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Abstract: In a previous series of papers relating to the Combined Gravitational Action (CGA), we have 

exclusively studied orbital motion without spin. In the present paper we apply CGA to any self-rotating 

material body, i.e., an axially spinning massive object, which itself may be locally seen as a gravito-

rotational source because it is capable of generating the gravito-rotational (field) acceleration, which 

seems to be unknown to previously existing theories of gravity. The consequences of such an acceleration 

are very interesting, particularly for Compact Stellar Objects. Independently of the equation of state, it is 

found that the critical and maximum internal magnetic field strength of a stable neutron star cannot 

exceed the value of G103 18 . 
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1. Introduction 

1.1. A brief summary of the CGA 

 

      We feel that we are obliged to give a careful physical justification to the creation of the 

Combined Gravitational Action (CGA) as a refinement and a generalization of the Newton's 

gravity theory. The key idea in the CGA-formalism is the physical fact of taking into account the 

relative motion of the test(secondary)body which is under the gravitational influence of the 

primary one. Historically, the idea itself is not new since Laplace [1], Lorentz [2], Poincaré [3,4] 

and Oppenheim [5] have already thought of adjusting the Newton's law of gravitation by adding 

a certain velocity-dependent-term, but unfortunately their effort could not explain, e.g., the 

remaining secular perihelion advance rate of Mercury discovered by Le Verrier in 1859. We 

have previously shown in a series of articles [6-10] that the CGA as an alternative gravity theory 

is very capable of investigating, explaining and predicting, in its proper framework, some old 

and new gravitational phenomena. Conceptually, the CGA is basically founded on the concept of 

the combined gravitational potential energy (CGPE) which is actually a new form of velocity-

dependent-GPE defined by the expression 
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where GMmk  ; G  being Newton’s gravitational constant; M and m  are the masses of the 

gravitational source A and the moving test-body B ; 
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relative distance between A  and B ; 222

zyx vvvv  is the velocity of the test-body B relative 

to the inertial reference frame of source A ; and w  is a specific kinematical parameter having the 

physical dimensions of a constant velocity defined by  
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where c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the 

gravitational source A.  

 

       In the CGA-context, the velocity-dependent-GPE (1) is simply called CGPE because it is, in 

fact, a combination of the static-GPE 1)(  rkrV  and the dynamic-GPE 21 )/()( wrk,rW vv  . 

The main difference between the CGPE (1) as a generalization of classical GPE and the 

previously well-known velocity-dependent-GPEs is clearly situated in the originality and 

simplicity of Eq.(1), which may be rewritten in the form  21 )/(1 wrrk)rr,(UU   
 , with 

dtdrrv /  . The originality of CGPE is reflected by the fact that the CGPE is explicitly 

depending on r  and v  but also is implicitly depending on w  since the latter is, by definition, ‒ a 

specific kinematical parameter having the physical dimensions of a constant velocity ‒ .The 

implicit dependence of CGPE on w  is expressed in terms of ‘inside the vicinity of A’ and 
‘outside the vicinity of A’ in (2). Furthermore, the CGPE may be reduced to the static-GPE when 

wv << . Thus the main physical reason for the choice of the expression (1) for the CGPE lies in 

its consequence as a generalization of the static-GPE.  

      Now, let us show when and how we could apply the CGA. As we know, the Newton's 

gravitational theory is a very good depiction of gravity for many situations of practical, 

astronomical and cosmological interest.  However, it is currently well established that the 

Newton's theory is only an approximate description of the law of gravity. As early as the middle 

of the nineteenth century, observations of the Mercury's orbit revealed a discrepancy with the 

prediction of Newton's gravity theory. In fact, this famous discrepancy was historically the first 

evidence of the limit of validity of Newtonian gravity theory. This disagreement between theory 

and observations was resolved by taking into account the CGA-effects inside and outside the 

solar system [6-9], which are known as the crucial tests support the general relativity theory 

(GRT).  On the whole, the criterion that we should use to decide whether to employ Newton's 

gravity or CGA is the magnitude of a dimensionless physical quantity called the "CGA-

correction factor" : 
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which is actually derived from (1) and (2) for the case when  the test-body B is evolving inside 

the vicinity of the gravitational source A. The same dimensionless physical quantity (3) exists in 

GRT and for this reason we have already shown in Ref.[10] the existence of an important 

similarity between the CGA-equations of motion and those of GRT. Moreover, it is worthwhile 

to note that the smaller this factor (3), the bitter is Newtonian gravity theory as an 
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approximation. As an  illustration, we have e.g., for the system {Earth, Moon}: 
1110ȗ  and for 

the system {Sun, Earth}: 
810ȗ  .      

