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Abstract. 
In this paper we introduce the degree of specificity of a mass, which is the distance between a 
mass and its most specific associated mass, and we measure the specificity of a fusion rule. Also, 
we determine the Bayesianity of a mass. We propose certain new distances between masses as 
well. 
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1. Introduction. 
In order for the paper to be self-contained we list the main distances between masses and also the 
three pignistic transformations. 
We list some specificity measures from the known literature and we also propose some new 
ways of measuring the degree of specificity of a bba. 
We also list the known distances and propose some new approaches. 

The most specific mass associated to a given mass is defined. 

The degree of uncertainty of a set and the degree of Bayesianity/non-Bayesianity is also defined 
at the end of the paper. 

2.  Specificity. 

Yager [1] has defined the specificity measure of a mass m(.) defined on 2X as): 
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One has 1/n ≤ Sm ≤ 1, where n is the cardinality of X, minimum value occurs for the vacuous 
belief function mvbf(X) = 1, and maximum value occurs for any Bayesian mass. 



In our opinion this formula should be adjusted in order to get the minimum specificity value 0 
for the vacuous belief function function and for uniformely distributed masses (i.e. m(Ai) = 1/p 
for each A1, A2, …, Ap in the fusion space, while the specificity should be 1 for m(A)=1 where 
A has the cardinality 1. 

Because, for example, if we have three Bayesian bba’s defined on Θ ={A, B, C}, where all A, B, 
C are singletons, and all their intersections are empty: 

          A     B     C 

m1    1/3  1/3   1/3 

m2    ½      ½     0 

m3     1      0      0 

we get the same specificity for all three of them, i.e. Sm1 = Sm2 = Sm3 = 1, 

while intuitively there should be 0 ≤ Sm1 < Sm2 < Sm3 = 1 since m2 is more specific than m1, and 
m3 is the most specific than all of them. 

Uncertainty results from randomness and non-specificity. 

Non-specificity is related to vagueness or imprecision (Ristic and Smets, [2]). 

2. Degree of specificity. 

We define a new degree of specificity measure of a bba m(.) in the following way: 

SSMO(m) = 1-d(m, ms) 

where ms(.) is the most specific mass associated with m(.), and d(.) is a distance function whose 
values are in the interval [0, 1] between the masses m(.) and ms(.). 

As distance between masses we prefer to use Jousselme distance which is the most accurate one, 
but other mass distance can be used as well: Euclidean distance, Bhattacharyya’s distance, 
Tessem’s distance, GPT distance, DSmPε distance, etc. The restriction is that each mass distance 
should have the values in the closed interval [0, 1]. 

We recall some mass distance formulas: 

3.1) Jousselme distance:  ?? Include formula 

It is easier to take the Jousselme matrix corresponding to the union of all focal elements of bba’s 
m1 and respectively m2, instead of considering the large size matrix defined on the whole fusion 
space 2Θ. The result is the same. 



3.2) Euclidian distance:   

dE(m1, m2) = √{Sigma[m1(A)-m2(A)]2} 

A in 2Θ 

3.3) Bhattacharya distance:  ?? Include formula 

3.4) Tessem’s distance between pignistic probabilities BetP1 and BetP2 associated to 
the bba’s m1, and respectively m2 (distance between betting commitments from 
two pignistic transformations) of the two bba’s is defined as [7, 8]: 

 
dT(m1,m2) = max|BetP1(A)-BetP2(A)| 

                                                                                A∈Θ , A = singleton 
 

3.5) This distance extended to DSmT gives the GPT distance, between generalized 
pignistic probabilities: 

dDSmT(m1,m2) = max|GPT1(A)-GPT2(A)| 
                                                                                A∈Θ , c(A) = 1 
 

where c(A) is the DSm cardinality of A. 
 

3.6) A DSmPε  distance, extension of the above two distances should be: 
 

dDSmT ε (m1,m2) = max|DSmP(ε)1(A)-DSmP(ε)2(A)|. 
                                                                                A∈Θ , c(A) = 1 
 

3.7) Another idea would be to take, instead of “max”, the “average” arithmetic 
operator in the above three formulas of distances between pignistic probabilities, 
and we get pseudo-distances (the axiom of triangular inequality is in general not 
verified). 

