Therefore from Eq.(3.3),Eq.(2.9) and Eq.(3.4) we obtain

|s2t  
−


I

#x, t|xdx,

I
#x, t  

−

0

I
#x0K2x, t,x0dx0 

rc
2−1/4  m

2it

1/2
 
−

0

1x0, lexp −
x0
2

2rc
2 exp −i 2


2mE x0 

exp i


mx − x02

2t
dx0 

rc
2−1/4  m

2it

1/2

 
−l

0

1x0, lexp −
x0
2

2rc
2 

exp i


mx − x02

2t
−  4mE x0 dx0 

rc
2−1/4  m

2it

1/2
 
−l

0

1x0, lexp −
x0
2

2rc
2  exp i


St,x,x0 dx0,

3.5

where

St,x,x0 
mx − x02

2t
−  8mE x0.

3.6

We assume now that

  2rc
2  l2  1. 3.7

Oscillatory integral in RHS of Eq.(3.5) is calculated now directly using stationary
phase approximation. The phase term Sx,x0 given by Eq.(3.6) is stationary when



∂St,x,x0
∂x0

 − mx − x0
t −  8mE  0. 3.8

Therefore

− mx − x0
t −  8mE  0,

−x − x0  t 8E/m ,
3.9

and thus stationary point x0t,x are

x0t,x  t 8E/m  x.
3.10

Thus from Eq.(3.5) and Eq.(3.10) using stationary phase approximation we obtain

|s2t  |s2t  
−


I

#x, t|xdx,

I
#x, t 

rc
2−1/4  1x0t,x, lexp −

x0
2t,x
2rc

2  exp i

St,x,x0t,x  O,

3.11

where

Sx,x0t,x 
mx − x0t,x2

2t
−  8mE x0t,x.

3.12

From Eq.(3.11) we obtain

〈s2t||s2t ≃ rc
2−1/2  1 x  t 8E/m , l exp −

x  t 8E/m
2

rc
2 . 3.13

Remark 3.2. From the inequality (3.7) and Eq.(3.13) follows that -particle at
each instant t ≥ 0 moves quasiclassically from right to left by the law

xt  −t 8E/m , 3.14

i.e. i.e.,estimating the position xt,x0, t0; at each instant t ≥ 0 with final error rc

gives |〈xt − xt| ≤ rc, i  1, . . . ,d with a probability

P|〈xt, 0, 0; − xt| ≤ rc  1.

Remark 3.3. We assume now that a distance between radioactive source and
internal monitor which detects a single atom decaying (see Pic.1) is equal to L.

Proposition 3.1. After -decay at instant t  0 the collaps:
live cat → death cat arises at instant



T  L
 8E/m

3.15

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Note that. In this case Schrödinger’s cat in fact permorm the single
measurement of -particle position with accuracy of x  l at instant t  T (given by
Eq.(3.15)) by internal monitor (see Pic.1.1). The probability of getting a result L with

accuracy of x  l given by


|L−x|≤l/2

|〈x||s2T|2dx  1. 3.16

Therefore at instant T the -particle kills Schrödinger’s cat with a probability
PT death cat  1.

Remark 3.4.Note that. When Schrödinger’s cat has permormed this
measurement the immediate post measurement state of -particle (by von
Neumann postulate C.4.) will end up in the state

|T  

|L−x|≤l/2

|x〈x||s2Tdx


|L−x|≤l/2

|〈x||s2T|2dx
 

|L−x|≤l/2
|x〈x||s2Tdx. 3.17

From Eq.(3.17) one obtains

〈x ′ ||T   
|L−x|≤l/2

〈x ′ ||x〈x||s2Tdx  
|L−x|≤l/2

x ′ − x〈x||s2Tdx  I
#x ′, t. 3.18

Therefore the state |T  again kills Schrödinger’s cat with a probability
PT death cat  1.