 

       Hence, starting from the CGPE and using only the very familiar tools of classical 

gravitomechanics and the Euler-Lagrange equations, we have established the CGA-formalism 

[6-10] .The main consequence of CGA is the dynamic gravitational field (DGF),Λ , which is 

phenomenologically an induced field that is more precisely a sort of gravitational induction due 

to the relative motion of material body inside the vicinity of the gravitational source [6-10]. In 

general, the magnitude of DGF is of the form 
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      Eq.(4) means that DGF may play a double role, that is to say, when perceived/interpreted as 

an extra-gravitational acceleration, 0Λ  , or an extra-gravitational deceleration, 0Λ , (see Ref. 

[8] for a detailed discussion).  

 

     In the papers [6-10] we have exclusively focused our interest on the orbital motion and 

gravitational two-body problem. In the present paper, we shall apply CGA to any self-rotating 

(spinning) material body, i.e., axially rotating massive object that itself may be locally seen as a 

gravito-rotational source since it is capable of generating the gravito-rotational (field) 

acceleration λ , which seems to be unknown to previous theories of gravity.  

 

2. Concept of the Gravito-Rotational Acceleration  

 

      Phenomenologically, the concept of the gravito-rotational acceleration  (GRA), λ , is very 

similar to DGF, that is if Λ  is mainly induced by the relative motion of the massive test body in 

the vicinity of the principal gravitational source, the GRA is intrinsically generated by any 

massive body in a state of rotational motion, independently of the principal gravitational source, 

which itself may be characterized by its proper GRA during its axial-rotation, and therefore the 

GRA is, in fact, a combination of gravity and rotation. 

 

3. Expression of GRA magnitude 

 

       In order to derive an explicit expression for GRA magnitude, let us first rewrite Eq.(4) for 

the case when 0Λ  , that is   
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and consider a massive body of mass M and radius R , which is intrinsically in a state of  axial-

rotation in its proper reference frame at rotational velocity of magnitude Rv Ωrot   
independently of the presence of any other gravitational source. Therefore, according to the 

concept of GRA, in such a case, the rotating/spinning massive body should be locally seen as a 
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gravito-rotational source when Ȝ λΛ  as Rr  , rotvv   and cw , thus (5) becomes 

after substitution 
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Since 1π2Ω  P , where P  is the rotational period, hence on insertion into (6), we get the 

expected expression  

                                                                 
2

Ȝ
P
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     It is clear from Eq.(7), the GRA Ȝ  depends exclusively on the mass and rotational period, 

therefore, mathematically may be treated as a function of the form  PM ,ȜȜ . Moreover, the 

structure of Eq.(7) allows us to affirm that for any astrophysical massive object, the magnitude of 

λ  should be infinitesimally small for slowly rotating massive stellar objects and enormous for 

rapidly rotating ones. To confirm our assertion numerically, we have selected seven well-known 

(binary) pulsars and calculated their GRA magnitudes, and compared them with the magnitude 

of the Sun’s GRA. The values are listed in Table 1. 

 

                                                                                  

                                        OBJECT                                              P                            M                                         Ȝ                                REF.                                                         

                       Sun + PRS                             s                           (Mʘ)                       -2sm                                               

          

                     Sun                           2.164320
6

10                1                      1.244823
-8

10      
               

                  
                   

            

                     B 1913+16                5.903000
-2

10               1.4410  
                 

2.409380
7

10  
          

       a  
             

               

                       B 1534+12                  3.790000
-2

10                 1.3400                5.435171
7

10                  b,c 
    

                                       

                       B 2127+11C               3.053000
-2

10                 1.3600                8.501044
7

10                  d                      

                       B 1257+12                  6.200000
-3

10                 1.4000                2.121932
9

10                   e                      

                       J 0737-3039               2.280000
-2

10                 1.3381                1.500000
8

10                   f                                

                       B 1937+21                 1.557800
-3

10                  1.4000                3.364000
10

10                  g                      

                       J 1748-2446ad          1.395000
-3

10                  1.4000                4.194982
10

10                  h     

   

   Table 1: The values of GRA magnitude for seven well-known (binary) pulsars compared with that of the Sun. 

 

   Ref.: a) Taylor and Weisberg [11]; b) Arzoumanian  [12]; c) Wolszcan [13]; d) Deich and Kulkarni [14]; 

    e) Konacki and Wolszcan [15]; f) Kramer and Wex [16]; g) Takahashi et al. [17]; 

   h) Hessels et al. [18]. 