 
Other way to define the distance between two masses is the following: 

3.8-3.10) Use the pignistic transformation (BetP), or generalized pignistic 
transformation (GPT), or DSmPε to transform a givem bba into a Bayesian 
mass, and then make a city-block distance between the masses of singletons: 

 

dPT(m1,m2) = 1 2
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respectively in DSmT: 
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dDSmPε(m1,m2) = 1 2
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In a more general way one can construct the above formulas by inserting a lambda parameter  

λ ≥ 1: 

dPT(m1,m2) = ( 1 2
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Remark that d(m, ms) represents the quantity that misses to m(.) in order for m(.) to becoming 
the most specific mass (closest to it). 

4. The most specific mass associated with a given mass. 

We define the most specific mass ms(.) associated to a given mass m(.) as follows:  

ms(Amax) = 1, where Amax∈GΘ . The problem is how to find Amax ? 

a) If m(.) is Bayesian, then we compute  

Amax = max{m(X), X∈ Θ ={θ 1,…, θ 1}} 

and therefore ms(.) is considered to be ms(Amax) = 1; if there exist many Amax’s (i.e. having the 
same maximal mass), we take any of them because the distance between m(.) and any of these 
most specific masses ms’(Amax’) = 1 associated with m(.) will be the same. 

b) If m(.) is non-Bayesian we can compute Amax in a similar way: 

Amax = {max{m(X)/Card(X), X∈ Θ ={θ 1,…, θ 1}} }, 

but if there exist more maximal masses we take the element with the smallest cardinality. 



c) Another method for the case when m(.) is non-Bayesian is to use the Smets’s pignistic 
transformation, or GPT, or DSmPε in order to transform the non-Bayesian mass m(.) into 
a Bayesian mass m’(.) corresponding to m(.). And then use case a). 

We recall below the three formulas of the pignistic transformations: 

4.1. The pignistic probability , which transforms a basic belief assignment (bba) to a Bayesian 
probability, was introduced by Smets [5] and defined as: 

 

for all X Θ. 
The following double inequality holds: 

Bel(A) BetP(A) Pl(A). 
 
4.2. An extension of the pignistic probability from DST and TBM to DSmT is the following 
(Dezert, Smarandache, Daniel, [9]): 
 

^

( )
( ) ( )

( )

M

MY D
Y

c X Y
GPT X m Y

c Y
φ

∈ Θ
≠

∩= ∑  

 
where cM(Y) is the DSm cardinality of Y in the given model M, which means the number of 
disjoint parts of Y in the Venn diagram. 
 
4.3. A generalization of the pignistic probability is DSmPε (Dezert & Smarandache, [6]): 
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where ε≥ 0 is a tuning parameter and G^Θ  corresponds to the generic set (power set 2Θ, hyper-
power set DΘ, or super-power set SΘ --  including eventually all integrity constraints (if any) of 
the model M);  
c(Z) denote the DSm cardinals of the set Z;  
ε allows to reach the maximum specificity value of the approximation of m(.) into a subjective 
probability measure; the smaller ε is the greater the specificity of the mass m(.) is. 
DSmP provides a better specificity than the pignistic probability and other transformations that 
map the belief masses to Bayesian probabilities (Sudano’s, Cuzzolin’s). 
 
Remark: the most specific mass ms(.) can also be defined in a different user’s need for solving a 
particular application. 



For DSmT, Amax may be, for example, a non-empty intersection, let’s say A∩B if m(A∩B) is 
maximal and Card(A∩B) = 1. 

For UFT (Unification of Fusion Theories) (Smarandache, [3] ) Amax may be, for example, a 
difference of elements, let’s say A-B if m(A-B) is maximal and Card(A-B) = 1. 

Examples: 

          A        A∪ B 

m1    0.6         0.4 

m2    0.5         0.5 

The most specific mass associated with both of them, m1 and m2, is ms(A) = 1. 

dJ(m1, ms) = 0.2828 where dJ(.,.) is Jousselme distance, whence the specificity of m1 is S(m1) = 
1-0.2828 = 0.7172. 

dJ(m2, ms) = 0.3535, whence S(m1) = 1-0.3535 = 0.6465. 

So, m1 is more specific than m2. 