Suppose now that a nucleus n, whose Hilbert space is spanned by orthonormal
states |sit, i  1,2,where |s1t  undecayed nucleus at instant t and

|s2t  decayed nucleus at instant t is in the superposition state

|t n  c1|s1t  c2|s2t, |c1 |2  |c2 |2  1.
3.19

Remark 3.5. Note that: (i) |s10  undecayed nucleus at instant t  0 
 -particle iside region 0, l at instant t  0 . (ii) Feynman propagator of

-particle inside region 0, l are [9]:

K2x, t,x0  m
2it

1/2
exp i


St,x,x0 ,

3.20

where



St,x,x0 
mx − x02

2t
 mtU0 − E.

3.21

Therefore from Eq.(2.11)-Eq.(2.12) and Eq.(3.20)-Eq.(3.21) we obtain

|s1t  
−


II

# x, t|xdx,

II
# x, t  

0

l

II
# x0K2x, t,x0dx0 

m
2it

1/2 
0

l

Ex0, lIIx0lx0exp i

St,x,x0 dx0,

3.22

where

lx 
1 for x ∈ 0, l
0 for x ∉ 0, l

Remark 3.6.We assume for simplification now that

k ′ ≤ 1. 3.23

Therefore oscillatory integral in RHS of Eq.(3.22) is calculated now directly using
stationary phase approximation. The phase term Sx,x0 given by Eq.(3.21) is
stationary when

∂St,x,x0
∂x0

 − mx − x0
t  0. 3.24

and thus stationary point x0t,x are

−x  x0  0

x0t,x  x.
3.25

Thus from Eq.(3.22) and Eq.(3.25) using stationary phase approximation we obtain

II
# x, t 

Ex0t,x, lIIx0t,xlx0t,xexp i

St,x,x0t,x  O 

 Ex, lIIxlxexp i

mtU0 − E  O 

Ex, llxO1exp i

mtU0 − E  O.

3.26

Therefore from Eq.(3.22) and Eq.(3.26) we obtain



〈s1t|s1t  |II
# x, t|2  E2x, llxO1  O.

3.27

Remark 3.7. Note that for each instant t  0 :

suppII
# x, t ∩suppI

#x, t  .
Remark 3.8. Note that. From Eq.(3.11),Eq.(3.13), Eq.(3.19), Eq.(3.22)-Eq.(3.27)

and Eq.(A.13) by Remark 3.7 we obtain

n〈t |
x |t n  |c1 |2〈s1t|

x |s1t  |c2 |2〈s2t|
x |s2t 

c1c2
∗〈s2t|

x |s1t  c1
∗c2〈s2t|

x |s1t∗ 

|c1 |2〈s1t|
x |s1t  |c2 |2〈s2t|

x |s2t  |c1 |2l  |c2 |2T 8E/m .

3.28

Proposition 3.2. Suppose that a nucleus n is in the superposition state |t n
(|t n-particle) given by Eq.(3.19). Then the collaps: live cat → death cat arises

at instant

T  L
82E/m

. 3.29

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Note that. In this case Schrödinger’s cat in fact permorm the single
measurement of |t n-particle position with accuracy of x  l at instant t  T
(given by Eq.(3.15)) by internal monitor (see Pic.1.1). The probability of getting a

result L at instant t  T with accuracy of x  l given by


|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|〈x|c1|s1T  c2|s2T|2dx 


|L−x|≤l/2

|c1〈x||s1T  c2〈x||s2T|2dx 


|L−x|≤l/2

|c1
2II

#2x,T  c2
2I

#2x,T  2c1c2I
#x,TII

# x,T|dx.

3.30

From Eq.(3.30) by Remark 3.7 one obtains


|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|c2
2I

#2x,T|dx  |c2 |2 
|L−x|≤l/2

|I
#x,T|2dx  |c2 |2. 3.31

Note that. When Schrödinger’s cat has permormed this measurement the
immediate post measurement state of -particle (by von Neumann postulate C.4.)
will end up in the state



|T n 

|L−x|≤l/2

|x〈x||T ndx


|L−x|≤l/2

|〈x||T n |
2dx



|L−x|≤l/2

|x〈x|c1|s1t  c2|s2tdx


|L−x|≤l/2

|〈x||T n |
2dx



c1 
|L−x|≤l/2

|x〈x||s1t  c2 
|L−x|≤l/2

|x〈x||s2tdx


|L−x|≤l/2

|〈x||T n |
2dx

.

