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Abstract

Since the proof given by Wang Qiu-Dong on Dirichlet’s assertion is based on the successive

approximations objections to assumptions of the global solution of this problem have to

be raised.

1 Introduction

The manuscript “The global solution of the n-body problem” by Wang Qiu-Dong from

1991 attracted attention only as recent as in 2013.

The paper contains the claim that the equations of the n-body problem of celestial me-

chanics can be integrated. The system takes the form

d2

dt2
(mkrk) = Kk =

n∑
l=1

Kkl, Kkk = 0, k = 1, . . . , n

Kkl = −Klk = −γmkmk

r3kl
rkl, rkl = rk − rl, rkl = |rkl|

(1)

where γ is the gravitational constant and k = 1 stands for the sun and k = 2, . . . , n stands

for the planets or moons. The paper was praised in [2] and [3].

But nevertheless it contains a contradiction since it is wrongely assumed that n equations

of the system (1) are linearly independent. This assumption is needed for mathematical

reasons to reduce (1) to n− 1 changes of the positions of the bodies relative to the sun

d2

dt2
(rk1) = Fk1 +

1

M

n∑
l=2

ml(Fl1 − Fk1 − Fkl), k = 2, . . . , n

Fkl =
M

mkml
Kkl, M =

n∑
k=1

mk, ml �M, l > 1

(2)

This reduction [4] was already presented at the GAMM meeting 1986 in Dortmund, but

it has not attracted any attention.

With regard to the reduction from (1) to (2), we shall first look at the situation for the

two-body problem.
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2 The two-body problem

For n = 2 system (1) reduces to two equations

d2

dt2
(m1r1) = K1,

d2

dt2
(m2r2) = K2 = −K1 (3)

Adding both yields

d2

dt2
(MrM ) = K1 + K2 = K1 −K1 = 0, rM =

1

M

n=2∑
l=1

mlrl (4)

From difference between the second and the first we obtain the determining equation for

the two-body problem

d2

dt2
(r21) =

M

m1m2
K2 = F21 = − Γ

r321
r21, Γ = γM (5)

It can be integrated in closed form. From (3) and (5) follow the identities[
d2

dt2
(m2r2) = K2

]
=

d2

dt2

(m1m2

M
r21

)
= K2 = −

[
K1 =

d2

dt2
(m1r1)

]
(6)

This shows that the two equations (3) are linearly dependent.

We take now from (6) the equations

m2r2 =
m1m2

M
r21, m1r1 =

m1m2

M
r12 ⇒ MrM =

m1m2

M
(r21 + r12) = 0 (7)

which satisfy (4) in the identities

d2

dt2
(MrM ) =

d2

dt2
(0) = 0 =

∑
k

Kk. (8)

This shows that there is no contradiction in (8).

Rather than interpreting (4) in the identity (8), one often misunderstands (4) as postulate

d2

dt2
(mMrM )

!
= 0 ⇒ rM = vM ;0t+ rM ;0 6= 0 (9)

Thus one might assume that the coordinates rk are linearly independent. But this is

wrong because it contradicts the derivation of (8) from (4) with rM = 0 6= 0. For n > 2

the representation of (7) in the form

rk = rk − rM =
ml

M
rkl, k 6= l = 1, 2 (10)

will be important.
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3 Extension to n > 2

Naturally, the conditions extended to n > 2 must contain for the first indices those of

n = 2.

The conditions for k = 1, 2 from (10) are contained within the general form

rk = rk − rM =
1

M

n∑
l=1

mlrkl (11)

The sum of the equations (1) is then

d2

dt2

(
n∑

k=1

mkrk

)
=

n∑
k=1

Kk (12)

and (8) satisfies the identities

d2

dt2

(
1

2

n∑
k=1

n∑
l=1

mkml

M
(rkl + rlk)

)
= 0 =

1

2

n∑
k=1

n∑
l=1

(
−γmkml

r3kl

)
(rkl + rlk) (13)

as the double sums of rkl + rlk = 0 vanish.

4 Reduction of the original system (1)

By taking differences

rkl = rk1 − rl1 (14)

one obtains from (11) equations

r1 = − 1

M

n∑
l=2

mlrl1 ,

rk = rk1 −
1

M

n∑
l=2

mlrl1, k = 2, . . . , n

(15)

to derive rk from the relative coordinates rk1.

Using those, the original system (1) takes the form

a)
d2

dt2

[
n∑

l=2

mlrl1

]
=

n∑
l=2

mlFl1, k = 1

b)
d2

dt2

[
Mrk1 −

n∑
l=2

mlrl1

]
= MFk1 +

n∑
l=2

ml(−Fk1 + Fkl), k = 2, . . . , n

(16)

Adding (a) and (b) yields the system (2) to determine the (n− 1) coordinates rk1.

This is the extension of the difference (5) as (5) is for n = 2 contained within (2) as

required. The reduction from system (1) with n variables to (2) with (n− 1) variables is

a consequence that identity (13) follows from (12). This implies that the variables rk can

not, as claimed in [1], be determined from (1). Instead, they can be found indirectly from

(15) from rk1.