If we take m3(A) = 0.5, m3(B) = 0.5, with A∩B = φ , the specificity of m3 is smaller than m2’s 

specificity although the masses are the same. 

The above ms(A) = 1 can serve as the most specific mass associated with m3, then dJ(m3, ms) = 
0.50, whence S(m3) = 1-0.50 = 0.50 < 0.6465. 

More Bayesian examples in order to observe the convergence of specificity: 

             A        B         C                                            dJ(mi, m0)    S(mi) 

mo          1         0          0                                                    0             1        

m4        0.4     0.4       0.2                                               0.529       0.471 

m5       0.45    0.45    0.10                                              0.507       0.493 

m6       0.45    0.40    0.15                                              0.492       0.508 

m7      0.45    0.30     0.25                                              0.477       0.523 

m8      0.45   0.275    0.275                                            0.476       0.524 

m9      1/3      1/3       1/3                                                0.577       0.423 

m10      0.6      0.3       0.1                                               0.361       0.639 



The smallest specificity of a Bayesian mass is when the bba has a uniform distribution (in these 
examples m9), and the largest specificity is of course when the mass of a singleton is 1 (m0). 

The specificity increases when the differences between the mass of the largest singleton and the 
masses of other singletons are getting bigger: S(m5) < S(m6) < S(m7) < S(m8). 

In the case when one has three disjoint singletons and the largest mass of one of them is 0.45, we 
have the minimum specificity when the masses of B and C are getting further from the mass of A 
(m8). 

The problem becomes more complex for non-Bayesian masses about how to find the most 
specific mass. 

Let’s consider these examples where we apply method b): 

 A B C A ∪ B A∪ C B ∪ C A∪ B ∪ C  msi dJ(mi, 
m0)     

 

S(mi) 

m11    0.7 0.3    ms11(A ∪ B)=1 

{if one 
decides on 
ignorances} 

or 

ms11’(A)=1 

{if one 
decides on 
singletons} 

0.245 

or 

 

 

 

0.889 

 

0.755 

or 

 

 

 

0.111 

m12  0.4   0.6    ms12(B)=1 0.6 0.4 

m13 0.1      0.9  ms13(A)=1 0.735 0.265 

 

For m11 (second case), m12 and m13 we applied method c). 

5. Contradiction of an element with respect to a mass. 
 



The contradiction of an element A with respect to a mass mi(.) is the distance between the 
masses mi(.) and mA(.), where mA(A)=1: 
 

c(A) = d(mi, mA) 
 

We define the weighted contradiction ci of a mass mi(.) as: 
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and the contradiction between two masses m1(.) and m2(.) as: 
 

c(m1, m2) = c1+c2-d(m1, m2) 
 
 
6. Measure of specificity of a fusion rule. 
Let’s consider two masses m1 and m2. One applies the rules R1, R2, …, Rp 
 m1(R1)m2, m1(R2)m2, …, m1(Rp)m2,  
and then one computes the specificity measure of each result and compare the results: what 
specificity (corresponding to what fusion rule) is bigger. 
 
This can be generalized to s bba’s in the following way: 
If we combine more bba’s, m1, m2, …, ms, in the same way we compute the specificity of each 
mass mi, and then the arithmetic average of these specificity. Afterwards, we fusion all these s 
masses simultaneously with a fusion rule, and then compute the specificity of the resulted mass. 
 
Let’s take the masses m4 and m10 that have the same most specific mass m0(A)=1. {It is true that 
the most specific mass of m4 could equally be mB(B)=1 too.} 
 
6.1. Bayesian Example. 
 
 

 A B C A ∪
B 

A 
∪  
C 

B 
∪  
C 

A 
∪  
B 
∪  
C 

φ  mS of mi dJ(mi, 
mS)    

