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Abstract

The foundation is provided for bringing the property of spin into the mathematical domain. Two
types of spin are introduced:
� Imaginary spin, based on the constant i.
� Real spin, based on the functions: ex, cosx, and sinx.

These two types of spin are then integrated by an Euler equation that is over 200 years old.

eix = cosx+ i sinx (1)

This mysterious equation (with x set equal to π) was voted the "the Most Beautiful Mathematical
Formula Ever" by readers of Mathematical Intelligencer in 1988. Now we know that it is a spin
equation, and it is easily understood.

However, in order to use this equation, it must be paired with its complex conjugate to cancel
out the imaginary terms. This is the process that allows the complex world of spin, to enter the
real world of mathematics.
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1 Background

The constant i (sometimes referred to as j) is currently de�ned as the square root of -1. Descartes
was uncomfortable with this constant, because there was no way to conceptualize what it meant
to be the square root of -1, and also because there were no practical applications that used
this constant. In his book La Géométrie in 1637, he disparagingly coined the term "imaginary
numbers", suggesting they were not real numbers.

Ironically, the diagrams used today to represent imaginary numbers are based on Descartes'
Cartesian coordinate system. Argand diagrams use the x axis to represent real numbers and the
y axis to represent imaginary numbers. Since the coordinate points on these diagrams have both
a real component and an imaginary component, these numbers are said to be complex. Similarly,
the intersection of the real and imaginary axes are sometimes referred to as the complex plane.

Figure 1: Argand Diagram

While there is consistency in viewing imaginary numbers with Argand diagrams, there still is no
practical value to this approach. There are no real world problems that can be solved by working
with imaginary numbers in this way. There are applications that use imaginary numbers, but
they involve working with circles and the property of spin.
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2 Spin Based on Imaginary Numbers

2.1 Unitary Circles

Unitary circles model the property of spin. They start at the origin and spin around in one, two,
or four steps. These steps are multiplicative, which is why they each have a unitary formula with
the step unit raised to the number of steps equaling one.

Figure 2: Unitary circles

The last circle, with a step unit of i, is called the imaginary unit circle.
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2.2 Imaginary Unit Circle

The imaginary unit circle is a graphical representation of the expressions in and i−n.

Figure 3: The imaginary unit circle

The expression in starts at the origin (with a step number of 0), and steps around the circle in
a counterclockwise direction. Similarly, the expression i−n starts at the origin, but steps around
the circle in a clockwise direction. With each step, new terms are generated in an endless series.

n in i−n

0 1 1
1 i −i
2 −1 −1
3 −i i
4 1 1
5 i −i
6 −1 −1
7 −i i

Table 1: Generated spin terms
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2.3 Complex Conjugates

The expressions in and i−n generate both real and complex terms. It is therefore problematic to
use these expressions in formulas, because real world problems require only real answers.

However in can be �paired� with its complex conjugate i−n, so that the real terms add together
and the complex terms cancel out. Pairing binds in and i−n into a single mathematical entity.

Figure 4: Complex conjugates bound together
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Although spin equations generate an in�nite number of terms, these terms can still add up to a
constant. For example when the equation in + i−n is divided by n+ 1, it adds up to π

2 .

n in i−n in + i−n

0 1 1 2
1 i −i 0
2 −1 −1 −2
3 −i i 0
4 1 1 2
5 i −i 0

∞∑
n=0

in + i−n

n+ 1
=

2

1
− 2

3
+

2

5
− 2

7
+

2

9
· · · = Π

2
(2)
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3 Spin Based on Real Numbers

3.1 ex Spin Equation

The basic equation for real spin is ex - which seems reasonable since x grows exponentially with
each step. It starts at the origin (n = 0) and steps counterclockwise around the circle. With each
step a new term is created.

n xn/n!
0 x0/0!
1 x1/1!
2 x2/2!
3 x3/3!
4 x4/4!
5 x5/5!

ex =

∞∑
n=0

xn

n!
=
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . (3)

This series generated by the spin equation ex, is identical to the ex power series. (Now we know
the ex power series was generated by a spin equation.)

Each term in the ex series carries a "running value". When the value of any term is multiplied
by x/n, the running value for the next term in the series is generated. More speci�cally, if you
let a represent any n, then:

xa

a!
× x

a+ 1
=

xa+1

(a+ 1)!
(4)

This shows us that a multiplication operation takes us from one term to the next.

7



3.2 Cos and Sin Spin Equations

The cos and sin functions are very similar to the function ex. They both start at the origin and
step counterclockwise around the circle. What is di�erent, is that these functions create a mask
for interpreting each term in the ex series. For both the cos and sin series, the mask is simply
the cosx or sinx (respectively) for any given x.

n x cosx xn/n!
0 0 1 x0/0!
1 π/2 0 x1/1!
2 π −1 x2/2!
3 3π/2 0 x3/3!
4 2π 1 x4/4!
5 5π/2 0 x5/5!

cosx =
x0

0!
− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ . . . (5)

n x sinx xn/n!
0 0 0 x0/0!
1 π/2 1 x1/1!
2 π 0 x2/2!
3 3π/2 −1 x3/3!
4 2π 0 x4/4!
5 5π/2 1 x5/5!

sinx =
x1

1!
− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ . . . (6)

The cosx and sinx spin equations (formulas 5 and 6), generate the cosx and sinx power series.
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4 Integrating Real and Imaginary Spin

It's not obvious how imaginary spin (which is based on the constant i) relates to real spin (which
is based on ex, cosx, and sinx). However, Euler wrote an equation more than 200 years ago that
integrates these two types of spin:

eix = cosx+ i sinx (7)

Below is his very interesting derivation of this equation, based on the power series for ex.

