
The proof of Dirichlet’s assertion on celestial mechanics

Reinhard Frischbier

7th January 2015

Technical Report, viXra:1409.0122, http://vixra.org/abs/1409.0122

Abstract

Since the proof given by Wang Qiu-Dong on Dirichlet’s assertion is based on the successive

approximations objections to assumptions of the global solution of this problem have to

be raised.

1 Introduction

The manuscript “The global solution of the n-body problem” by Wang Qiu-Dong from

1991 attracted attention only as recent as in 2013.

The paper contains the claim that the equations of the n-body problem of celestial me-

chanics can be integrated. The system takes the form

d2

dt2
(mkrk) = Kk =

n∑
l=1

Kkl, Kkk = 0, k = 1, . . . , n

Kkl = −Klk = −γmkmk

r3kl
rkl, rkl = rk − rl, rkl = |rkl|

(1)

where γ is the gravitational constant and k = 1 stands for the sun and k = 2, . . . , n stands

for the planets or moons. The paper was praised in [2] and [3].

But nevertheless it contains a contradiction since it is wrongely assumed that n equations

of the system (1) are linearly independent. This assumption is needed for mathematical

reasons to reduce (1) to n− 1 changes of the positions of the bodies relative to the sun

d2

dt2
(rk1) = Fk1 +

1

M

n∑
l=2

ml(Fl1 − Fk1 − Fkl), k = 2, . . . , n

Fkl =
M

mkml
Kkl, M =

n∑
k=1

mk, ml �M, l > 1

(2)

This reduction [4] was already presented at the GAMM meeting 1986 in Dortmund, but

it has not attracted any attention.

With regard to the reduction from (1) to (2), we shall first look at the situation for the

two-body problem.
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2 The two-body problem

For n = 2 system (1) reduces to two equations

d2

dt2
(m1r1) = K1,

d2

dt2
(m2r2) = K2 = −K1 (3)

Adding both yields

d2

dt2
(MrM ) = K1 + K2 = K1 −K1 = 0, rM =

1

M

n=2∑
l=1

mlrl (4)

From difference between the second and the first we obtain the determining equation for

the two-body problem

d2

dt2
(r21) =

M

m1m2
K2 = F21 = − Γ

r321
r21, Γ = γM (5)

It can be integrated in closed form. From (3) and (5) follow the identities[
d2

dt2
(m2r2) = K2

]
=

d2

dt2

(m1m2

M
r21

)
= K2 = −

[
K1 =

d2

dt2
(m1r1)

]
(6)

This shows that the two equations (3) are linearly dependent.

We take now from (6) the equations

m2r2 =
m1m2

M
r21, m1r1 =

m1m2

M
r12 ⇒ MrM =

m1m2

M
(r21 + r12) = 0 (7)

which satisfy (4) in the identities

d2

dt2
(MrM ) =

d2

dt2
(0) = 0 =

∑
k

Kk. (8)

This shows that there is no contradiction in (8).

Rather than interpreting (4) in the identity (8), one often misunderstands (4) as postulate

d2

dt2
(mMrM )

!
= 0 ⇒ rM = vM ;0t+ rM ;0 6= 0 (9)

Thus one might assume that the coordinates rk are linearly independent. But this is

wrong because it contradicts the derivation of (8) from (4) with rM = 0 6= 0. For n > 2

the representation of (7) in the form

rk = rk − rM =
ml

M
rkl, k 6= l = 1, 2 (10)

will be important.
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3 Extension to n > 2

Naturally, the conditions extended to n > 2 must contain for the first indices those of

n = 2.

The conditions for k = 1, 2 from (10) are contained within the general form

rk = rk − rM =
1

M

n∑
l=1

mlrkl (11)

The sum of the equations (1) is then

d2

dt2

(
n∑

k=1

mkrk

)
=

n∑
k=1

Kk (12)

and (8) satisfies the identities

d2

dt2

(
1

2

n∑
k=1

n∑
l=1

mkml

M
(rkl + rlk)

)
= 0 =

1

2

n∑
k=1

n∑
l=1

(
−γmkml

r3kl

)
(rkl + rlk) (13)

as the double sums of rkl + rlk = 0 vanish.