S(mi) 

m4 0.4 0.4 0.2      mS(A)=1 0.529       0.471 

m10 0.6 0.3 0.1      mS(A)=1 0.361       0.639 
            

mconj 0.2
4 

0.12 0.02     0.62 mS(A)=1 0.712
9 

0.287
1 

mDS 0.6
31 

0.31
6     

0.05
3 

     mS(A)=1 0.346      0.654 

mSmets 0.2
4 

0.12 0.02     0.62 mS(A)=1 0.712
9 

0.287
1 



mYage

r 
0.2
4 

0.12 0.02    0.62  mS(A)=1 0.562
1 

0.437
9 

mDP 0.2
4    

0.12      0.02     0.36   0.16   0.10   mS(A)=1 
or 

mS(A ∪
B)=1 

0.720
5 
or 

0.867
0 

0.279
5 
or 

0.133
0 

mPCR5

or 6 
0.5
74
57 

0.33
543 

0.09      mS(A)=1 0.420
8 

0.589
2. 

mFlore

a 
0.3
13
97 

0.15
699 

0.02
6164 

0.29
199 

0.129
77 

0.081
109 

  mS(A)=1 
 

0.462
3 
 

0.537
7 
 
 

mdis 0.2
4 

0.12 0.02 0.36 0.16 0.1 
 

  mS(A)=1 
or 

mS(A ∪
B)=1 

0.497
9 
or 
 

0.348
2 

0.502
1 
or 
 

0.651
8 

mmean 

 
0.5
0 

0.35 0.15      mS(A)=1 
 

0.444
4 

0.555
6 

mDP-
mixt  

0.2
4 

 

0.12 
 

0.02 
 

0.36 0.16 0.1   mS(A)=1 
or 

mS(A ∪
B)=1 

0.497
9 
or 

0.348
2 

0.502
1 
or 

0.651
8 

mMartin

Osswald- 

mixt  

0.2
4 

 

0.12 
 

0.02 
 

0.36 0.16 0.1   mS(A)=1 
or 

mS(A ∪
B)=1 

0.497
9 
or 

0.348
2 

0.502
1 
or 

0.651
8 

mDPCR 0.2
4 
 

0.12 
 

0.02 
 

0.36 0.16 0.1   mS(A)=1 
or 

mS(A ∪
B)=1 

0.497
9 
or 

0.348
2 

0.502
1 
or 

0.651
8 

mMDPC

R  
0.2
4 

0.12 
 

0.02 
 

0.36 0.16 0.1   mS(A)=1 
or 

mS(A ∪
B)=1 

0.497
9 
or 

0.348
2 

0.502
1 
or 

0.651
8 

mZhan

g 
0.6
31
58 

0.31
579 

0.05
2632 

     mS(A)=1 
 

0.345
1 

0.654
9 

 



 
 
 
 
 
 
 
6.2. Non-Bayesian Example. 
 
 

 A B A ∪ B φ  mS of mi dJ(mi, mS)    S(mi) 

m1 0.7 0.2 0.1  mS(A)=1 0.2550 0.7450 
m2 0.4 0.5 0.1  mS(B)=1 0.4528 0.5472 

        
mconj 0.39          0.17         0.01             0.43 mS(A)=1 0.5393 0.4607 
mDS 0.68421    0.29825 0.017544  mS(A)=1 0.3071 0.6929 

mSmets 0.39          0.17         0.01             0.43 mS(A)=1 0.5393 0.4607 
mYager      0.39          0.17         0.44  mS(A)=1 0.4478 0.5522 

mdisjunctive  0.28       0.1     0.62  mS(A)=1 0.5140 0.4860 
mFlorea     0.45397   0.18532    0.36071  mS(A)=1 0.4077 0.5953 

mPCR5/mPCR6 0.6475 0.3425 0.01  mS(A)=1 0.3475 0.6525 
mmean 0.55 0.35 0.10  mS(A)=1 0.4031 0.5969 

mDuboisPrade 0.28 0.10 0.62  mS(A)=1 0.5140 0.4860 
mDPmixt 0.39 0.17 0.44  mS(A)=1 0.4478 0.5522 

mMartinOsswald-

mixt 
0.335 0.135 0.53  mS(A)=1 0.4798 0.5202 

mDPCR 0.39 0.17 0.44  mS(A)=1 0.4478 0.4798 
mMDPCR 0.335 0.135 0.53  mS(A)=1 0.4798 0.5202 
mZhang 0.70526 0.28421 0.010526  mS(A)=1 0.2895 0.7105 

 
 
In [4], Osswald and Martin computed the distance between fusion operator results using a class 
of random belief functions. 

