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Abstract: In his famous thought experiment,Schrôdinger(1935) imagined a cat

that measures the value of an quantum mechanical observable with its life. Since
Schrödinger’s time, no any interpretations or modifications of quantum mechanics
have been proposed which gives clear unambiguous answers to the questions
posed by Schrödinger’s cat of how long superpositions last and when (or whether)
they collapse? In this paper appropriate modification of quantum mechanics are
proposed. We claim that canonical interpretation of the wave function   c11 
c22 is correct only when the supports the wave functions 1 and 2 essentially

overlap. When the wave functions 1 and 2 have separated supports (as in the

case of the experiment that we are considering in this paper) we claim that
canonical interpretation of the wave function   c11  c22 is no longer valid for a

such cat state. Possible solution of the Schrödinger’s cat paradox are
considered.We pointed out that the collapsed state of the cat always shows definite
and predictable outcomes even if cat also consists of a superposition [16]-[17] :

cat  c1 live cat  c2 death cat .
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I. Introduction
As Weinberg recently reminded us [1], the measurement problem remains a



fundamental conundrum. During measurement the state vector of the microscopic
system collapses in a probabilistic way to one of a number of classical states, in a
way that is unexplained, and cannot be described by the time-dependent
Schrödinger equation [1].To review the essentials, it is sufficient to consider
two-state systems. Suppose a nucleus n, whose Hilbert space is spanned by
orthonormal states |sit, i  1,2,where |s1t  undecayed nucleus at instant t

and |s2t  decayed nucleus at instant t is in the superposition state,

|t n  c1|s1t  c2|s2t, |c1 |2  |c2 |2  1.
1.1

A measurement apparatus A, which may be microscopic or macroscopic, is
designed to distinguish between states |sit by transitioning at each instant t into
state |ait if it finds n is in |sit, i  1,2. Assume the detector is reliable, implying
the |a1t and |a2t are orthonormal at each instant t ,i.e., 〈a1t||a2t  0 and
that the measurement interaction does not disturb states |si  -i.e., the measurement
is “ideal”. When A measures |t n, the Schrödinger equation’s unitary time
evolution then leads to the “measurement state” |t nA :

|t nA  c1|a1t  c2|a2t, |c1 |2  |c2 |2  1.
1.2

of the composite system nA following the measurement.
Standard formalism of continuous quantum measurements [2],[3],[4],[5] leads to

a definite but unpredictable measurement outcome, either |a1t or |a2t and that
|t n suddenly “collapses” at instant t ′ into the corresponding state |sit ′. But
unfortunately equation (1.2) does not appear to resemble such a collapsed state at
instant t ′?.

The measurement problem is as follows:
(I) How do we reconcile canonical collapse models postulate’s
(II) How do we reconcile the measurement postulate’s definite outcomes with

the
“measurement state” |t nA at each instant t and
(III) how does the outcome become irreversibly recorded in light of the

Schrödinger
equation’s unitary and, hence, reversible evolution?
This paper deals with only the special case of the measurement problem,

known as Schrödinger’s cat paradox. For a good and complete explanation of this
paradox see Leggett [6] and Hobson [7].



Pic.1.1.Schrödinger’s cat.

In his famous thought experiment [11], Schrôdinger(1935) imagined a cat that
measures the value of an quantum mechanical observable with its life. Adapted to
the measurement of position of an alpha particle, the experiment is this. A cat, a
flask of poison, and a radioactive source are placed in a sealed box. If an internal
monitor detects radioactivity (i.e. a single atom decaying), the flask is shattered,
releasing the poison that kills the cat. The Copenhagen interpretation of quantum
mechanics implies that after a while, the cat is simultaneously alive and dead. Yet,
when one looks in the box, one sees the cat either alive or dead, not both alive and
dead.

This poses the question of when exactly quantum superposition ends and
reality collapses into one possibility or the other?

Since Schrödinger’s time, no any interpretations or extensions of quantum
mechanics have been proposed which gives clear unambiguous answers to the
questions posed by Schrödinger’s cat of how long superpositions last and when (or
whether) they collapse.

The canonical interpretations of the experiment.

Copenhagen interpretation
The most commonly held interpretation of quantum mechanics is the

Copenhagen interpretation.[12] In the Copenhagen interpretation, a system stops
being a superposition of states and becomes either one or the other when an
observation takes place. This thought experiment makes apparent the fact that the
nature of measurement, or observation, is not well-defined in this interpretation.
The experiment can be interpreted to mean that while the box is closed, the system
simultaneously exists in a superposition of the states "decayed nucleus/dead cat"
and "undecayed nucleus/living cat", and that only when the box is opened and an
observation performed does the wave function collapse into one of the two states.

However, one of the main scientists associated with the Copenhagen



interpretation, Niels Bohr, never had in mind the observer-induced collapse of the
wave function, so that Schrödinger’s cat did not pose any riddle to him. The cat
would be either dead or alive long before the box is opened by a conscious
observer [13]. Analysis of an actual experiment found that measurement alone (for
example by a Geiger counter) is sufficient to collapse a quantum wave function
before there is any conscious observation of the measurement.[14] The view that
the "observation" is taken when a particle from the nucleus hits the detector can be
developed into objective collapse theories. The thought experiment requires an
"unconscious observation" by the detector in order for magnification to occur.

Objective collapse theories

According to objective collapse theories, superpositions are destroyed
spontaneously (irrespective of external observation) when some objective physical
threshold (of time, mass, temperature, irreversibility, etc.) is reached. Thus, the cat
would be expected to have settled into a definite state long before the box is
opened. This could loosely be phrased as "the cat observes itself", or "the
environment observes the cat".

Objective collapse theories require a modification of standard quantum
mechanics to allow superpositions to be destroyed by the process of time
evolution. This process, known as "decoherence", is among the fastest processes
currently known to physics [15].

Ensemble interpretation
The ensemble interpretation states that superpositions are nothing but

subensembles of a larger statistical ensemble. The state vector would not apply to
individual cat experiments, but only to the statistics of many similarly prepared cat
experiments. Proponents of this interpretation state that this makes the
Schrödinger’s cat paradox a trivial matter, or a non-issue. This interpretation serves
to discard the idea that a single physical system in quantum mechanics has a
mathematical description that corresponds to it in any way.

Remark 1.1.Ensemble interpretation in a good agreement with a canonical
interpretetion of the wave function (-function) in canonical QM-measurement
theory. However under rigorous consideration an dinamics of the Schrödinger’s cat
this interpretation gives unphysical result, see Proposition 3.2.(ii).

The canonical collapse models.