   Note: To calculate these values, we have used 
21311

skgm1067384.6
G , 

1
sm299792458
c  ,       

         Mʘ = kg109885.1
30

 
and sidereal rotation period at equator Pʘ = d05.25 .  
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       Analysis of Table1 gives us the following results: 1) The magnitude of the Sun’s GRA, 
 λʘ

28 sm10244823.1  , is extremely  weak  that’s why its effect on the solar system is 

unobservable, but perhaps it is only the Sun’s immediate vicinity that should be affected by it. 

Since GRA is explicitly independent of the radius of the rotating massive object thus the extreme 

weakness of the magnitude of the Sun’s GRA is mainly due to the huge value of the rotational 

period, Pʘ s10164320.2 6 , compared with those of the pulsars. 2) In spite of the fact that the 

pulsars' masses are nearly equal, the pulsars' rotational periods show a neat inequality between 

them. Also, the different values of GRA magnitude for each celestial object show us how 

sensitive GRA is to variation in rotational period.  

 

4. Mutual dependence between the Mass and the Rotational Period 

 

      Since GRA may be treated as a function of the form  PM ,ȜȜ  thus we can show more 

clearly the existence of the mutual dependence between the mass and rotational period of the 

same rotating body via GRA. For this purpose, we deduce from Eq.(7) the following expression 
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      Obviously, Eq.(8) shows us the expected mutual dependence between the mass and rotational 

period via GRA. Furthermore, as the rotational period is an intrinsic physical quantity, here, 

according to Eq.(8), the  spin of any massive celestial body should vary with mass independently 

of cosmic time. 

 

5. Link between GRA and Rotational Acceleration 

 

        Now, returning to Eq.(7) and showing that GRA and the rotational acceleration  

 

                                                                     Ra
2

rot Ω ,                                                             (9) 

 

are in fact proportional, rotȜ a , and the constant of proportionality is precisely the compactness 

factor RcGMε 2/
 

that characterizes any massive celestial body. To this end, it suffices to 

multiply and divide by the radius R  the right-hand side of Eq.(7) to get the expected expression 

 

                                                                                     rotȜ aε .                                                             (10) 

 

       According to the expression (10), GRA is at the same time an old and a new natural physical 

quantity that should play a crucial role, especially for compact stellar objects, e.g., the rotating 

neutron stars and pulsars for which the compactness ε  has a large value compared to that of 

normal stellar objects. By way of illustration, the Sun’s compactness εʘ has the value of 

 610123679.2  . 
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6. Consequences of GRA 

 

      In what follows we will show that, in the CGA-context , the gravitodynamic equilibrium, 

dynamical instability and gravitational instability of a uniformly rotating neutron star (NS) 

depend on the ‘antagonism’ between centrifugal force and gravitational force, or in energetic 

terms, between rotational kinetic energy (RKE) and gravitational binding energy (GBE). 

 

       Usually the physics of NS/pulsar considers that the source of the emitted energy is 

essentially the RKE, however, such a consideration should immediately imply that, at least in the 

medium term, the GBE should absolutely dominate the RKE and as a result the NS should be 

prematurely in a state of gravitational collapse. Hence, as we will see, the main source of the 

emitted energy is not the RKE but the gravito-rotational energy (GRE), a sort of new physical 

quantity which is a direct consequence of GRA.  

 

       Let us now determine the states of gravitodynamic equilibrium, dynamical instability and 

gravitational instability that may be characterized any NS at least in the medium term. With this 

aim, we assume a uniformly rotating NS as a homogeneous rigid spherical body of mass M, 

radius R and angular velocity 1π2Ω  P , where P  is the rotational period. The NS's RKE and 

GBE are, respectively, defined by the well-known formulae:  

  

  
                                                                

2

rot 2
1 ΩIE  ,                                                             (11) 

                                                                   
R

GM
E
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5
3

g ,                                                       (12) 

where  52 /2
MRI    is the moment of inertia of NS under consideration. Hence, the total energy  

is 

                                                                   
g

EEE  rottot ,                                                       (13) 

 

which presents the following three states according to the sign of total energy: 

   

a) 0tot E , NS is in a state of gravitational instability,         

b) 0tot E , NS is in a state of gravitodynamic equilibrium, 

c) 0>totE , NS is in a state of dynamical instability. 