3.32

From Eq.(3.32) by Eq.(3.31) and by Remark 3.7 one obtains

|T n 

|L−x|≤l/2

|x〈x||T ndx


|L−x|≤l/2

|〈x||T n |
2dx



|L−x|≤l/2

|x〈x|c1|s1t  c2|s2tdx


|L−x|≤l/2

|〈x||T n |
2dx



 c2
|c2 |

|L−x|≤l/2

|x〈x||s2tdx.

3.32

Obviously by Remark 3.4 the staite |T n kills Schrödinger’s cat with a probability
PT death cat  1.

III.2. Resolution of the Schrödinger’s cat paradox using generalized von
Neumann

postulate.
Proposition 3.3. Suppose that a nucleus n is in the superposition state given

by Eq.(3.19). the collaps: live cat → death cat arises at instant

T  L
|c2 |2 82E/m

. 3.33

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Let us consider now a state |t n given by Eq.(3.19). This state consists
of a summ of two wave packets c1II

# x, t and c2I
#x, t. Wave packet c1II

# x, t
present an II-particle which lives inside region II with a probability |c1 |2 (see
Рiс.2.1). Wave packet c2I

#x, t present an I-particle which lives inside region I
with a probability |c2 |2 (see Рiс.2.1) and moves from the right to the left. Note that
I ∩ II  . From Eq.(3.28) follows that I-particle at each instant t ≥ 0 moves
quasiclassically from right to left by the law

xt  −|c2 |2t 8E/m , 3.34

From Eq.(3.34) one obtains

T  Tcol ≃ L
|c2 | 82E/m

. 3.35



Note that. In this case Schrödinger’s cat in fact permorm a single measurement of
|t n-particle position with accuracy of x  l at instant t  T  Tcol (given by
Eq.(3.35)) by internal monitor (see Pic.1.1). The probability of getting the result L at

instant t  Tcol with accuracy of x  l by Remark 3.7 and by generalized von
Neumann postulate. C.5. III (see apendix C) given by


|L−x|≤l/2

|〈x||Tcol n |
2dx  

|L−x|≤l/2
|〈x|c1|s1Tcol  c2|s2Tcol|2dx 


|L−x|≤l/2

|c2 |−2〈x|c2 |−2 ||s2Tcol2dx  
|L−x|≤l/2

|c2 |−2|I
#x|c2 |−2,Tcol|

2dx  1.
3.36

Therefore the staite |Tcol n kills Schrödinger’s cat with a probability
PTcol death cat  1.

Thus is the collapsed state of the cat always shows definite and
predictable

outcomes even if cat also consists of a superposition:
cat  c1 live cat  c2 death cat .

Contrary to van Kampen’s [10] and some others’ opinions, “looking” at the
outcome changes nothing, beyond informing the observer of what has already
happened.

We remain: there are widespread claims that Schrödinger’s cat is not in a
definite alive or dead state but is, instead, in a superposition of the two. van
Kampen, for example, writes “The whole system is in a superposition of two states:
one in which no decay has occurred and one in which it has occurred. Hence, the
state of the cat also consists of a superposition:
cat  c1 live cat  c2 death cat . The state remains a superposition until an

observer looks at the cat” [10].

Appendix. A.
The time-dependent Schrodinger equation governs the time evolution of a

quantum mechanical system:

i
∂x, t
∂t

 Hx, t. A. 1

The average, or expectation, value 〈xi  of an observable xi corresponding to a
quantum mechanical operator x i is given by:



〈xi t,x0, t0; 


d

xi|x, t,x0, t0;|2ddx


d

|x, t,x0, t0;|2ddx
.

i  1, . . . ,d.

A. 2

Remark A.1. We assume now that: the solution x, t,x0, t0; of the
time-dependent Schrödinger equation (A.1) has a good approximation by a delta
function such that

|x, t,x0, t0;|2 ≃ 
i1

d

xi − xit,x0, t0,

xit,x0, t0  xi,0,

i  1, . . . ,d.