In order to appreciate how canonical collapse models work, and what they are
able to achieve, we briefly review the GRW model. Let us consider a system of n
particles which, only for the sake of simplicity, we take to be scalar and spinless;
the GRW model is defined by the following postulates: (1) The state of the system
is represented by a wave function tx1,x2, . . . ,xn belonging to the Hilbert space
ℒ23n. (2) At random times, the wave function experiences a sudden jump of the
form:



tx1,x2, . . . ,xn → tx1,x2, . . . ,xn;
xm 

m
xmtx1,x2, . . . ,xn

‖m
xmtx1,x2, . . . ,xn‖2

,

1.3

where tx1,x2, . . . ,xn is the state vector of the whole system at time t,
immediately prior to the jump process and n

xm is a linear operator which is
conventionally chosen equal to:

m
xm  rc

2−3/4 exp −
xm −

xm
2

2rc
2 ,

1.4

where rc is a new parameter of the model which sets the width of the localization
process, and xm is the position operator associated to the m-th particle of the
system and the random variable xm corresponds to the place where the jump
occurs. (3) It is assumed that the jumps are distributed in time like a Poissonian
process with frequency   GRW this is the second new parameter of the model.
(4) Between two consecutive jumps, the state vector evolves according to the
standard Schrödinger equation.

The 1-particle master equation of the GRW model takes the form

d
dt
t  − i


H,t − Tt.

1.5

Here H is the standard quantum Hamiltonian of the particle, and T represents the
effect of the spontaneous collapses on the particle’s wave function. In the position
representation, this operator becomes:

〈x|Tt|y   1 − exp − x − y
2

4rc
2 〈x|t|y.

1.6

Another modern approach to stochastic reduction is to describe it using a
stochastic nonlinear Schrödinger equation, an elegant simplied example of which is
the following one particle case known as Quantum Mechanics with Universal
Position Localization [QMUPL]:

d|tx  − i

H − kq − 〈qt 

2dt |txdt  2k q − 〈qt dWt|tx.
1.7

Here q is the position operator, 〈qt   〈t |
q|t  it is its expectation value, and k is a

constant, characteristic of the model, which sets the strength of the collapse
mechanics, and it is chosen proportional to the mass m of the particle according to



the formula: k  m/m00, where m0 is the nucleon’s mass and 0 measures the
collapse strength. It is easy to see that Eqn.(1.5) contains both non-linear and
stochastic terms, which are necessary to induce the collapse of the wave function.

For an examle let us consider a free particle (H  p2/2m), and a Gaussian state:

tx  exp −atx − xt2  iktx .
1.8

It is easy to see that tx given by Eq.(1.6) is solution of Eq.(1.5), where

dat

dt
 k − 2i

m at
2, dxt

dt
 

m kt 
k

2Reat
Ẇt,

dkt

dt
 − k

Imat
Reat

Ẇt.
1.9

The CSL model is defined by the following stochastic differential equation in the
Fock space:

d|tx  − i

H − k Mx − 〈Mtx

2
dt |txdt 

 2k Mx − 〈Mtx dWtx|tx.

1.10

II.Generalized Gamow theory of the alpha decay via tunneling using GRW
collapse model.

By 1928, George Gamow had solved the theory of the alpha decay via
tunneling [7]. The alpha particle is trapped in a potential well by the nucleus.
Classically, it is forbidden to escape, but according to the (then) newly discovered
principles of quantum mechanics, it has a tiny (but non-zero) probability of
"tunneling" through the barrier and appearing on the other side to escape the
nucleus. Gamow solved a model potential for the nucleus and derived, from first
principles, a relationship between the half-life of the decay, and the energy of the
emission.

The -particle has total energy E and is incident on the barrier from the right to

left.



Рiс.2.1.The particle has total energy E and

is incident on the barrier Vx from right to left.

The Schrödinger equation in each of regions I  x|x  0, II  x|0 ≤ x ≤ l
and III  x|x  l takes the folloving form

∂2x
∂x2

 2m
2

E − Uxx  0,
2.1

where

Ux 

0 for x  0

U0 for 0 ≤ x ≤ l

0 for x  l

2.2

The solutions reads [8]:

IIIx  C expikx  C− exp−ikx,

IIx  B expk ′x  B− exp−k ′x,

Ix  Acoskx  A
2
expikx  exp−ikx,

2.3

where

k  2


2mE ,

k ′  2


2mU0 − E .
2.4

At the boundary x  0 we have the following boundary conditions:

I0|x0  II0|x0,
∂Ix
∂x x0


∂IIx
∂x x0

.
2.5

At the boundary x  l we have the following boundary conditions



IIl|xl  IIIl|xl,
∂IIx
∂x xl


∂IIIx
∂x xl

.
2.6

From the boundary conditions (2.5)-(2.6) one obtains [8]:

B  A
2

1  i k
k ′

,B−  A
2

1 − i k
k ′

,

C  Achk ′l  iDshk ′l,C−  iASshk ′lexpikl,

D  1
2

k
k ′
− k ′

k
,S  1

2
k
k ′

 k ′
k

.

2.7

From (2.7) one obtain the conservation law

|A|2  |C |2 − |C− |2.

Let us introduce now a function EIIx, l  2x, lE2x, l where

E2x, l 
rc

2−1/4 exp − x2

2rc
2 for −   x  l

2

rc
2−1/4 exp − x − l2

2rc
2 for l

2
≤ x  

2x, l 
1 for x ∈ 0, l
0 for x ∉ 0, l

2.8

Assumption 2.1. We assume now that:
(i) at instant t  0 the wave function Ix experiences a sudden jump of the

form

Ix → I
#x 

I
x Ix

‖I
x Ix‖2

, 2.9

where I
x  is a linear operator which is chosen equal to:

I
x   rc

2−1/41
x , lexp −

x 2

2rc
2 ;

2.10

where



1x, l 
1 for x ∈ −l, 0,

0 for x ∉ −l, 0.

Remark 2.1. Note that: suppI
#x ⊆ −l, 0

(ii) at instant t  0 the wave function IIx experiences a sudden jump of the
form

IIx → II
# x 

II
x IIx

‖II
x IIx‖2

,
2.11

where II
x  is a linear operator which is chosen equal to:

II
x   EII

x , l;
2.12

Remark 2.2. Note that: suppII
# x ⊆ 0, l.

(iii) at instant t  0 the wave function IIIx experiences a sudden jump of the
form

IIIx → III
# x 

III
x IIIx

‖III
x IIIx‖2

, 2.13

where III
x  is a linear operator which is chosen equal to:

III
x   rc

2−1/4 exp − 
x − l2

2rc
2 .

2.14

Remark 2.3. Note that. We have choose operators (2.10),(2.12) and (2.14)
such that the boundary conditions (2.5),(2.6) is satisfied.