                                                                           

It is worth noting that the three suggested states a), b) and c) are taken in the medium term 

because NS may be suddenly in a state of gravitational or dynamical perturbations or in a state of 

transition from temporary stability to temporary instability and vice versa. 

7. Critical Rotational Period 

 

      Knowing the critical rotational period (CRP) of NS is very important because CRP should be 

treated as a parameter of reference on which the temporal evolution of NS depends. Furthermore, 

since the change from temporary stability to temporary instability and vice versa should pass 

obligatorily via the state of gravitodynamic equilibrium, therefore, an expression for the CRP 
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may be deduced from the state (b), so after performing  a simple algebraic calculation, we get the 

following expected expression 

                                                                     
GM

R
RπP

3
2c  .                                                         (14) 

      

If we take into account the relativistic considerations, the realistic critical rotational period 

should be 

                                                                      
c

πR
P

2
c  .                                                              (15) 

 

From (14) and (15) we obtain an expression for minimum radius of any stable NS 

 

                                                                     
2min

3

c

GM
R  .                                                         (16) 

 

Eq.(16) asserts that the minimum radius minR  of any stable NS of mass M is three times the 

gravitational radius  2/g cGMr   of  the NS under consideration.  Now, let us calculate the  Pc , λc  

and  Rmin , respectively, of standard NS (M =1.4Mʘ , km10R ). On substitution, we have  

 

                                                   ȝs266.1365s10661365.2 4

c  
P ,                                     (17)  

                                                   212

c ms10152.1Ȝ  ,                                                               (18)                                               

                                                km201678.6min R .                                                                    (19) 

 

It is  worthwhile to note that the calculated critical rotational period (17) for the standard NS is 

a tiny fraction of the smallest yet observed rotational period, ms3950.1P , of PRS J1748-

2446ab [13].  

      

8. Gravito-Rotational Energy 

 

      Now we approach the most important consequence of GRA, that is, the gravito-rotational 

energy (GRE), which should qualitatively and quantitatively characterize any massive rotating 

body. As we will see, GRE is quantitatively very comparable to the amount of RKE, particularly 

for neutron stars and pulsars. Since GRE is a direct consequence of GRA, hence GRE should be 

proportional to GRA magnitude, i.e.,
 

ȜE  or equivalently 

 

                                                                        ȜȘE  .                                                             (20)  

 

Let us determine the constant of the proportionality Ș  by using dimensional analysis as follows: 
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]Ȝ[
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we can remark that the dimensional quantity LM  has the physical dimensions of the product of 

mass and length, therefore, for our case Ș  should take the form RIMRȘ 25 /  and by 

substituting into (20), we find the required expression for GRE 

 

                                                                     R

IȜ
2
5E  .                                                            (21) 

 

      In order to show that the amount of GRE E is quantitatively very comparable to that of 

RKE, particularly for the compact stellar objects, we can use Table 1. The numerical values of 

rotE  and E are listed in Table 2.  

                                                                              

                                       OBJECT                                                        rotE                                                 E                                                                                                             

                                Sun + PRS                                     J                                               (J)                                             

 

                             Sun                                     2.3900
35

10                           2.5401
30

10      
               

                  
                   

            

                             B 1913+16                          6.4948
41

10                           6.9180
41

10  
          

                     
             

               

                                B 1534+12                             1.4651
42

10                              1.4500
42

10                                
    

                                   

                                B 2127+11C                          2.2915
42

10                              2.3010
42

10                                                    

                                B 1257+12                            5.7200
43

10                               5.9140
43

10                                                      

                                J 0737-3039                          4.0426
42

10                              4.0000
42

10                                                                

                                B 1937+21                            9.0604
44

10                               9.3680
44

10                                                     

                               J 1748-2446ad                      1.1300
45

10                               1.1680
45

10                                     

   

                     Table 2: Comparison of the numerical values of rotE  and E  for the Sun and seven well 

                      known (binary) pulsars.  

                      Note: To calculate  the Sun's rotE  and E , we have used the relation 059.0
2/ MRI  .  

                       

      Analysis of Table 2: The numerical values listed in Table 2 show us, excepting the Sun’s 

values, that all the values of rotE  and E are very comparable for the seven (binary) pulsars. This 

fact is mainly due, at the same time, to the rotational period and the compactness ε . To illustrate 

this fact, let us return to the expression (21) which may be written as follows: 

 

                                                                   
rot5 EεE  .                                                            (22) 

 And as 15 ε  for the NS hence that's why rotEE  as it is well illustrated in Table 2. From all 

that we arrive at the following result: In the CGA-context, the RKE cannot be considered as the 

main source of the emitted energy for rotating neutron stars and pulsars because ‒in energetic 

terms‒ its own role is to balance, approximately, the GBE, at least in the medium term. 