A. 3

Remark A.2. Note that under conditions given by Eq.(A.3) QM-system which
governed by Schrödinger equation Eq.(A.1) completely evolve quasiclassically i.e.
estimating the position xit,x0, t0;i1

d at each instant t with final error  gives
|〈xi t,x0, t0; − xit,x0, t0| ≤ , i  1, . . . ,d with a probability

P|〈xi t,x0, t0; − xit,x0, t0| ≤  ≃ 1.

Thus from Eq.(A.2) and Eq.(A.3) we obtain

〈xi t,x0, t0; ≃

≃


d

xi
i1

d1

xi − xit,x0, t0ddx


d


i1

d1

xi − xit,x0, t0ddx

 xit,x0, t0.

i  1, . . . ,d.

A. 4

Thus under condition given by Eq.(A.3) one obtain

〈xi,t t,x0, t0; ≃ xit,x0, t0,

i  1, . . . ,d.

A. 5

Remark A.3.Let ix, t,x0, t0, i  1,2 be the solutions of the time-dependent
Schrödinger equation (A.1). We assume now that x, t,x0,y0, t0 is a linear



superposition such that

x, t,x0,y0, t0  c11x, t,x0, t0  c22x, t,y0, t0.

|c1 |2  |c2 |2  1.

A. 6

Then we obtain

|x, t,x0,y0, t0|
2  x, t,x0,y0, t0∗x, t,x0,y0, t0 

 c11x, t,x0, t0  c22x, t,y0, t0 

c1∗1
∗x, t,x0, t0  c2

∗2
∗x, t,x0,y0, t0 

 |c1 |2 |1x, t,x0, t0|2  c1
∗c21

∗x, t,x02x, t,y0, t0 

|c2 |2 |2x, t,y0, t0|
2  c1c2

∗1x, t,x02
∗x, t,y0, t0.

A. 7

Definition A.1. Let 〈xt,x0,y0, t0 be a vector-function

〈xt,x0,y0, t0 : 0,T  d  d  0,T → d

〈xt,x0,y0, t0  〈x1 t,x0,y0, t0, . . . , 〈xd t,x0,y0, t0, A. 8

where



〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx 

c1
∗c2 

d

xi1
∗x, t,x0, t02x, t,y0, t0d

dx 

c1c2
∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0d

dx.

A. 9

Definition A.2. Let Δt,x0,y0, t0 be a vector-function

Δt,x0,y0, t0 : 0,T  d  d → d

Δt,x0,y0, t0  1t,x0,y0, t0, . . . ,dt,x0,y0, t0, A. 10

where

 it,x0,y0, t0  xit,x0,y0, t0 

 c1
∗c2 

d

xi1
∗x, t,x0, t02x, t,y0, t0d

dx 

c1c2
∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0d

dx.

A. 11

Substituting Eqs.(A.11) into Eqs.(A.9) gives



〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx   it,x0,y0, t0 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0.

A. 12

Substitution equations (A.5) into equations (A.12) gives

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0

≃ |c1 |2xit,x0, t0  |c2 |2xit,y0, t0   it,x0,y0, t0.

A. 13

Appendix. B.
The Schrödinger equation (2.1) in region I  x|x  0 has the folloving form

2
∂2Ix
∂x2

 2mEIx  0. B. 1

From Schrödinger equation (B.1) follows



2 
−

0
∂2Ix
∂x2

dx  2mE 
−

0

Ixdx  0. B. 2

Let I
#x be a function

I
#x  xIx, B. 3

where

x  rc
2−1/4 exp x2

2rc
2 B. 4

see Eq.(2.9). Note that

∂2xIx
∂x2

 ∂
∂x

Ix
∂x
∂x

 x
∂Ix
∂x



2
∂Ix
∂x

∂x
∂x

 Ix
∂2x
∂x2

 x
∂2Ix
∂x2

.

B. 5

Therefore substitution (B.2) into LHS of the Schrödinger equation (B.1) gives

2 
−

0
∂2I

#x
∂x2

dx  2mE 
−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2
dx  2Em 

−

0

xIxdx 

22 
−

0
∂Ix
∂x

∂x
∂x

dx  2 
−

0

Ix
∂2x
∂x2

dx 

 
−

0

x 2
∂2Ix
∂x2

 2Em 
−

0

Ix dx.