Definition 2.1. Let x be an solution of the Schrödinger equation (2.1). The
stationary Schrödinger equation (2.1) is a weakly well preserved in region Γ ⊆  by
collapsed wave function #x if there exist an wave function x such that the
estimate


Γ

∂2#x
∂x2

 2m
2

E − Ux#x dx  O2, 2.15

where  ≥ 1, is satisfied.
Proposition 2.1.The Schrödinger equation in each of regions I, II, III is a



weakly well preserved by collapsed wave function I
#x,II

# x and III
# x

correspondingly.
Proof. See Appendix B.
Definition 2.2.Let us consider the time-dependent Schrödinger equation:

i
∂x, t
∂t

 Hx, t,

t ∈ 0,T,x ∈3n.

2.16

The time-dependent Schrödinger equation (2.16) is a weakly well preserved by
corresponding to x, t collapsed wave function #x, t

#x1,x2, . . . ,xn, t 

x1,x2, . . . ,xn, t;
xm1 , . . . ,

xmk  


m1,...,mk

xm1 , . . . ,
xmk x1,x2, . . . ,xn, t

‖m1,...,mk
xm1 , . . . ,

xmk x1,x2, . . . ,xn, t‖2
,

m1,...,mk
xm1 , . . . ,

xmk  
i1

k

mi
xmi 

in region Γ ⊆ 3d if there exist an wave function x, t such that the estimate


Γ

i
∂#x, t
∂t

− H#x, t d3dx  O,

t ∈ 0,T,x ∈3d,

2.17

where  ≥ 1, is satisfied.
Definition 2.3. Let #x, t#x1,x2, . . . ,xd, t be a function
x1,x2, . . . ,xd, t;

x 1 , . . . ,
x d .Let us consider the Probability Current Law

∂
∂t

PΓ, t  
∂Γ

Jx1,x2, . . . ,xd, t  nd2dx  O,

Jx1,x2, . . . ,xd, t  x, t∇x, t − x, t∇x, t,

t ∈ 0,T,x ∈3d,

2.18

corresponding to Schrödinger equation (2.16). Probability Current Law (2.18) is a

weakly well preserved by corresponding to x, t collapsed wave function #x, t
in region Γ ⊆ 3d if there exist an wave function x, t such that the estimate



∂
∂t

PΓ, t  
∂Γ

J#x1,x2, . . . ,xd, t  nd2dx  O,

J#x1,x2, . . . ,xd, t  #x, t∇#x, t − #x, t∇#x, t

 O,

t ∈ 0,T,x ∈3d,

2.19

where  ≥ 1, is satisfied.
Proposition 2.2. Assume that there exist an wave function x, t such that the

estimate (2.17) is satisfied. Then Probability Current Law (2.18) is a weakly well

preserved by corresponding to x, t collapsed wave function #x, t in region
Γ ⊆ 3d, i.e. the estimate (2.19) is satisfied on the wave function #x, t.

III. Schrödinger’s Cat paradox resolution
In this section we shall consider the problem of the collapse of the cat state

vector on the basis of two different hypotheses:
(A) The canonical postulate of QM is correct in all cases.
(B) The canonical interpretation of the wave function   c11  c22 is correct

only when the supports the wave functions 1 and 2 essentially overlap. When

the wave functions 1 and 2 have separated supports (as in the case of the

experiment that we are considering in section II) we claim that canonical
interpretation of the wave function   c11  c22 is no longer valid for a such cat

state, for details see Appendix C.
III.1. Considerationtion of the Schrödinger’s cat paradox using canonical
von Neumann postulate
Let |s1t and |s2t be

|s1t  undecayed nucleus at instant t ,

|s2t  decayed nucleus at instant t .

3.1

In a good approximation we assume now that

|s10  
−


II

# x|xdx
3.2

and



|s20  
−


I

#x|xdx.
3.3

Remark 3.1. Note that: (i) |s20  decayed nucleus at instant 0 
 free -particle at instant 0 . (ii) Feynman propagator of a free -particle are [9]:

K2x, t,x0  m
2it

1/2
exp i


mx − x02

2t
. 3.4

Therefore from Eq.(3.3),Eq.(2.9) and Eq.(3.4) we obtain

|s2t  
−


I

#x, t|xdx,

I
#x, t  

−

0

I
#x0K2x, t,x0dx0 

rc
2−1/4  m

2it

1/2
 
−

0

1x0, lexp −
x0
2

2rc
2 exp −i 2


2mE x0 

exp i


mx − x02

2t
dx0 

rc
2−1/4  m

2it

1/2

 
−l

0

1x0, lexp −
x0
2

2rc
2 

exp i


mx − x02

2t
−  4mE x0 dx0 

rc
2−1/4  m

2it

1/2
 
−l

0

1x0, lexp −
x0
2

2rc
2  exp i


St,x,x0 dx0,

3.5

where

St,x,x0 
mx − x02

2t
−  8mE x0.

3.6

We assume now that

  2rc
2  l2  1. 3.7

Oscillatory integral in RHS of Eq.(3.5) is calculated now directly using stationary
phase approximation. The phase term Sx,x0 given by Eq.(3.6) is stationary when



∂St,x,x0
∂x0

 − mx − x0
t −  8mE  0. 3.8

Therefore

− mx − x0
t −  8mE  0,

−x − x0  t 8E/m ,
3.9

and thus stationary point x0t,x are

x0t,x  t 8E/m  x.
3.10

Thus from Eq.(3.5) and Eq.(3.10) using stationary phase approximation we obtain

|s2t  
−


I

#x, t|xdx,

I
#x, t 

rc
2−1/4  1x0t,x, lexp −

x0
2t,x
2rc

2  exp i

St,x,x0t,x  O,

3.11

where

Sx,x0t,x 
mx − x0t,x2

2t
−  8mE x0t,x.

3.12

From Eq.(3.10) we obtain

I
#x, tI

#x, t ≃ rc
2−1/2  1 x  t 8E/m , l exp −

x  t 8E/m
2

rc
2 . 3.13

Remark 3.2. From the inequality (3.7) and Eq.(3.13) follows that -particle at
each instant t ≥ 0 moves quasiclassically from right to left by the law

xt  −t 8E/m , 3.14

i.e. i.e.,estimating the position xt,x0, t0; at each instant t ≥ 0 with final error rc

gives |〈xt − xt| ≤ rc, i  1, . . . ,d with a probability

P|〈xt, 0, 0; − xt| ≤ rc  1.

Remark 3.3. We assume now that a distance between radioactive source and
internal monitor which detects a single atom decaying (see Pic.1) is equal to L.

Proposition 3.1. After -decay at instant t  0 the collaps:
live cat → death cat arises at instant



T  L
 8E/m

3.15

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Note that. In this case Schrödinger’s cat in fact permorm the single
measurement of -particle position with accuracy of x  l at instant t  T (given by
Eq.(3.15)) by internal monitor (see Pic.1.1). The probability of getting a result L with

accuracy of x  l given by


|L−x|≤l/2

|〈x||s2T|2dx  1. 3.16

Therefore at instant T the -particle kills Schrödinger’s cat with a probability
PT death cat  1.