Therefore, the veritable principal source of the emitted energy should undoubtedly be GRE, as 

illustrated by the GRE numerical values listed in Table 2, which are quantitatively very 

comparable to those of RKE for pulsars. Moreover, if we take into consideration the critical 
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value of GRA magnitude (18) for standard NS (M =1.4Mʘ , km10R ),we get the following 

critical value for GRE  

                                                  
erg103.210J10210.3 5346

c E .                                        (23) 

 

9. Rotating Magnetars and Neutron stars      
 

       Rotating magnetized neutron stars (magnetars) are also important compact stellar objects. 

That's why it is possible, in the CGA-context, to exploit GRE as an energetic reservoir for 

rotating magnetars by assuming that there is a certain physical mechanism that can convert all or 

at least a significant part of GRE into an extreme internal magnetic energy:  

 

                                                      E 32

3
4

8
1

RπBE πB
(erg).                                                   (24)                            

 

By taking into account the expressions (6), (21) and after some algebraic manipulation, we get 

from (24) the expected equations for the internal magnetic field (IMF) strength 

 

                                                                      
cR

M
B

Ω
k ,                                                                (25) 

or equivalently  

                                                              
c

v

R

M
B rot

2
k ,                                                                (26) 

where 

                                   11/23/24 sgcm10328.6 k ,  12Ω  Pπ , Rv Ωrot   

 

As we can see from Eq.(25), the IMF strength is also depending on the NS' angular velocity Ω . 

This dependency has not yet been mentioned in the literature. This dependency will offer 

profound insight on the physics of neutron stars. Moreover,  Eq.(26) permits us to calculate the 

theoretical maximum  IMF strength of any NS independently of the equation of state (EOS),  i.e., 

max
BB   when cv rot , or more explicitly:  

 

                                                        
 

cvc

v

R

M
B










rot

rot

2max k .                                                   (27) 

 

Now, let us demonstrate that the same IMF strength defined by (26) may be treated as a function 

of surface gravity 0g  and rotational velocity of NS. To this end, multiplying and dividing the 

right-hand side of (26) by the same quantity G, Newton’s gravitational constant, to obtain 
1

rot0

 cvB gK  where  11/23/23 sgcm10482.9 K  and  2

0

GMRg .                                                             

                               

      Obviously, the surface magnetic field strength 0B
 
and average IMF strength avB  should be, 

respectively, less than critical IMF strength cB
 

and maximum IMF strength maxB . As an 

illustration, let us apply our formalism to a massive NS. To be realistic,  we have selected the 

well-known pulsar PSR J1614-2230. So, we have according to [19] the following parameters: 
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ms15.3P ,  M =1.97Mʘ, km13R  and G101.8 8

0 B .  Thus, by inserting these physical 

parameters into Eqs.(14), (25) and (27), we obtain the average, critical and maximum IMF 

strength, respectively:  
 

                                                          G101.268713 17

av B ,                                                    (28)                                                

                                                           G101.202 18

c B ,                                                          (29) 

                                                       G101.466802 18

max B .                                                    (30) 

                                                               
 

     Since, according to the present formalism which is established independently of EOS, the 

critical IMF strength (29) is calculated when the NS (PSR J1614-2230) is supposed to be in a 

state of gravitodynamic equilibrium 0tot E , i.e., state (b) by using Eqs.(14) and (25), therefore, 

it follows that any NS of mass  2Mʘ ≲ MNS ≲ 3Mʘ  and radius km15km10 NS  R  should be in 

a state of dynamical instability if its IMF strength is greater than the critical field (B > BC ) 

because the numerical value of maximum IMF strength (30) for PSR J1614-2230 is calculated 

for the  case cv rot . On the whole, we can affirm, in the context of the present work, that any 

stable NS should be characterized by a critical cB  and a maximum IMF strength maxB  of the 

order of G1018 . To confirm our claims about this value, let us evaluate the critical and maximum 

IMF strength of three idealized stable neutron stars of masses: 2Mʘ ; 2.5Mʘ ; 3Mʘ  and 

radii: km15km01 NS  R ; km15km50.11 NS  R ; km15km50.13 NS  R , respectively. Note 

that the idealized minimum radii km01 ; km50.11 ; km50.13  are relatively comparable to the 

theoretical minimum radii km86.8 ; km075.11 ; km30.13  computed with the help of Eq.(16). 