 
Roussilhe [10] compared the fusion rules from a statistical point of view.  Randomly generating 
masses and fusing them 1000 times using various fusion rules, then with the classical pignistic 
transformation each non-Bayesian result was converted into a Bayesian result, which was 
interpreted as a random variable.  Then one calculated the correlation coefficients (similarities) 
as in statistics between the decision vectors. 
 
6.3. Continuous Frame Example. 
 

 [1, 2] [3, 5] [1, 2] ∪  
[3, 5]φ  

φ  mS of mi dJ(mi, 
mS)     

S(mi) 

m1 0.2 0.8   mS([3,5])=1 0.2 0.8 
m2 0.4 0.6   mS([3,5])=1 0.4 0.6 



        
mconj 0.08          0.48         0.44              mS([3, 5])=1 0.743 0.257 

        
m1 0.2 0.8   mS([3,5])=1 0.2 0.8 
m2 0.4 0.6   mS([3,5])=1 0.4 0.6 

        
mconj 0.08          0.48          0.44             mS([3, 

5])=1 
0.743 0.257 

mDS 0.14286 0.85714   mS([3, 
5])=1 

0.1429 0.8571 

mSmets 0.08          0.48          0.44             mS([3, 
5])=1 

0.743 0.257 

mYager      0.08          0.48         0.44              mS([3, 
5])=1 

0.3720 0.6280 

mdisjunctive  0.08          0.48         0.44              mS([3, 
5])=1 

0.3720 0.6280 

mFlorea     0.10616 0.63694 0.2569  mS([3, 
5])=1 

0.2675 0.7325 

mPCR5/mPCR6 0.21667 0.78333   mS([3, 
5])=1 

0.2167 0.7833 

mmean 0.3 0.7   mS([3, 
5])=1 

0.3 0.7 

mDuboisPrade 0.08          0.48         0.44              mS([3, 
5])=1 

0.3720 0.6280 

mDPmixt 0.08          0.48         0.44              mS([3, 
5])=1 

0.3720 0.6280 

mMartinOsswald-

mixt 
0.08          0.48         0.44              mS([3, 

5])=1 
0.3720 0.6280 

mDPCR 0.08          0.48         0.44              mS([3, 
5])=1 

0.3720 0.6280 

mMDPCR 0.08          0.48         0.44              mS([3, 
5])=1 

0.3720 0.6280 

mZhang 0.14286 0.85714   mS([3, 
5])=1 

0.1429 0.8571 

 
 
In order to define the Bayesianity (non-Bayesianity) we present the measures of uncertainty of a 
set and of a mass. 
 
7. Measure of Uncertainty of a Set. 
 In DST (Dempster-Shafer’s Theory), Hartley defined the measure of uncertainty of a set 
A  by:  

2( ) logI A A= , for { }2 \A θ∈ Φ ,  

where A  is the cardinality of the set A . 

 We can extend it to DSmT  in the same way: 



  2( ) logI A A= , for { }\A Gθ∈ Φ  

where Gθ  is the super-power set, and A  means the DSm  cardinality of the set A ; in the case of 
Shafer’s model (i.e. all intersections of the sets in the frame of discernment are empty), DSm 
cardinality coincides with classical cardinality in DST. 
 
 We even improve it to a degree of uncertainty of a set: 
  { } [ ]: \ 0,1s

d Gθ Φ →U
 ,
  Ud

S(A) = log2(A)/ log2 tI  

 If A  is a singleton, i.e. 1A = , then ( ) 0s
d A =U  (minimum degree of uncertainty of a set), 

 For the total ignorance tI  , since tI  is the maximum cardinality, we get ( ) 1s
d tI =U  

(maximum degree of uncertainty of a set). 
 For all other sets X  from { }\Gθ Φ , whose cardinality is in between 1 and tI , we have 

( )0 1s
d X< <U .  

 We consider our degree of uncertainty of a set works better than Hartley Measure since it 
is referred to the frame of discernment. 
 
 Let’s see an Example 1. 
 If { },A Bθ =  and A B ≠ ΦI , we have the model  

 
  A  B 
   
 
 
 

2 2( ) log log 2 1I A A= = =  

 While ( ) 2 2

2 2

log log 2
0.63093

log log 3
s
d

A
A

A B
= = =U

U
 

 
 Example 2.  
 If { }, ,A B Cθ = , and A B ≠ ΦI , but A C = ΦI , B C = ΦI , we have the model  

 
  A  B   C 
   
 
 
 
 

2( ) log 1I A A= =  as in Example 1. 