Remark 3.4.Note that. When Schrödinger’s cat has permormed this
measurement the immediate post measurement state of -particle (by von
Neumann postulate C.4) will end up in the state

|T  

|L−x|≤l/2

|x〈x||s2Tdx


|L−x|≤l/2

|〈x||s2T|2dx
 

|L−x|≤l/2
|x〈x||s2Tdx ∈ SΘ,Θ  x||L − x| ≤ l/2 3.17

From Eq.(3.17) one obtains

〈x ′ ||T   
|L−x|≤l/2

〈x ′ ||x〈x||s2Tdx  
|L−x|≤l/2

x ′ − x〈x||s2Tdx  I
#x ′, t. 3.18

Therefore the state |T  again kills Schrödinger’s cat with a probability
PT death cat  1.

Suppose now that a nucleus n, whose Hilbert space is spanned by orthonormal
states |sit, i  1,2,where |s1t  undecayed nucleus at instant t and

|s2t  decayed nucleus at instant t is in the superposition state

|t n  c1|s1t  c2|s2t, |c1 |2  |c2 |2  1.
3.19

Remark 3.5. Note that: (i) |s10  undecayed nucleus at instant t  0 
 -particle iside region 0, l at instant t  0 . (ii) Feynman propagator of

-particle inside region 0, l are [9]:

K2x, t,x0  m
2it

1/2
exp i


St,x,x0 ,

3.20

where



St,x,x0 
mx − x02

2t
 mtU0 − E.

3.21

Therefore from Eq.(2.11)-Eq.(2.12) and Eq.(3.20)-Eq.(3.21) we obtain

|s1t  
−


II

# x, t|xdx,

II
# x, t  

0

l

II
# x0K2x, t,x0dx0 

m
2it

1/2 
0

l

Ex0, lIIx0lx0exp i

St,x,x0 dx0,

3.22

where

lx 
1 for x ∈ 0, l
0 for x ∉ 0, l

Remark 3.6.We assume for simplification now that

k ′ ≤ 1. 3.23

Therefore oscillatory integral in RHS of Eq.(3.22) is calculated now directly using
stationary phase approximation. The phase term Sx,x0 given by Eq.(3.21) is
stationary when

∂St,x,x0
∂x0

 − mx − x0
t  0. 3.24

and thus stationary point x0t,x are

−x  x0  0

x0t,x  x.
3.25

Thus from Eq.(3.22) and Eq.(3.25) using stationary phase approximation we obtain

II
# x, t 

Ex0t,x, lIIx0t,xlx0t,xexp i

St,x,x0t,x  O 

 Ex, lIIxlxexp i

mtU0 − E  O 

Ex, llxO1exp i

mtU0 − E  O.

3.26

Therefore from Eq.(3.22) and Eq.(3.26) we obtain



|II
# x, t|2  E2x, llxO1  O.

3.27

Remark 3.7. Note that for each instant t  0 :

suppII
# x, t ∩suppI

#x, t  .
Remark 3.8. Note that. From Eq.(3.11),Eq.(3.13), Eq.(3.19), Eq.(3.22)-Eq.(3.27)

and Eq.(A.13) by Remark 3.7 we obtain

n〈t |
x |t n  |c1 |2〈s1t|

x |s1t  |c2 |2〈s2t|
x |s2t 

c1c2
∗〈s2t|

x |s1t  c1
∗c2〈s2t|

x |s1t∗ 

|c1 |2〈s1t|
x |s1t  |c2 |2〈s2t|

x |s2t  |c1 |2l  |c2 |2T 8E/m .

3.28

Proposition 3.2. (i) Suppose that a nucleus n is in the superposition state |t n
(|t n-particle) given by Eq.(3.19). Then the collaps: live cat → death cat arises

at instant

Tcol ≈ L  l
|c2 |2 82E/m

. 3.29

with a probability PTcol death cat to observe a state death cat at instant Tcol is

PTcol death cat  |c2 |2.

(ii) Assume now a Schrödinger’s cat has performed the single measurement of
|t n-particle position with accuracy of x  l at instant T  Tcol (given by Eq.(3.29))
by internal monitor (see Pic.1.1) and the result x ≈ L  l is not observed by
Schrödinger’s cat. Then the collaps: live cat → death cat never arises at any

instant T  Tcol and a probability PTTcol death cat to observe a state

death cat at instant T  Tcol is PTTcol death cat  0.

Proof. (i) Note that for t  0 the marginal density matrix t is diagonal

t 
|c1 |2 |II

# x, t|2dx 0

0 |c2 |2 |I
#x, t|2dx

In this

case a Schrödinger’s cat in fact perform the single measurement of |t n-particle
position with accuracy of x  l at instant t  Tcol (given by Eq.(3.29)) by internal
monitor (see Pic.1.1). The probability of getting a result L at instant T ≈ Tcol with

accuracy of x  l given by




|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|〈x|c1|s1T  c2|s2T|2dx 


|L−x|≤l/2

|c1〈x||s1T  c2〈x||s2T|2dx 


|L−x|≤l/2

|c1
2II

#2x,T  c2
2I

#2x,T  2c1c2I
#x,TII

# x,T|dx.

3.30

From Eq.(3.30) by Remark 3.7 and Eq.(3.13) one obtains


|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|c2
2I

#2x,T|dx  |c2 |2 
|L−x|≤l/2

|I
#x,T|2dx  |c2 |2. 3.31

Note that. When Schrödinger’s cat has permormed this measurement and the
result x ≈ L  l is observed, then the immediate post measurement state of
-particle (by

von Neumann postulate C.4) will end up in the state

|Tcol n 

|L−x|≤l/2

|x〈x||Tcol ndx


|L−x|≤l/2

|〈x||Tcol n |
2dx



|L−x|≤l/2

|x〈x|c1|s1Tcol  c2|s2Tcoldx


|L−x|≤l/2

|〈x||Tcol n |
2dx



c1 
|L−x|≤l/2

|x〈x||s1Tcol  c2 
|L−x|≤l/2

|x〈x||s2Tcoldx


|L−x|≤l/2

|〈x||Tcol n |
2dx

∈ SΘ,Θ  x||L − x| ≤ l/2.

3.32

From Eq.(3.32) by Eq.(3.31) and by Remark 3.7 one obtains

|Tcol n 

|L−x|≤l/2

|x〈x||Tcol ndx


|L−x|≤l/2

|〈x||Tcol n |
2dx



|L−x|≤l/2

|x〈x|c1|s1Tcol  c2|s2Tcoldx


|L−x|≤l/2

|〈x||Tcol n |
2dx



 c2
|c2 |

|L−x|≤l/2

|x〈x||s2Tcoldx.

3.32

Obviously by Remark 3.4 the staite |Tcol n kills Schrödinger’s cat with a probability
PTcol death cat  1.