Like before, with the help of Eqs.(14), (25) and (27), the predicted values for each NS are 

computed and listed in Tables 3, 4 and 5.     

 

                Table 3: The values of critical and maximum IMF strength for an idealized stable NS of mass 2Mʘ 

                                                                                                          

                        NS                                    RNS
                                 Bc

                                                 Bmax
 

                          (Mʘ)                               (km)                                  (G)                                           (G)     
                                                       

          

                          2                              10                           2.368795
18

10                      2.516645
18

10      
               

                  
             

                          2                              10.50                      2.096787
18

10                      2.282671
18

10     
          

         
             

              

                            2                                 11                              1.866577
18

10                         2.079872
18

10             
    

                                  

                            2                                 11.50                         1.670256
18

10                        1.902945
18

10                                                  

                            2                                 12                              1.501670
18

10                        1.747670
18

10                                    

                           2                                  12.50                         1.355977
18

10                        1.610653
18

10                                            

                           2                                 13                              1.229332
18

10                        1.489139
18

10                                                

                           2                                 13.50                         1.118647
18

10                        1.380875
18

10         

                           2                                14                               1.021427
18

10
              

         1.284002
18

10
 

          2                                14.50                          9.356375
17

10                        1.196977
18

10
     

         2                                15                               8.596061
17

10                        1.118509
18

10
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          Table 4: The values of critical and maximum IMF strength for an idealized stable NS of mass 2.5Mʘ 

                                                                                                          

                    NS                                  RNS
                                       Bc

                                             Bmax
 

                      (Mʘ)                             (km)                                         (G)                                        (G)     
                                                         

          

                     2.5                           11.50                            2.334253
18

10                  2.378682
18

10      
               

                  
                  

                     2.5                           12                                 2.098647
18

10                 2.184588
18

10     
          

         
             

               

                       2.5                              12.50                               1.895036
18

10                    2.013316
18

10             
    

                                      

                       2.5                              13                                    1.718044
18

10                    1.861424
18

10                                                     

                       2.5                             13.50                               1.563357
18

10                     1.720694
18

10                                    

                       2.5                             14                                    1.427488
18

10                     1.605003
18

10                                      

              2.5                             14.50                               1.307593
18

10                     1.496222
18

10                  

                 2.5                            15                                     1.201336
18

10                     1.398136
18

10  

 

 

                   

         Table 5: The values of critical and maximum IMF strength for an idealized stable NS of mass 3Mʘ            

                                                                                                          

                    NS                                 RNS
                                 Bc

                                                   Bmax
 

                      (Mʘ)                             (km)                                 (G)                                             (G)     
                                                         

  

          

                      3                            13.50                      2.055086
18

10                       2.071313
18

10      
               

                  
                   

  

                      3                            14                          1.876481
18

10                       1.926002
18

10     
          

         
             

               

                        3                               14.50                        1.718815
18

10                          1.795466
18

10             
    

                                       

                        3                               15                             1.579196
18

10                         1.677763
18

10                                                        

 

 

 

       Close examination of Tables. 1, 2 and 3 indicates that the critical and maximum IMF 

strength of an idealized stable NS of mass 2Mʘ ≤ MNS ≤ 3Mʘ  and radius 10 km ≤ RNS ≤ 15 km  is 

of the order of G1018  and, as a result, the critical and maximum IMF strength cannot exceed the 

value of G103 18 . Very similar result has already been reported in Refs.[20, 21]. Accordingly, 

by taking into account of Eq.(25), the NS' mass density should be redefined, i.e.,  it becomes a 

function of the form  RBρρ Ω,,  or more explicitly  

 

                                                                   
2Ω4

3

R

Bcρ k .                                                          (31) 

 

Furthermore, according to (31), the EOS and the sound velocity should be redefined because 

both may be significantly affected by the IMF particularly when cBB  .    
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10. Conclusion   

 

      Basing on our gravity model, Combined Gravitational Action, we have derived an explicit 

expression for the concept of gravito-rotational acceleration (GRA), which is unknown to 

previously established gravity theories. The most significant result of GRA is the gravito-

rotational energy (GRE), which should qualitatively and quantitatively characterize any massive 

rotating body. Furthermore, GRE is exploited as an energetic reservoir, particularly for neutron 

stars and pulsars. Independently of the equation of state, it is found that the internal magnetic 

field of a stable neutron star cannot exceed the value of 3×1018 
G. 
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