B. 6

Note that




−

0

x 2
∂2Ix
∂x2

 2Em 
−

0

Ix dx  0. B. 7

Therefore from Eq.(B.6) and Eq.(2.3)-Eq.(2.4) one obtain

2 
−

0
∂2I

#x
∂x2

dx  2mE 
−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2
dx  2Em 

−

0

xIxdx 

 22 
l


∂Ix
∂x

∂x
∂x

dx  2 
l



Ix
∂2x
∂x2

dx.

B. 8

From Eq.(B.6) one obtain

∂x
∂x

 rc
2−1/4 ∂∂x

exp − x2

2rc
2  −rc

2−1/4rc
−2xexp − x2

2rc
2 ,

∂2x
∂x2

 −rc
2−1/4rc

−2 exp − x2

2rc
2 

rc
2−1/4rc

−4x2 exp − x2

2rc
2 .

B. 9

From Eq.(B.9) and Eq.(2.3)-Eq.(2.4) one obtain



2 
−

0
∂Ix
∂x

∂x
∂x

dx 

− 2

rc
21/4rc

2

−

0
∂expikx
∂x

xexp − x2

2rc
2 dx 

− 2 2mE 
rc

21/4rc
2

−

0

xexp i
2 2mE


x exp − x2

2rc
2 dx,

k  2


2mE .
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and

2 
−

0

Ix
∂2x
∂x2

dx  − 2

rc
23/4rc

2

−

0

expikxexp − x2

2rc
2 dx 

 2

rc
21/4rc

2

−

0

x2 expikxexp − x2

2rc
2 dx.

B. 11

Appendix C. Generalized Postulates for Continuous Valued Observables.

Suppose we have an observable Q of a system that is found, for instance
through an exhaustive series of measurements, to have a continuous range of
values 1  q  2. Then we claim the following:

C.1. Any given quantum system is identified with some infinite-dimensional
Hilbert space H.

Definition C.1. The pure states correspond to vectors of norm 1. Thus the set
of all pure states corresponds to the unit sphere S ⊂ H in the Hilbert space H.

Definition C.2.The projective Hilbert space PH of a complex Hilbert space H
is the set of equivalence classes v of vectors v in H, with v ≠ 0, for the
equivalence relation given by v Pw  v w for some non-zero complex
number  ∈ ℂ.The equivalence classes for the relation P are also called rays or



projective rays.
Remark C.1.The physical significance of the projective Hilbert space PH is

that in canonical quantum theory, the states | and | represent the same
physical state of the quantum system, for any  ≠ 0. It is conventional to choose a
state | from the ray | so that it has unit norm 〈|  1.

Remark C.2. In contrast with canonical quantum theory we have used instead
contrary to P equivalence relation Q, see Def.C.3.

C.2.The states |q : 1  q  2 form a complete set of -function normalized
basis states for the state space H of the system.

That the states |q : 1  q  2 form a complete set of basis states means

that any state | ∈ H of the system can be expressed as:|  
1

2 cqdq while

-function normalized means that 〈q|q′   q − q′ from which follows cq  〈q|

so that |  
1

2
|q〈q|dq. The completeness condition can then be written as


1

2
|q〈q|dq 


1.

Definition C.3. A connected set in  is a set X ⊂  that cannot be partitioned
into two nonempty subsets which are open in the relative topology induced on the
set. Equivalently, it is a set which cannot be partitioned into two nonempty subsets
such that each subset has no points in common with the set closure of the other.

C.3.For the system in state | such that (i) | ∈ S and (ii)
suppcq  q|cq ≠ 0 is

a connected set in , the probability Pq; |dq of obtaining the result q lying in
the range q,q  dq on measuring Q is |〈q||2dq  |cq|

2dq.
Completeness means that for any state | ∈ S it must be the case that


1

2
|〈q||2dq ≠ 0, i.e. there must be a non-zero probability to get some result on

measuring Q.
C.4.(von Neumann measurement postulate) Assume that (i) | ∈ S and (ii)

suppcq is a connected set in . Then if on performing a measurement of Q
with an accuracy q, the result is obtained in the range q − 1