The mathematical impossibility in [1] is thus to assume that the linearly dependent equa-

tions (1) are linearly independent.
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5 Remarks about the reduced system

The term

(Fl1 − Fk1 + Fkl)|l=k = 0 (17)

vanishes at the right hand side of Equation (2) which means that there is no action of the

l = k onto itself.

Note that the relative coordinates rkl are invariant under the transformation

rk = r
′
k + a→ rkl = rk − rl = r

′
k − r

′
l (18)

Consequently, on can prescribe the initial conditions for (2) for rk1;0, vk1;0 from differences

of geocentric measurements r′k;0, v
′
k;0.

6 Integration by successive approximation

It is crucial that the reduced system (2) can be integrated by successive approximation

a)
d2

dt2

(
r
(1)
k1

)
= Fk1(r

(1)
k1 ) =

Γ

(r
(1)
k1 )3

r
(1)
k1 , k = 2, . . . , n (19)

b)
d2

dt2

(
r
(s+1)
k1

)
= Fk1(r

(s)
k1 ) +

n∑
l=2

ml

M

[
Fl1(r

(s)
l1 )− Fk1(r

(s)
k1 ) + Fkl(r

(s)
kl )
]
, s = 1, 2, . . .

since the first approximations a) are the solutions of the two-body problem which can be

integrated in closed form

r
(1)
k1 = r

(1)
k1 (t), k = 2, . . . , n (20)

The iterates s > 1 can be determined then by using only time integration.

In this context, we shall quote from the book “Vorlesungen über Himmelsmechanik” from

C. L. Siegel [5]:

“The n-body problem is defined as the problem of describing the all solution of

the equations of motion for arbitrary initial values. The problem is unsolved

for n > 2 until today despite intensive effort of outstanding mathematicians

since 200 years.

In 1858, Dirichlet claimed in a conversation with this friend Kronecker that

he has found a general method to treat problems of mechanics and that this

method is not based on direct integration of the differential equations of motion

but successive approximation to the solution. He remarked additionally in a

different conversation that he succeeded in proofing the stability of the planetary

system. He died shortly after (in 1859) without leaving any notes. Thus we

don’t know any details of his method.”

(Translated from [1] Lejeune Dirichlet, G.: Werke Bd. 2, S. 344 Berlin, 1897)

Dirichlet’s method can only be the method demonstrated with (19) since its derivation

from (1) is unique and leaves no room for other possibilities than (19). It is therefore
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justified to regard the reduction from (1) to (2) with the possibility (19) as being the

proof of Dirichlet’s assertion.

The sole purpose of this manuscript is to demonstrate this.

By restricting to bodies k = p, one obtains from r
(1)
p1 (t) Kepler’s three laws. The first

iterates r
(1)
p1 (t) approximate rp1(t) within the quality of Kelper’s laws. The orbits of the

moons with indices q around planets with indices k = p will, according to

rq1 = rp1 + rqp, rp1 � rqp (21)

be approximated by the solution of the two-body problem for planet and moon. According

to this second assertion, Dirichlet must have proofed the stability of the planetary system

for his method of successive approximations. His second claim shall not be doubted as

shall his first claim. We refrain to also prove this for certain reasons (the age of the

author).

In contrast to Dirichlet’s method we quote from [1] (page 87):

“One does not obtain a useful solution in series expansion. The reason for this

is because the speed of convergence of the resulting solution is terribly slow.

One has to sum, for example, an incredible number of terms, even for an

approximate solution.”

In [1] no attention has been paid to the following: The forces Kk in the equations (1)

depend on the relative coordinates rk1

Kk = Kk(r21, . . . , rn1) (22)

The mathematical problem for (1) is to substitute d2(mkrk)/dt2 into the identities for Kk.

The necessity
d2

dt2
(mkrk)

!
= Kk (23)

assumes that all rk are functions of the same quantity rk1 for which Kk in (22) is defined.

This is guaranteed only be the reductions (15) which transform (1) to system (2) using

only the dependency on relative coordinates rk1. For solving system (1) there exists no

other method than Dirichlet’s (2) with the possibility (19).

Note that Lagrange’s elementary solutions can be found in a particularly simple way from

(2) (cf. [6], pages 28–30).

In addition to the aforementioned purely mathematical reasons something about the be-

ginnings of classical mechanics can be said. For this, we refer to [6].
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We propose to follow the opinion of the referee. Even if the reduction process

proposed by the author is correct, this does not affect the validity of Wang’s

argument. Wang works with unreduced equations, which is well-founded.

Reviewer No. 1:

This paper contains elementary remarks on the n-body problem, which are

correct, but not new.

The reduction of the center of mass which the author proposes was standard

in the 18th century. (See Lagrange, oeuvres VI, p. 231, Euler, Considerations

sur le probleme des trois corps, p. 197).

There are many iterative processes which approximate the solutions of the n-

body problem. From such process (or in another way) one can form either

Taylor series or some kind of Fourier series or Sundman’s type series. The

paper by Wang is about the last type. If Dirichlet claimed to get the stability

from his series, then his iterative process should probably converge to some

kind of Fourier series. This could be some kind of KAM theory. But, anyway,

the planetary systems are not stable, so Dirichlet could not have a correct

proof. It is difficult to guess what he had and what was his mistake.
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