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . (8)

eix =
i0x0

0!
+
i1x1

1!
+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+
i5x5

5!
+ . . . (9)

eix =
x0

0!
+
ix1

1!
− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
+ . . . (10)

eix =

(
x0

0!
− x2

2!
+
x4

4!
− . . .

)
+

(
ix1

1!
− ix3

3!
+
ix5

5!
− . . .

)
(11)

eix =

(
x0

0!
− x2

2!
+
x4

4!
− . . .

)
+ i

(
x1

1!
− x3

3!
+
x5

5!
− . . .

)
(12)

eix = cosx+ i sinx (13)

Since the ex series is true for any x, formula 9 shows x replaced with ix. Formula 10 is a
simpli�cation of the imaginary terms (remember i3 = −i). Formula 11 groups the terms with
even and odd exponents. Formula 12 factors out an i from the the odd exponents group.

Remarkably, the terms grouped within parentheses in formula 12, are the power series for the
cosx and sinx respectively. Formula 13 simply substitutes the terms "cosx" and "sinx" for the
respective series.
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We can graph the eix equation to better understand its properties.

.

n x sinx i sinx cosx eix

0 0 0 0 1 1
1 1

2π 1 i 0 i
2 π 0 0 −1 −1
3 3

2π −1 −i 0 −i
4 2π 0 0 1 1
5 5

2π 1 i 0 i

eix = cosx+ i sinx (14)

The table for eix looks complicated but it is very similar to previous tables. There is a new "i sinx"
column which is i times the "sinx" column. The last column (eix), is simply "i sinx+ cosx".

We can see that eix starts at the origin (n = 0) and steps counterclockwise around the circle. It
appears to be a valid complex spin equation equal to "cosx+ i sinx".
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5 Euler's' Identity

Starting with the complex Euler equation (formula 15), if you substitute π for x and simplify,
you get an equation referred to as Euler's identity (shown in formula 18).

eix = cosx+ i sinx (15)

eiπ = cosπ + i sinπ (16)

eiπ = −1 + 0 (17)

eiπ + 1 = 0 (18)

It is a famous identity because it integrates the three main mathematical constants: e, i, and π.
The physicist Richard Feynman called Euler's identity "the most remarkable formula in mathe-
matics". In 1988, a survey by the Mathematical Intelligencer reported that its readers voted this
equation the "Most beautiful mathematical formula ever".

Mathematicians appreciated the elegance of this identity, even though its meaning was unclear.
Now we know that this identity refers to the second step of a complex spin equation. Basically,
eix is cosx for all even powered terms in the equation. On the second step, both eiπ and cosπ
equal −1 (See the eix table and formula 14 for details.) Once we knew it was a spin equation, it
was easy to understand.
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6 Making the Imaginary Real

The odd powered terms in the in�nite series eix contain imaginary numbers. This is a problem
since real answers can not contain imaginary terms. However, if we pair the eix equation with
its complex conjugate e−ix, then the complex terms cancel out, leaving only the real terms.

Below is a way to derive an equation that pairs eix (formula 19) with its complex conjugate. The
complex conjugate of a spin equation, is the same equation spinning backwards, so the derivation
begins by substituting −x for x (formula 20).

eix = cosx+ i sinx (19)

ei(−x) = cos(−x) + i sin(−x) (20)

Then with the help of the following two identitities (formulas 21 and 22), ei(−x) can be simpli�ed
to formula 23 .

cos(−x) = cos(x) (21)

sin(−x) = − sin(x) (22)

e−ix = cos(x)− i sin(x) (23)

Finally by adding formula 19 to formula 23, we get a formula that adds two complex spin
equations and yields a real number (formula 24). This is the process that allows imaginary
numbers to be used in conjunction with real numbers.

eix + e−ix = 2 cosx (24)

Below is an example of eix paired with its conjugate in a formula.

∞∑
n=0

eix + e−ix

n+ 1
=

2

1
− 2

3
+

2

5
− 2

7
+

2

9
− · · · = π

2
(25)
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7 Summary

Unitary circles model spin. The imaginary unit circle is a unitary circle, with the unitary formula

i4 = 1 (26)

The new de�nition of i is:

The step unit in the imaginary unit circle; equal in value to the fourth root of 1.

i =
4
√

1 (27)

i is used with the real functions: ex, cosx, and sinx to form the following complex spin equations.

eix = cosx+ i sinx (28)

eix + e−ix = 2 cosx (29)

Our new knowledge of spin gives us a clear understanding of Euler's complex equation (formula
28). Formula 29 illustrates how to pair two complex spin equations to yield a real result (2 cosx).
This is how imaginary based spin can enter the real world of mathematics.
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