 While  ( ) 2 2

2 2

log log 2 1
0.5 0.63093

log log 4 2
s
d

A
A

A B C
= = = = <U

U U
 



It is normal to have a smaller degree of uncertainty of set A  when the frame of discernment is 
larger, since herein the total ignorance has a bigger cardinality. 
 
 
There are two types of uncertainty: nonspecificity and discord []. 
 
 
8. Generalized Hartley Measure of uncertainty for masses is defined as: 
  

{ }
2

2 \

( ) ( ) log
A

GH m m A A
θ∈ Φ

= ∑  

This is also called non-specificity. 
 
FromDST we simply extend the GM(.) to DSmT  as follows: 
 

{ }
2

\

( ) ( ) log
A G

GH m m A A
θ∈ Φ

= ∑
 

 
Degree of Uncertainty (or Degree of non-Bayesianity) of a mass. 
We go further and define a degree of uncertainty of a mass m  as 

  
{ } { }

2
| |

\ \2

log
( ) ( ) ( ) log | |

log
M

Itd
A G A Gt

A
m m A m A A

Iθ θ∈ Φ ∈ Φ

= ⋅ =∑ ∑U  

where tI  is the total ignorance. 

 If ( )m ⋅  is a mass whose focal elements are only singletons then ( ) 0M
d m =U  (minimum 

uncertainty degree of a mass). 
 If ( ) 1tm I = , then ( ) 1M

d m =U  (maximum uncertainty degree of a mass). 

 For all other masses ( )m ⋅  we have 0 ( ) 1M
d m< <U . 

 
Whence we can define a Degree of Bayesianity of a mass, which means how close is a bba to a 
Bayesian (probability) measure: 
 

{ }

2

\ 2

log
( ) 1 ( )

logA G t

A
B m m A

Iθ∈ Φ

= − ⋅∑ . 

If m(.) is Bayesian, then B(m) = 1. 

For the vacuous belief assignment mVBA(I t) = 1 we have B(mVBS) = 0 

If m(.) is non-Bayesian, with m(.)≠ mVBA(.), then 0 < B(m) < 1. 

Examples: 

 



 A B C A ∪ B A ∪ C B ∪ C A ∪ B ∪ C   NB(mi)    B(mi) 

m10 1 0 0 0 0 0 0  0 1 

m11 0.5  0.3 0.2 0 0 0 0  0 1 

m12 0.4 0.1 0.1 0.3 0.1 0 0  0.25 0.75 

m13 0.3 0.1 0.1 0.3 0.2 0 0  0.32 0.68 

m14 0.3 0.1 0.1 0.5 0 0 0  0.32 0.68 

m15 0.3 0.1 0.1 0 0 0 0.5  0.50 0.50 

m16 0 0 0 0.6 0.4 0 0  0.63 0.37 

m17 0 0 0 0.6 0 0 0.4  0.77 0.23 

m18 0 0 0 0.4 0 0 0.6  0.85 0.15 

m19 0 0 0 0.2 0 0 0.8  0.92 0.08 

m20 0 0 0 0 0 0 1  1 0 

 

Remark. 

The degree of uncertainty (or non-Bayesianity) and respectively the degree of Bayesianity 
depend on the cardinality of the frame of discernment. 

For example B(m12)  = 0.75 in the frame Θ 1 = {A, B, C} where the cardinality of the total 

ignorance 

 It = A ∪ B ∪ C is 3, but if we consider m12 in the frame Θ 2 = {A, B, C, D} where the 

cardinality of the total ignorance is 4, its Bayesianity increases:  B(m12’)  = 0.80. The large 
is the frame, the larger becomes the Bayesianity. 

9. Conclusion. 

In this paper we introduced a new degree of specificity measure of a belief function, a degree of 
a degree of specificity measure of a set, and a degree of Bayesianity/non-Bayesianity of a belief 
function. We also introduced new distances between masses based on GPT and DSmP pignistic 
transformations from DSmP. 
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