Proof. (ii) The probability of getting a result L at any instant T  Tcol with

accuracy of x  l by Eq.(3.31) and Eq.(3.13) given by


|L−x|≤l/2

|〈x||T n |
2dx  

|L−x|≤l/2
|c2
2I

#2x,T|dx  |c2 |2 
|L−x|≤l/2

|I
#x,T|2dx 

≃ rc
2−1/2  1 x  T 8E/m , l exp −

x  T 8E/m
2

rc
2  0.

Thus standard formalism of continuous quantum measurements [2],[3],[4],[5]



leads to a definite but unpredictable measurement outcomes, either |s1t or |s2t
and thus |t n suddenly “collapses” at unpredictable instant t ′ into the
corresponding state |sit ′, i  1,2.

III.2. Resolution of the Schrödinger’s cat paradox using generalized von
Neumann

postulate.
Proposition 3.3. Suppose that a nucleus n is in the superposition state given

by Eq.(3.19). the collaps: live cat → death cat arises at instant

T  L
|c2 |2 82E/m

. 3.33

with a probability PT death cat to observe a state death cat at instant T is

PT death cat  1.

Proof. Let us consider now a state |t n given by Eq.(3.19). This state consists
of a summ of two wave packets c1II

# x, t and c2I
#x, t. Wave packet c1II

# x, t
present an II-particle which lives in region II with a probability |c1 |2 (see Рiс.2.1).
Wave packet c2I

#x, t present an I-particle which lives in region I with a
probability |c2 |2 (see Рiс.2.1) and moves from the right to the left. Note that
I ∩ II  . From Eq.(3.28) follows that I-particle at each instant t ≥ 0 moves
quasiclassically from right to left by the law

xt  −|c2 |2t 8E/m , 3.34

From Eq.(3.34) one obtains

T  Tcol ≃ L
|c2 | 82E/m

. 3.35

Note that. In this case Schrödinger’s cat in fact permorm a single measurement of
|t n-particle position with accuracy of x  l at instant t  T  Tcol (given by
Eq.(3.35)) by internal monitor (see Pic.1.1). The probability of getting the result L at

instant t  Tcol with accuracy of x  l by Remark 3.7 and by postulate C.V.2 and
by postulate C.IV.3 (see apendix C) given by


|L−x|≤l/2

|〈x|c1|s1Tcol|2 ∗ |〈x|c2|s2Tcol|2 dx 


|L−x|≤l/2

|c2 |−2|c1 |−2 |〈x|c1 |−2 ||s1Tcol|
2 ∗ |〈x|c2 |−2 ||s2Tcol|

2 dx 


|L−x|≤l/2

|c2 |−2|c1 |−2 |I
#x|c2 |−2,Tcol|

2 ∗ |II
# x|c1 |−2,Tcol|

2 dx  1.

3.36

Note that. When Schrödinger’s cat has permormed this measurement and the
result x ≈ L  l is observed, then the immediate post measurement state of
-particle (by generalized von Neumann postulate C.V.3) will end up in the state



|Tcol n 

|L−x|≤l/2

|x〈x||Tcol ndx


|L−x|≤l/2

|〈x||s1Tcol|2  |〈x||s2Tcol|2 dx



|L−x|≤l/2

|x〈x||s2
c2Tcoldx


|L−x|≤l/2

|〈x||s2Tcol|2 dx
∈ HΘ,Θ  x||L − x| ≤ l/2.

3.37

The staite |Tcol n again kills Schrödinger’s cat with a probability
PTcol death cat  1.

Thus is the collapsed state of the cat always shows definite and
predictable

outcomes even if cat also consists of a superposition:
cat  c1 live cat  c2 death cat .

Contrary to van Kampen’s [10] and some others’ opinions, “looking” at the
outcome changes nothing, beyond informing the observer of what has already
happened.

We remain: there are widespread claims that Schrödinger’s cat is not in a
definite alive or dead state but is, instead, in a superposition of the two. van
Kampen, for example, writes “The whole system is in a superposition of two states:
one in which no decay has occurred and one in which it has occurred. Hence, the
state of the cat also consists of a superposition:
cat  c1 live cat  c2 death cat . The state remains a superposition until an

observer looks at the cat” [10].

Appendix. A.
The time-dependent Schrodinger equation governs the time evolution of a

quantum mechanical system:

i
∂x, t
∂t

 Hx, t.
A. 1

The average, or expectation, value 〈xi  of an observable xi corresponding to a
quantum mechanical operator x i is given by:

〈xi t,x0, t0; 


d

xi|x, t,x0, t0;|2ddx


d

|x, t,x0, t0;|2ddx
.

i  1, . . . ,d.

A. 2



Remark A.1. We assume now that: the solution x, t,x0, t0; of the
time-dependent Schrödinger equation (A.1) has a good approximation by a delta
function such that

|x, t,x0, t0;|2 ≃ 
i1

d

xi − xit,x0, t0,

xit,x0, t0  xi,0,

i  1, . . . ,d.

A. 3

Remark A.2. Note that under conditions given by Eq.(A.3) QM-system which
governed by Schrödinger equation Eq.(A.1) completely evolve quasiclassically i.e.
estimating the position xit,x0, t0;i1

d at each instant t with final error  gives
|〈xi t,x0, t0; − xit,x0, t0| ≤ , i  1, . . . ,d with a probability

P|〈xi t,x0, t0; − xit,x0, t0| ≤  ≃ 1.

Thus from Eq.(A.2) and Eq.(A.3) we obtain

〈xi t,x0, t0; ≃

≃


d

xi
i1

d1

xi − xit,x0, t0ddx


d


i1

d1

xi − xit,x0, t0ddx

 xit,x0, t0.

i  1, . . . ,d.

A. 4

Thus under condition given by Eq.(A.3) one obtain

〈xi,t t,x0, t0; ≃ xit,x0, t0,

i  1, . . . ,d.

A. 5

Remark A.3.Let ix, t,x0, t0, i  1,2 be the solutions of the time-dependent
Schrödinger equation (A.1). We assume now that x, t,x0,y0, t0 is a linear
superposition such that

x, t,x0,y0, t0  c11x, t,x0, t0  c22x, t,y0, t0.

|c1 |2  |c2 |2  1.

A. 6

Then we obtain



|x, t,x0,y0, t0|
2  x, t,x0,y0, t0∗x, t,x0,y0, t0 

 c11x, t,x0, t0  c22x, t,y0, t0 

c1∗1
∗x, t,x0, t0  c2

∗2
∗x, t,x0,y0, t0 

 |c1 |2 |1x, t,x0, t0|2  c1
∗c21

∗x, t,x02x, t,y0, t0 

|c2 |2 |2x, t,y0, t0|
2  c1c2

∗1x, t,x02
∗x, t,y0, t0.

