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A Novel Trilateration Algorithm for Localization of a Transmitter/Receiver Station in a 2D Plane 

Using  Analytical Geometry 

 

Abstract 

Trilateration is the name given to the Algorithm used in Global Positioning System (GPS) technology to 

localize the position of a Transmitter/Receiver station (also called a Blind Node) in a 2D plane, using the 

positional knowledge of three non-linearly placed Anchor Nodes. For instance, it may be desired to locate 

the whereabouts of a mobile phone (Blind Node) lying somewhere within the range of three radio signal 

transmitting towers (Anchor Nodes). There are various Trilateration Algorithms in the literature that 

achieve this end using among other methods, linear algebra.  

This paper is a direct spin off from prior work by the same author, titled “A Mathematical Treatise on 

Polychronous Wavefront Computation and its Applications into Modeling Neurosensory Systems”. The 

Geometric Algorithm developed there was originally intended to localize the position of a special class of 

neurons called Coincidence Detectors in the Central Neural Field. A general outline of how the same 

methodology can be adapted for the purpose of Trilateration, is presented here. 
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Introduction 

The Geometric Elements composing Trilateration 

   Consider three Anchor Nodes situated at the vertices A, B and C of a scalene triangle with known 

coordinate positions (see Figure 1). A scalene triangle is chosen so as to maintain generality. The Blind 

Node P, whose coordinate position (𝑥, 𝑦) is to be ascertained, lies somewhere in the same plane as that 

of the three Anchor Nodes. The algorithm employed inorder to do this, makes use of methods restricted 

to Analytical Geometry. The quintessence of this algorithm is as follows: “the Blind Node P lies at the 

common point of intersection of the branches of three hyperbolas having the sides AB, AC and CB of ΔABC 

as transverse axes.” The equations of these hyperbolas are presented in the Methods section along with 

examples of their graphical simulation using MATLAB coding, in the Results section. 

 

Figure 1 

 

 

Method and Materials 

   The detailed derivations of the main equations presented in this section, can be found in the 

Supplementary Material to the author’s Main Paper titled “A Mathematical Treatise on Polychronous 

Wavefront Computation and its Application into Modeling Neurosensory Systems”. Only a summary of 

the key steps involved in the proposed algorithm are highlighted here. 

   Let the Anchor Nodes be situated at the vertices A, B and C of a Scalene Triangle with known co-ordinates 

(−𝑎, 0), (𝑏, 0) and (0, 𝑐), respectively. Here, 𝑎, 𝑏 and 𝑐 are chosen to be non-negative numbers. Also let 

the Blind Node P be situated in the same plane as A, B and C, at an unknown position (𝑥, 𝑦). Finally, denote 

the distances of P from the vertices 𝐴(−𝑎, 0), 𝐵(𝑏, 0) and 𝐶(0, 𝑐) as 𝑟1, 𝑟2 and 𝑟3, respectively (see Figure 

2). If 𝑣 be the speed of signal propagation, then the time it takes for the signals emitted from A, B and C 

to reach P are 
𝑟1

𝑣
,

𝑟2

𝑣
 and 

𝑟3

𝑣
 respectively. These quantities are referred to as Time of Arrivals (TOAs), in the 

literature. However, for the particular algorithm that is formulated in this paper, it is the Differences in 

the Time of Arrivals (TDOAs) of the signals at P that is exploited (denoted by 𝛥𝑡1, 𝛥𝑡2 and 𝛥𝑡3). By 

considering the Anchor Nodes in a pair-wise fashion, the expressions for TDOAs can be written as follows: 
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Figure 2 

 

The TDOA between signals transmitted from Anchor Nodes A and B at the Blind Node P, is given by: 

𝛥𝑡1 = |𝑡𝐵𝑃 − 𝑡𝐴𝑃| = |
𝑟2

𝑣
−

𝑟1

𝑣
|  = |

𝑟2 − 𝑟1

𝑣
| 

 

The TDOA between signals transmitted from Anchor Nodes C and B at the Blind Node P, is given by: 

𝛥𝑡2 = |𝑡𝐵𝑃 − 𝑡𝐶𝑃| = |
𝑟2

𝑣
−

𝑟3

𝑣
|  = |

𝑟2 − 𝑟3

𝑣
| 

 

The TDOA between signals transmitted from Anchor Nodes A and C at the Blind Node P, is given by: 

𝛥𝑡3 = |𝑡𝐶𝑃 − 𝑡𝐴𝑃| = |
𝑟3

𝑣
−

𝑟1

𝑣
|  = |

𝑟3 − 𝑟1

𝑣
| 

 

 

Recall that the Blind Node P is located at the common point of intersection of three hyperbolas with sides 

AB, AC and CB as transverse axes.  