2 q,q 
1
2 q, then the

system will end up in the state

Pq,q|

〈|Pq,q|



q−q′ ≤q/2
|q′ 〈q′ ||dq′


q−q′ ≤q/2

|〈q′ |||2dq′
. C. 1

C.5.(Generalized measurement postulates)
C.5. I. For the system in state |a   a| ∈ H, where (i) | ∈ S, |a| ≠ 1, (ii)

suppcq is a connected set in  and (iii) |  
1

2 cq|qdq the probability

Pq; |a dq of obtaining the result q lying in the range q − 1
2 dq,q  1

2 dq on
measuring Q is



Pq; |a dq  |a|−2|cq|a|−2|
2dq.

C. 2

Then if on performing a measurement of Q with an accuracy q, the result is
obtained in the range q − 1

2 q,q 
1
2 q, then the system immediately after

measurement will end up in the state

Pq,q|a 

〈|Pq,q|a 



q−q′ ≤q/2
|q′ 〈q′ ||a dq′


q−q′ ≤q/2

|〈q′ ||a |2dq′
. C. 3

C.5. II. Let |a1,a2   |1
a1   |2

a2  ∈ H, where (i) |i
ai  

ai|i  ∈ H, |i  ∈ S, |ai | ≠ 1, i  1,2 (ii) suppciq, i  1,2 is a connected set in
 (iii) suppc1q ∩ suppc2q  

and (iv) |i   
1

2 ciq|qdq, i  1,2. Then on performing a measurement of Q

with an accuracy q  1 the wave function 〈q||a1,a2  experiences a sudden jump of
the form

(1) |a1,a2  → |1
a1  or (2) |a1,a2  → |2

a2  or (3) |a1,a2  → |1
a1 , |2

a2 .
C.5. III. The probability of getting a result q with an accuracy q such that

q − 1
2 q,q 

1
2 q ∈ suppc1q or q − 1

2 q,q 
1
2 q ∈ suppc2q given by


q−q′ ≤q/2

|〈q′ ||1
a1 |2  |〈q′ ||2

a2 |2 dq′.

C.5. IV. If the system is initially in the state |a1,a2 , then the state of the system
immediately after measurement given by

Pq,q|a 

〈|Pq,q|a 



q−q′ ≤q/2
|q′ 〈q′ ||1

a1   |q′ 〈q′ ||2
a2 dq′


q−q′ ≤q/2

|〈q′ ||1
a1 |2  |〈q′ ||2

a2 |2 dq′
.

Definition C.4. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and
|  

1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is

a Q-equivalent: |a  Q |a  iff

Pq; |a dq  |a|−2|cq|a|−2|
2dq  Pq; |a dq

C. 4

C.6.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq

there exist an state |a  ∈ S such that: |a  Q |a .
Remark C.3. Formal motivetion of the postulate symple and clear. Let



|t
a , t ∈ 0, be a state |t

a   a|t , where |t  ∈ S, |a| ≠ 1 and
|t   −


cq|qdq.

Note that:
(i) any process of continuous measurements on measuring Q for the system in

state |t  and the system in state |t
a  one can to describe by an -valued

stochastic processes Xt  Xt; |t  and Yt
a  Yt

a; |t
a  given on an

probability space ,ℱ,P and a measurable space ,.
(ii) We assume now that: ∀Θ  

EΘXt  
Θ⊂

XtdP  EΘXt; |t   〈t |QΔΘ|t ,

EYt
a  



Yt
adP  EYt

a; |t
a   〈t

a |Q|t
a   |a|2〈t |QΔΘ|t ,

C. 5

where ΔΘ  1,2  and

QΔΘ  
ΔΘ

q|q〈q|dq. C. 6

From Eq.(C.5) one obtain

EΘYt
a  |a|2EΘXt C. 7

From Eq.(C.7) one obtains

Yt
a  |a|2Xt. C. 8

(iii) Let tx be a probability density of the stochastic process Xt and let
t

ay be a probability density of the stochastic process Yt
a.From Eq.(C.8) one

obtains

t
ay  a−2t

y
a2 . C. 9



C.7.The observable Q is represented by a Hermitean operator Q whose
eigenvalues are the possible results q : 1  q  2, of a measurement of Q, and

the associated eigenstates are the states |q : 1  q  2, i.e. Q |q  q|q.