A. 7

Definition A.1. Let 〈xt,x0,y0, t0 be a vector-function

〈xt,x0,y0, t0 : 0,T  d  d  0,T → d

〈xt,x0,y0, t0  〈x1 t,x0,y0, t0, . . . , 〈xd t,x0,y0, t0, A. 8

where

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx 

c1
∗c2 

d

xi1
∗x, t,x0, t02x, t,y0, t0d

dx 

c1c2
∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0d

dx.

A. 9



Definition A.2. Let Δt,x0,y0, t0 be a vector-function

Δt,x0,y0, t0 : 0,T  d  d → d

Δt,x0,y0, t0  1t,x0,y0, t0, . . . ,dt,x0,y0, t0, A. 10

where

 it,x0,y0, t0  xit,x0,y0, t0 

 c1
∗c2 

d

xi1
∗x, t,x0, t02x, t,y0, t0d

dx 

c1c2
∗ 
d

xi1x, t,x0, t02
∗x, t,y0, t0d

dx.

A. 11

Substituting Eqs.(A.11) into Eqs.(A.9) gives

〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2 
d

xi|1x, t,x0, t0|2ddx 

|c2 |2 
d

xi|2x, t,y0, t0|
2ddx   it,x0,y0, t0 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0.

A. 12

Substitution equations (A.5) into equations (A.12) gives



〈xi t,x0,y0, t0  
d

xi|x, t,x0,y0, t0|
2ddx 

 |c1 |2〈xi t,x0, t0  |c2 |2〈xi t,y0, t0   it,x0,y0, t0

≃ |c1 |2xit,x0, t0  |c2 |2xit,y0, t0   it,x0,y0, t0.

A. 13

Appendix. B.
The Schrödinger equation (2.1) in region I  x|x  0 has the folloving form

2
∂2Ix
∂x2

 2mEIx  0. B. 1

From Schrödinger equation (B.1) follows

2 
−

0
∂2Ix
∂x2

dx  2mE 
−

0

Ixdx  0. B. 2

Let I
#x be a function

I
#x  xIx, B. 3

where

x  rc
2−1/4 exp x2

2rc
2 B. 4

see Eq.(2.9). Note that

∂2xIx
∂x2

 ∂
∂x

Ix
∂x
∂x

 x
∂Ix
∂x



2
∂Ix
∂x

∂x
∂x

 Ix
∂2x
∂x2

 x
∂2Ix
∂x2

.

B. 5

Therefore substitution (B.2) into LHS of the Schrödinger equation (B.1) gives



2 
−

0
∂2I

#x
∂x2

dx  2mE 
−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2
dx  2Em 

−

0

xIxdx 

22 
−

0
∂Ix
∂x

∂x
∂x

dx  2 
−

0

Ix
∂2x
∂x2

dx 

 
−

0

x 2
∂2Ix
∂x2

 2Em 
−

0

Ix dx.

B. 6

Note that


−

0

x 2
∂2Ix
∂x2

 2Em 
−

0

Ix dx  0. B. 7

Therefore from Eq.(B.6) and Eq.(2.3)-Eq.(2.4) one obtain

2 
−

0
∂2I

#x
∂x2

dx  2mE 
−

0

I
#xdx 

2 
−

0
∂2xIx

∂x2
dx  2Em 

−

0

xIxdx 

 22 
l


∂Ix
∂x

∂x
∂x

dx  2 
l



Ix
∂2x
∂x2

dx.

B. 8

From Eq.(B.6) one obtain



∂x
∂x

 rc
2−1/4 ∂∂x

exp − x2

2rc
2  −rc

2−1/4rc
−2xexp − x2

2rc
2 ,

∂2x
∂x2

 −rc
2−1/4rc

−2 exp − x2

2rc
2 

rc
2−1/4rc

−4x2 exp − x2

2rc
2 .

B. 9

From Eq.(B.9) and Eq.(2.3)-Eq.(2.4) one obtain

2 
−

0
∂Ix
∂x

∂x
∂x

dx 

− 2

rc
21/4rc

2

−

0
∂expikx
∂x

xexp − x2

2rc
2 dx 

− 2 2mE 
rc

21/4rc
2

−

0

xexp i
2 2mE


x exp − x2

2rc
2 dx,

k  2


2mE .

B. 10

and

2 
−

0

Ix
∂2x
∂x2

dx  − 2

rc
23/4rc

2

−

0

expikxexp − x2

2rc
2 dx 

 2

rc
21/4rc

2

−

0

x2 expikxexp − x2

2rc
2 dx.

B. 11



Appendix C. Generalized Postulates for Continuous Valued Observables.

Suppose we have an n-dimensional quantum system.
I.Then we claim the following:
C.I. Any given n-dimensional quantum system is identified by a set 
  〈H,ℑ,,ℒ2,1,G, |t  where:
(i) H that is some infinite-dimensional complex Hilbert space, (ii) ℑ  ,ℱ,P

that is complete probability space, (iii)   n, that is measurable space , (iv)
ℒ2,1 that is complete space of random variables X :  → n such that



‖X‖dP  , 


‖X‖2dP   and (v) G : H → ℒ2,1 that is one to one

correspondence such that

〈|Q|  


G Q|  dP  E G Q|  C. 1

for any | ∈ H and for any Hermitian operator Q : H → H,
(vi) |t  is an continuous vector function |t  :  → H which representedthe

evolution of the quantum system .

C.I.2. For any |1 , |2  ∈ H and for any Hermitian operator Q : H → H such that

1 Q 2  2 Q 1  0 :

G Q|1   |2    G Q|1    G Q|2  . C. 2

C.I.3. Suppose that the evolution of the quantum system is represented by
continuous vector function |t  :  → H.Then any process of continuous

measurements on measuring observable Q for the system in state |t  one can to
describe by an continuous n-valued stochastic processes Xt  Xt; |t  given
on probability space ,ℱ,P and a measurable space n,.

Remark C.1.We assume now for short but without loss of generality that n  1.
Remark C.2. Let X be random variable X ∈ ℒ2,1 such that

X  G|, then we denote such random variable by X |. The probability
density of random variable X | we denote by p |q,q ∈ .

Definition C.1. The classical pure states correspond to vectors v ∈ H of norm
‖v‖≡1. Thus the set of all classical pure states corresponds to the unit sphere
S ⊂ H in a Hilbert space H.

Definition C.2.The projective Hilbert space PH of a complex Hilbert space H
is the set of equivalence classes v of vectors v in H, with v ≠ 0, for the
equivalence relation given by v Pw  v w for some non-zero complex
number  ∈ ℂ.The equivalence classes for the relation P are also called rays or
projective rays.

Remark C.3.The physical significance of the projective Hilbert space PH is
that in canonical quantum theory, the states | and | represent the same
physical state of the quantum system, for any  ≠ 0. It is conventional to choose a



state | from the ray | so that it has unit norm 〈|  1.

Remark C.4. In contrast with canonical quantum theory we have used instead
contrary to P equivalence relation Q, a Hilbert space H, see Definition C.7.