These hyperbolas are characterized by the constants |𝑟2 − 𝑟1|, |𝑟2 − 𝑟3| and |𝑟3 − 𝑟1| and their equations 

are given by: 
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(i) Equation of Hyperbola with side AB as transverse axis (|𝑟2 − 𝑟1| = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), 

 

𝑦 = ±√((
𝑎+𝑏

2
)

2

− 𝐽2
1) √(

(𝑥−
𝑏−𝑎

2
)

2

𝐽2
1

− 1)  

 

 

(ii) Equation of Hyperbola with side CB as transverse axis (|𝑟2 − 𝑟3| = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), 

 

𝑦 =
−4[−2𝑏𝑐𝑥+𝑐(𝑏2−𝑐2)+4𝑐𝐽2

2]±√64𝐽2
2(𝑏2+𝑐2−4𝐽2

2)(4𝑥2− 4𝑏𝑥+𝑏2+𝑐2−4𝐽2
2)

8(𝑐2−4𝐽2
2)

  

 

 

(iii) Equation of Hyperbola with side AC as transverse axis (|𝑟3 − 𝑟1| = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), 

 

𝑦 =  
−4[2𝑎𝑐𝑥+𝑐(𝑎2−𝑐2)+4𝑐𝐽3

2]±√64𝐽3
2(𝑎2+𝑐2−4𝐽3

2)(4𝑥2 + 4𝑎𝑥+𝑎2+𝑐2−4𝐽3
2)

8(𝑐2−4𝐽3
2)

    

 

 

where 𝐽1 =
𝑣𝛥𝑡1

2
, 𝐽2 =

𝑣𝛥𝑡2

2
 and 𝐽3 =

𝑣𝛥𝑡3

2
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Results 

For the purpose of graphical simulation, the following numerical values are adopted:  

𝑎 =  10 𝑚𝑒𝑡𝑒𝑟𝑠, 𝑏 =  20 𝑚𝑒𝑡𝑒𝑟𝑠, 𝑐 =  30 𝑚𝑒𝑡𝑒𝑟𝑠, 𝑣 =  300 𝑚𝑒𝑡𝑒𝑟𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

Please refer to the Appendix section for the MATLAB coding used in the examples below for arbitrary 

signal TDOAs at the Blind Node P. 

 

Example 1:  

For the following choice of TDOA values: 

𝛥𝑡1 = 0.05 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡2 = 0.03 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡3 = 0.02 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

There are two possible positions of the Blind Node P:  

𝑃1(𝑥, 𝑦) = (15.2762,13.2817) 
𝑃2(𝑥, 𝑦) = (−5.1669,11.8889) 

 

 

 

-10 -5 0 5 10 15 20
0

5

10

15

20

25

30

A(-10,0)

C(0,30)

B(20,0)

P
1
 (x,y)

P
2
 (x,y)



Dr. Joseph Ivin Thomas MBBS, ANLP,  BSc (Theoretical Physics), MSc (Theoretical Neuroscience )  
 

Page 6 of 10 

Manuscript completed on 1st Sep 2014 

 

Example 2:  

For the following choice of TDOA values: 

𝛥𝑡1 = 0.04 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡2 = 0.03 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡3 = 0.01 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

There are two possible positions of the Blind Node P:  

𝑃1(𝑥, 𝑦) = (12.8128,11.4656) 
𝑃2(𝑥, 𝑦) = (−3.198,12.7998) 
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Example 3:  

For the following choice of TDOA values: 

𝛥𝑡1 = 0.01 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡2 = 0.02 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡3 = 0.03 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

There are two possible positions of the Blind Node P:  

𝑃1(𝑥, 𝑦) = (7.2575,16.7867) 
𝑃2(𝑥, 𝑦) = (3.3674,6.413) 
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Example 4:  

For the following choice of TDOA values: 

𝛥𝑡1 = 0𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡2 = 0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝛥𝑡3 = 0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

There is only a single positions for the Blind Node P:  

𝑃(𝑥, 𝑦) = (5, 11.6667) 
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Discussion  

The novelty of the proposed algorithm consists in the use of analytical geometry to arrive at the equations 

of the three hyperbolas, with each hyperbola having one side of the scalene triangle for a transverse axis. 