4 Reduction of the original system (1)

By taking differences

rkl = rk1 − rl1 (14)

one obtains from (11) equations

r1 = − 1

M

n∑
l=2

mlrl1 ,

rk = rk1 −
1

M

n∑
l=2

mlrl1, k = 2, . . . , n

(15)

to derive rk from the relative coordinates rk1.

Using those, the original system (1) takes the form

d2

dt2

[
n∑

l=2

mlrl1

]
=

n∑
l=2

mlFl1, k = 1 (16a)

d2

dt2

[
Mrk1 −

n∑
l=2

mlrl1

]
= MFk1 +

n∑
l=2

ml(−Fk1 + Fkl), k = 2, . . . , n (16b)

The compatibility of the equations (16) is seen as follows: Equation (16b) can be written

in the form
n∑

l=1

d2

dt2
(mlrkl) =

n∑
l=1

mlFkl, k = 2, . . . , n. (17)
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Multiplying with mk/M and summing over k yields the result

d2

dt2
(MrM )− m1

M

n∑
l=2

d2

dt2
(mlr1l) = K− m1

M

n∑
l=2

mlF1l. (18)

With (13) and d2/dt2(MrM ) = 0 = K this is identical to (16a). This shows the com-

patibility and the linear independence of the equations (16). This requires the reduction

of the n equations (1) to the n − 1 equations (2), because if one adds (16a) to (16b) one

obtains the n− 1 equations (2) to determine the (n− 1) coordinates rk1.

This is the extension of the difference (5) as (5) is for n = 2 contained within (2) as

required.

The mathematical impossibility in [1] is thus to assume that the linearly dependent equa-

tions (1) are linearly independent.

5 Remarks about the reduced system

The term

(Fl1 − Fk1 + Fkl)|l=k = 0 (19)

vanishes at the right hand side of Equation (2) which means that there is no action of the

l = k onto itself.

Note that the relative coordinates rkl are invariant under the transformation

rk = r′k + a→ rkl = rk − rl = r′k − r′l (20)

Consequently, on can prescribe the initial conditions for (2) for rk1;0, vk1;0 from differences

of geocentric measurements r′k;0, v
′
k;0.

6 Contradiction and uniqueness

Adding the equations (1) for k = 2, . . . , n yields

d2

dt2
(MrM )− d2

dt2
(m1r1) = K−K1, (21)

which is only under the condition

d2

dt2
(MrM ) = K 6= 0 (22)

different from d2(m1r1)/dt
2 = K1 making hence (1) linearly independent. But this leads,

by Newtons equation

K =
∑
k=1

Kk =
1

2

n∑
k=1

n∑
l=1

(Kkl + Klk) = 0 6= 0 = K. (23)

But in [1] is assumed that the n equations (1) are linearly independent and hence the

contradiction in (23) applies to [1]. If [1] were mathematically correct then there would
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be no contradiction in (23). But this is impossible. Since the n equations (1) are linearly

independent they are to be reduced to a system of n− 1 equations.

This reduction is applied by subtracting the term d2(Mrm)/dt2 (which is zero) on the left

hand sides of the equations (1), cf. [4]. This reduces (1) to the form

d2

dt2

(
n∑

l=1

mlrkl

)
= Kk(rk1, . . . , rkn), k = 1, . . . , n (24)

using the mutual relative quantities rkl. By the equation (14) and rkl = rk1 − rl1 one

reduces the n linearly dependent equations (24) respectively (1) to the n − 1 equations

(2) for the n − 1 distances rk1 relative to the sun. This reduction from (1) to (2) is

mathematically needed and unique.