Definition C.3.The non-classical pure states correspond to the vectors v ∈ H of
a norm ‖v‖≠1. Thus the set of all non-classical pure states corresponds to the set
H\S ⊂ H in the Hilbert space H.

Suppose we have an observable Q of a quantum system that is found through
an exhaustive series of measurements, to have a set ℑ of values q ∈ ℑ such that
ℑ  i1

m 1i ,2i ,m ≥ 2, 1i ,2i  ∩ 1
j ,2

j  , i ≠ j.Note that in practice any

observable Q is measured to an accuracy q determined by the measuring device.
We represent now by |q the idealized state of the system in the limit q → 0, for
which the observable definitely has the value q.

II.Then we claim the following:
C.II.1.The states |q : q ∈ ℑ form a complete set of -function normalized

basis states for the state space Hℑ of the system.
That the states |q : q ∈ ℑ form a complete set of basis states means that any

state |ℑ ∈ Hℑ of the system can be expressed as: |ℑ  
ℑ

cℑqdq, where

suppcℑq ⊆ ℑ and while -function normalized means that 〈q|q′   q − q′
from which follows cℑq  〈q|ℑ so that |ℑ  ℑ |q〈q|ℑdq.

The completeness condition can then be written as 
ℑ
|q〈q|dq 


1Hℑ .

C.II.2.For the system in state |ℑ the probability Pq,q  dq; |ℑ of
obtaining the result q ∈ ℑ lying in the range q,q  dq ⊂ ℑ on measuring
observable Q is given by

Pq,q  dq; |ℑ  p |ℑqdq C. 3

for any |ℑ ∈ Hℑ.
Remark C.5. Note that in general case p |ℑq ≠ |cℑq|

2.

C.II.3.The observable Qℑ is represented by a Hermitian operator Qℑ : Hℑ→ Hℑ

whose eigenvalues are the possible results q : q ∈ ℑ, of a measurement of Qℑ,

and the associated eigenstates are the states |q : q ∈ ℑ, i.e. Qℑ|q  q|q,q ∈ ℑ.

Remark C.6. Note that the spectral decomposition of the operator Qℑ is then

Qℑ  
ℑ

q|q〈q|dq. C. 3

Definition C.4. A connected set in  is a set X ⊂  that cannot be partitioned
into two nonempty subsets which are open in the relative topology induced on the
set. Equivalently, it is a set which cannot be partitioned into two nonempty subsets
such that each subset has no points in common with the set closure of the other.

Definition C.5. The well localized pure states |Θ with a support Θ  1,2
correspond to vectors of norm 1 and such that: suppcΘq  Θ is a connected
set in  Thus the set of all well localized pure states corresponds to the unit sphere
SΘ
  S ⊂ H in the Hilbert space HΘ  H.
Suppose we have an observable QΘ of a system that is found through an



exhaustive series of measurements, to have a continuous range of values q :
1  q  2.

III.Then we claim the following:
C.III.1.For the system in well localized pure statestate |Θ such that:
(i) |Θ ∈ SΘ and
(ii) suppcΘq  q|cΘq ≠ 0 is a connected set in , then the probability
Pq,q  dq; |Θ of obtaining the result q lying in the range q,q  dq on

measuring
observable QΘ is given by

Pq,q  dq; |Θ  |〈q|Θ|2dq  |cΘq|
2dq. C. 4

C.III.2. p |Θqdq  |〈q|Θ|2dq  |cΘq|
2dq.

C.III.3.Let |Θ1  and |Θ2  be well localized pure states with Θ1  11,21
and

Θ2  12,22 correspondingly. Let X1  X |Θ1  and X2  X |Θ2 
correspondingly. Assume that Θ1 ∩ Θ2   (here the closure of Θi, i  1,2 is

denoted by
Θi, i  1,2) then random variables X1 and X2 are independent.
C.III.4. If the system is in well localized pure state |Θ the state |Θ

described by a
wave function q,Θ  〈q||Θ and the value of observable QΘ is measured

once each
on many identically prepared system, the average value of all the

measurements will be

〈QΘ  


Θ

q|q,Θ|2dq


Θ

|q,Θ|2dq
.

C. 5

The completeness condition can then be written as 
Θ
|q〈q|dq 


1HΘ .

Completeness means that for any state |Θ ∈ SΘ it must be the case that

Θ
|〈q|Θ|2dq ≠ 0, i.e. there must be a non-zero probability to get some result on

measuring observable QΘ.
C.III.5.(von Neumann measurement postulate) Assume that
(i) | ∈ SΘ and (ii) suppcq  Θ is a connected set in . Then if on

performing a measurement of QΘ with an accuracy q, the result is obtained in the
range q − 1

2 q,q 
1
2 q, then the system will end up in the state



Pq,q|Θ

〈|Pq,q|Θ



q−q′ ≤q/2
|q′ 〈q′ ||Θdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′
. C. 6

IV.We claim the following:
C.IV.1 For the system in state |aΘ  a|Θ ∈ HΘ, where: (i)

|Θ ∈ SΘ, |a| ≠ 1,
(ii) suppcΘq is a connected set in  and (iii) |Θ  

1

2 cΘq|qdq

G QΘ|
aΘ  |a|2G QΘ|Θ . C. 6

C.IV.2. Assume that the system in state |aΘ  a|Θ ∈ HΘ, where (i)
|Θ ∈ SΘ, |a| ≠ 1, (ii) suppcΘq is a connected set in  and (iii)

|Θ  
1

2 cΘq|qdq.

Then if the system is in state |aΘ described by a wave function
aq;Θ  〈q||aΘ and the value of observable QΘ is measured once each on
many identically prepared system, the average value of all the measurements will
be

〈QΘ   
Θ

q|aq;Θ|2dq. C. 7

C.IV.3. The probability Pq,q  dq; |aΘdq of obtaining the result q lying in the
range

q,q  dq on measuring QΘ is

Pq,q  dq; |aΘdq  |a|−2|cΘq|a|−2|
2dq.

C. 8

Remark C.7.Note that C.IV.3 immediately folows from C.IV.1 and C.III.2.

C.IV.4. (Generalized von Neumann measurement postulate) If on performing
a measurement of observable QΘ with an accuracy q, the result is obtained in the
range q − 1

2 q,q 
1
2 q, then the system immediately after measurement will end

up in the state



Pq,q|aΘ

〈|Pq,q|Θ



q−q′ ≤q/2
|q′ 〈q′ ||aΘdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′


a 
q−q′ ≤q/2

|q′ 〈q′ ||Θdq′


q−q′ ≤q/2

|〈q′ ||Θ|2dq′
∈ HΘ.