The common point of intersections of their branches defines the position of the Blind Node. The accuracy 

of the solution can be increased by simply increasing the point resolution along the X-axis.  

The TDOAs are determined from the knowledge of the TOAs. The latter are found by means of time 

tracking devices implanted in the Anchor Nodes. As can be seen in each graphical example, there are two 

possible locations for the Blind Node to be located for a given triplet set of TDOAs (the exception to this 

rule is when all the TDOAs are zero simultaneously, in which case the Blind Node will be located at a single 

point, namely the Circumcenter of the scalene triangle – see Example 4). In order to identify at which one 

of the two possible general point locations, the required Blind Node actually lies, it is necessary to first 

determine the ordering in the magnitudes of TOAs. And since the TOA is proportional to distance 𝑟 of the 

Blind Node from the Anchor Node, (because signal speed 𝑣 is constant), the ordering of Anchor Node-

Blind Node Distances (𝑟1, 𝑟2, 𝑟3) will help ascertain the required Blind Node position. 
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Appendix 

MATLAB Coding 

% parameter values for anchor node coordinates and signal speed 
a = 10 ; 
b = 20 ; 
c = 30 ; 
v = 300 ; 

   
% TDOA of Signals at Blind Node 
del_t_1 = 0.05 ; % input example                 
del_t_2 = 0.03 ; % input example 
del_t_3 = 0.02 ; % input example 

  
J_1 = (v.*del_t_1)./2 ; 
J_2 = (v.*del_t_2)./2 ; 
J_3 = (v.*del_t_3)./2 ; 

  
x = linspace(-10, 20, 10000) ; 

  
% Hyperbolas with side AB as transverse axis 
y_1 = sqrt(((a+b)./2)^2 - (J_1).^2).*sqrt(((x - (b-a)./2)./(J_1)).^2 - 1) ; 
y_2 = -sqrt(((a+b)./2)^2 - (J_1).^2).*sqrt(((x - (b-a)./2)./(J_1)).^2 - 1) ; 

  
% Hyperbolas with side AC as transverse axis 
A = 8.*b.*c.*x - 4.*c.*(b.^2 - c.^2) - 16.*c.*(J_2).^2 ; 
B = sqrt(64.*((J_2).^2).*(b.^2 + c.^2 - 4.*(J_2).^2).*(4.*x.^2 - 4.*b.*x + 

b.^2 + c.^2 - 4.*(J_2).^2)) ; 
C = 8.*(c.^2 - 4.*(J_2).^2) ; 
y_3 = (A+B)./C ; 
y_4 = (A-B)./C ; 

  
% Hyperbolas with side CB as axis 
E = -8.*a.*c.*x - 4.*c.*(a.^2 - c.^2) - 16.*c.*(J_3).^2 ; 
F = sqrt(64.*((J_3).^2).*(a.^2 + c.^2 - 4.*(J_3).^2).*(4.*x.^2 + 4.*a.*x + 

a.^2 + c.^2 - 4.*(J_3).^2)) ; 
G = 8.*(c.^2 - 4.*(J_3).^2) ;  
y_5 = (E+F)./G ; 
y_6 = (E-F)./G ; 

  
hold on 
plot(x,y_1,'r',x,y_2,'r') 
plot(x,y_3,'g',x,y_4,'g') 
plot(x,y_5,'b',x,y_6,'b') 
plot(x,0,'k',x,3.*x+30,'k',x,-(1.5).*x+30,'k')  
axis square 
axis([-10 20 0 30]) 
text(-9,0.5,'A(-10,0)') 
text(2,29,'C(0,30)') 
text(17,0.5,'B(20,0)') 
text(15.75,12.5,'P_1 (x,y)') 
text(-4.7,11.88,'P_2 (x,y)') 
hold off 