7 Integration by successive approximation

It is crucial that the reduced system (2) can be integrated by successive approximation

a)
d2

dt2

(
r
(1)
k1

)
= Fk1(r

(1)
k1 ) =

Γ

(r
(1)
k1 )3

r
(1)
k1 , k = 2, . . . , n (25)

b)
d2

dt2

(
r
(s+1)
k1

)
= Fk1(r

(s)
k1 ) +

n∑
l=2

ml

M

[
Fl1(r

(s)
l1 )− Fk1(r

(s)
k1 ) + Fkl(r

(s)
kl )
]
, s = 1, 2, . . .

since the first approximations a) are the solutions of the two-body problem which can be

integrated in closed form

r
(1)
k1 = r

(1)
k1 (t), k = 2, . . . , n (26)

The iterates s > 1 can be determined then by using only time integration.

In this context, we shall quote from the book “Vorlesungen über Himmelsmechanik” from

C. L. Siegel [5]:

“The n-body problem is defined as the problem of describing the all solution of

the equations of motion for arbitrary initial values. The problem is unsolved

for n > 2 until today despite intensive effort of outstanding mathematicians

since 200 years.

In 1858, Dirichlet [1] claimed in a conversation with this friend Kronecker

that he has found a general method to treat problems of mechanics and that

this method is not based on direct integration of the differential equations of

motion but successive approximation to the solution. He remarked additionally

in a different conversation that he succeeded in proving the stability of the

planetary system. He died shortly after (in 1859) without leaving any notes.

Thus we don’t know any details of his method.”

(Translated from [1] Lejeune Dirichlet, G.: Werke Bd. 2, S. 344 Berlin, 1897)

Dirichlet’s method can only be the method demonstrated with (25) since its derivation

from (1) is unique and leaves no room for other possibilities than (25). It is therefore
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justified to regard the reduction from (1) to (2) with the possibility (25) as being the

proof of Dirichlet’s assertion.

The sole purpose of this manuscript is to demonstrate this.

By restricting to planets k = p, one obtains from r
(1)
p1 (t) Kepler’s three laws. The first

iterates r
(1)
p1 (t) approximate rp1(t) within the quality of Kelper’s laws. The orbits of the

moons with indices q around planets with indices k = p will, according to

rq1 = rp1 + rqp −→ r
(1)
q1 = r

(1)
p1 + r(1)qp , rp1 � rqp (27)

be r
(1)
qp the approximate solution of the two-body problem (5) for planet and moon. Ac-

cording to this second assertion, Dirichlet must have proofed the stability of the planetary

system for his method of successive approximations. His second claim shall not be doubted

as shall his first claim. We refrain to also prove this for certain reasons (the age of the

author). It shall be noted that Dirichlet based his proof of the stability of the planetary

system presumably on the reduced system (2). To assumes that this proof is wrong cannot

be said without demonstrating this for (2).

In contrast to Dirichlet’s method we quote from [1] (page 87):

“One does not obtain a useful solution in series expansion. The reason for this

is because the speed of convergence of the resulting solution is terribly slow.

One has to sum, for example, an incredible number of terms, even for an

approximate solution.”

Note that Lagrange’s elementary solutions can be found in a particularly simple way from

(2) (cf. [6], pages 28–30).

In addition to the aforementioned purely mathematical reasons something about the be-

ginnings of classical mechanics can be said. For this, we refer to [6], [7].
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Associate Editor:

We propose to follow the opinion of the referee. Even if the reduction process

proposed by the author is correct, this does not affect the validity of Wang’s

argument. Wang works with unreduced equations, which is well-founded.

Reviewer No. 1:

This paper contains elementary remarks on the n-body problem, which are

correct, but not new.

The reduction of the center of mass which the author proposes was standard

in the 18th century. (See Lagrange, oeuvres VI, p. 231, Euler, Considerations

sur le probleme des trois corps, p. 197).

There are many iterative processes which approximate the solutions of the n-

body problem. From such process (or in another way) one can form either

Taylor series or some kind of Fourier series or Sundman’s type series. The

paper by Wang is about the last type. If Dirichlet claimed to get the stability

from his series, then his iterative process should probably converge to some

kind of Fourier series. This could be some kind of KAM theory. But, anyway,

the planetary systems are not stable, so Dirichlet could not have a correct

proof. It is difficult to guess what he had and what was his mistake.
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