C. 9

C.V.1. Let |a1,a2Θ1,Θ2   |1
a1Θ1   |2

a2Θ2  ∈ H1,2  HΘ1 ⊕ HΘ2  H,
where

(i) |i
aiΘi   ai|iΘi  ∈ HΘi , |i   |iΘi  ∈ SΘi

 , |ai | ≠ 1, i  1,2;
(ii) suppciΘi q, i  1,2 is a connected sets in ;
(iii) suppc1Θ1 q ∩ suppc2Θ2 q   and

(iv) |iΘi   
1

2 ciΘi q|qdq, i  1,2.

Then if the system is in a state |a1,a2Θ1,Θ2  described by a wave function
a1,a2q;Θ1,Θ2  〈q||a1,a2Θ1,Θ2 ,q ∈ Θ1  Θ2 and the value of observable QΘ1,Θ2

is measured once each on many identically prepared system, the average value of
all the measurements will be

〈QΘ1,Θ2   
Θ1Θ2

q|a1,a2q;Θ1,Θ2|2dq. C. 10

C.V. 2. The probability of getting a result q with an accuracy q such that
q − 1

2 q,q 
1
2 q ∈ suppc1q or q − 1

2 q,q 
1
2 q ∈ suppc2q given by


q−q′ ≤q/2

|〈q′ ||1
a1Θ1 |

2 ∗ |〈q′ ||2
a2Θ2 |

2 dq′. C. 11

Remark C.8.Note that C.IV.3 immediately folows from C.III.3.
C.V. 3. Assume that the system is initially in the state |a1,a2Θ1,Θ2 . If on

performing a measurement of QΘ1,Θ2 with an accuracy q, the result is obtained in
the range q − 1

2 q,q 
1
2 q, then the state of the system immediately after

measurement given by



Pqi,q|a1,a2Θ1,Θ2 

〈|Pqi,q|



qi−q′ ≤q/2

|q′ 〈q′ ||1
a1Θ1   |q′ 〈q′ ||2

a2Θ2 dq′


qi−q′ ≤q/2

|〈q′ ||1Θ1 |
2  |〈q′ ||2Θ2 |

2 dq′



qi−q′ ≤q/2

a1|q′ 〈q′ ||1Θ1   a2|q′ 〈q′ ||2Θ2 dq′


qi−q′ ≤q/2

|〈q′ ||1Θ1 |
2  |〈q′ ||2Θ2 |

2 dq′
∈ HΘi ,

qi ∈ Θi, i  1,2.
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Definition C.6. Let H1,2 be H1,2  HΘ1 ⊕ HΘ2 .
Definition C.7. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and

|  
1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is

a Q-equivalent: |a  Q |a  iff

Pq,q  dq; |a   |a|−2|cq|a|−2|
2dq  Pqq  dq; |a dq

C. 13

C.V.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq

there exist an state |a  ∈ S such that: |a  Q |a .
Definition C.8. Let |a  be a state |a   a|, where | ∈ S, |a| ≠ 1 and

|  
1

2 cq|qdq.Let |a  be an state such that |a  ∈ S.States |a  and |a  is

a Q-equivalent (|a  
Q
|a ) iff: 〈a | Q|a   〈a | Q|a .

C.VI.For any state |a   a|,where | ∈ S, |a| ≠ 1 and |  
1

2 cq|qdq

there exist an state |a  ∈ S such that: |a  
Q
|a .

Appendix D. The Position Representation.Position observable of a particle
in one dimension.

The position representation is used in quantum mechanical problems where it is
the position of the particle in space that is of primary interest. For this reason, the
position representation, or the wave function, is the preferred choice of
representation.

D.1. In one dimension, the position x of a particle can range over the values
−  x  . Thus the Hermitean operator x corresponding to this observable will
have eigenstates |x and associated eigenvalues x such that:
x |x  x|x,−  x  .



D.2. As the eigenvalues cover a continuous range of values, the completeness
relation will be expressed as an integral: |t   −


|x〈x|t dx,where 〈x|t   x, t

is the wave function associated with the particle at each instant t. Since there is a
continuously infinite number of basis states |x, these states are -function
normalized: 〈x|x ′   x − x ′.

D.3. The operator x itself can be expressed as: x  
−


x|x〈x|dx.

Definition D.1. A connected set is a set X ⊂  that cannot be partitioned into
two nonempty subsets which are open in the relative topology induced on the set.
Equivalently, it is a set which cannot be partitioned into two nonempty subsets such
that each subset has no points in common with the set closure of the other.

D.4.The wave function is, of course, just the components of the state vector
|t  ∈ S with respect to the position eigenstates as basis vectors. Hence, the
wave function is often referred to as being the state of the system in the position
representation. The probability amplitude 〈x|t  is just the wave function, written
〈x|t   x, t and is such that |x, t|2dx is the probability Px, t; |t  of the particle
being observed to have a coordinate in the range x to x  dx

Definition D.2. Let |t
a , t ∈ 0, be a state |t

a   a|t , where
|t  ∈ S, |a| ≠ 1 and |t   −


x, t|xdx.Let |t,a , t ∈ 0, be an state such

that |t,a  ∈ S, t ∈ 0,. States |t
a  and |t,a  is x-equivalent (|t

a  x |t,a ) iff

Px, t; |t
a dx  |a|−2|x|a|−2, t|2dx  Px, t; |t,a dx D. 1

D.5.From postulate C.5 (see Appendix C) follows: for any state
|t

a   a|t ,where |t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −

x, t|xdx there exist

an state |t,a  ∈ S, t ∈ 0, such that: |t
a  x |t,a .

Definition D.2. Let |t
a , t ∈ 0, be a state |t

a   a|t , where
|t  ∈ S, |a| ≠ 1 and |t   −


x, t|xdx.Let |t,a , t ∈ 0, be an state such

that |t,a  ∈ S, t ∈ 0,. States |t
a  and |t,a  is

x-equivalent (|t
a  x |t,a ) iff:

〈t
a | x |t

a   〈t,a |
x |t,a .

D.6.From postulate C.7 (see Appendix C) follows: for any state
|t

a   a|t ,where |t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −

x, t|xdx there exist

an state |t,a  ∈ S, t ∈ 0, such that: |t
a  x |t,a .

Definition D.3. The pure state |t  ∈ S, t ∈ 0,, |t   −

x, t|xdx is a

weakly Gaussian in the position representation iff

|x, t|2dx  1
t 2

exp − x − xt2

t
2 dx, D. 2

where xt and t an given functions which depend only on variable t.



D.7.From statement D.5 follows: for any state |t
a   a|t ,where

|t  ∈ S, |a| ≠ 1, t ∈ 0, and |t   −

x, t|xdx is a weakly Gaussian state

there exist an weakly Gaussian state |t,a  ∈ S, t ∈ 0, such that:

Px, t; |t
a dx  |a|−1|x|a|−1, t|2dx 

 1
|a|t 2

exp − x − |a|xt2

|a|2t
2

dx.

D. 3
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