The name ‘observable’ is often applied to the operator Q itself. The spectral

decomposition of the observable Q is then Q  
1

2 q|q〈q|dq.

Definition C.5. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and
|  

1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is

a Q-equivalent (|a  
Q
|a ) iff: 〈a | Q|a   〈a | Q|a .

C.8.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq

there exist an state |a  ∈ S such that: |a  
Q
|a .

Appendix D. The Position Representation.Position observable of a particle
in one dimension.

The position representation is used in quantum mechanical problems where it is
the position of the particle in space that is of primary interest. For this reason, the
position representation, or the wave function, is the preferred choice of
representation.

D.1. In one dimension, the position x of a particle can range over the values
−  x  . Thus the Hermitean operator x corresponding to this observable will
have eigenstates |x and associated eigenvalues x such that:
x |x  x|x,−  x  .

D.2. As the eigenvalues cover a continuous range of values, the completeness
relation will be expressed as an integral: |t   −


|x〈x|t dx,where 〈x|t   x, t

is the wave function associated with the particle at each instant t. Since there is a
continuously infinite number of basis states |x, these states are -function
normalized: 〈x|x ′   x − x ′.

D.3. The operator x itself can be expressed as: x  
−


x|x〈x|dx.

Definition D.1. A connected set is a set X ⊂  that cannot be partitioned into
two nonempty subsets which are open in the relative topology induced on the set.
Equivalently, it is a set which cannot be partitioned into two nonempty subsets such
that each subset has no points in common with the set closure of the other.

D.4.The wave function is, of course, just the components of the state vector
|t  ∈ S with respect to the position eigenstates as basis vectors. Hence, the
wave function is often referred to as being the state of the system in the position
representation. The probability amplitude 〈x|t  is just the wave function, written
〈x|t   x, t and is such that |x, t|2dx is the probability Px, t; |t  of the particle
being observed to have a coordinate in the range x to x  dx

Definition D.2. Let |t
a , t ∈ 0, be a state |t

a   a|t , where



|t  ∈ S, |a| ≠ 1 and |t   −

x, t|xdx.Let |t,a , t ∈ 0, be an state such

that |t,a  ∈ S, t ∈ 0,. States |t
a  and |t,a  is x-equivalent (|t

a  x |t,a ) iff

Px, t; |t
a dx  |a|−2|x|a|−2, t|2dx  Px, t; |t,a dx D. 1

D.5.From postulate C.5 (see Appendix C) follows: for any state
|t

a   a|t ,where |t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −

x, t|xdx there exist

an state |t,a  ∈ S, t ∈ 0, such that: |t
a  x |t,a .

Definition D.2. Let |t
a , t ∈ 0, be a state |t

a   a|t , where
|t  ∈ S, |a| ≠ 1 and |t   −


x, t|xdx.Let |t,a , t ∈ 0, be an state such

that |t,a  ∈ S, t ∈ 0,. States |t
a  and |t,a  is

x-equivalent (|t
a  x |t,a ) iff:

〈t
a | x |t

a   〈t,a |
x |t,a .

D.6.From postulate C.7 (see Appendix C) follows: for any state
|t

a   a|t ,where |t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −

x, t|xdx there exist

an state |t,a  ∈ S, t ∈ 0, such that: |t
a  x |t,a .

Definition D.3. The pure state |t  ∈ S, t ∈ 0,, |t   −

x, t|xdx is a

weakly Gaussian in the position representation iff

|x, t|2dx  1
t 2

exp − x − xt2

t
2 dx, D. 2

where xt and t an given functions which depend only on variable t.
D.7.From statement D.5 follows: for any state |t

a   a|t ,where
|t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −


x, t|xdx is a weakly Gaussian state

there exist an weakly Gaussian state |t,a  ∈ S, t ∈ 0, such that:

Px, t; |t
a dx  |a|−1|x|a|−1, t|2dx 

 1
|a|t 2

exp − x − |a|xt2

|a|2t
2

dx.

D. 3
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