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Abstract

We investigate connections between SAT (the propositional satisfiability
problem) and combinatorics, around the minimum degree of variables in vari-
ous forms of redundancy-free boolean conjunctive normal forms (clause-sets).

Let µvd(F ) ∈ N for a clause-set F denote the minimum variable-degree,
the minimum of the number of occurrences of a variable. A central result is
the upper bound σ(F ) + 1 ≤ µvd(F ) ≤ nM(σ(F )) ≤ σ(F ) + 1 + log2(σ(F ))
for lean clause-sets F ∈ LEAN in dependency on the surplus σ(F ) ∈ N. Lean
clause-sets, defined as having no non-trivial autarkies (partial assignments
satisfying some clauses and not touching the other clauses), generalise mini-
mally unsatisfiable clause-sets, i.e., LEAN ⊃ MU . For the surplus we have
σ(F ) ≤ δ(F ) = c(F )− n(F ), using the deficiency δ(F ) of clause-sets, the dif-
ference between the number c(F ) of clauses and the number n(F ) of variables.
nM(k) ∈ N is the k-th “non-Mersenne” number, skipping in the sequence of
natural numbers all numbers of the form 2n−1. As an application of the upper
bound we obtain, that clause-sets F violating µvd(F ) ≤ nM(σ(F )) must have
a non-trivial autarky, so clauses can be removed satisfiability-equivalently. We
obtain a polynomial time autarky reduction, but where it is open whether such
an autarky itself can be found in polynomial time.

We show that the upper bound is sharp, i.e., µvd(LEANδ=k) = nM(k)
for all deficiencies k ∈ N, where µvd(LEANδ=k) is the maximum of µvd(F )
over F ∈ LEANδ=k. The determination of µvd(MUδ=k) =: µnM(k) seems
to be a much more involved question. We show that for k ≤ 5 we have
µnM(k) = nM(k), but for k = 6 we have µnM(k) = nM(k)− 1. Moreover this
correction by −1 causes further corrections by −1 for infinitely many other
deficiencies, resulting in the upper-bound function nM1 : N → N, an instance
of a generalised non-Mersenne function found by a novel recursion scheme.

Extensive introductions, overviews, conclusions, examples and open prob-
lems are provided.
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1 Introduction

In this work we aim at bringing together some aspects of combinatorics with the
developing theory of SAT. We concentrate on degree considerations in “clause-sets”
(conjunctive normal forms as set-systems), which can be considered as generalised
hypergraphs, namely hypergraphs with “polarities”. The general goal is to develop
an understanding of propositional (un)satisfiability, which corresponds for hyper-
graphs to an understanding of (non-)2-colourability.

SAT, the prototypical NP-complete problem ([12]), took a strong development
in the past two decades also regarding (industrial) applications (see the handbook
[7] for a recent overview). It is often mainly considered as belonging to complex-
ity theory, algorithms and heuristics (with [15, 14] the basic papers here), and
finally implementations and experimentation (“SAT solvers”). “Understanding”
SAT in a precise sense is considered to be impossible, and only various investiga-
tions on random and approximation structures (including “islands of tractability”)
in general are deemed fruitful. We want to challenge this view, starting to build
a new bridge, towards an understanding of unsatisfiability. We note here that
understanding unsatisfiability seems easier than to understand satisfiability, since
unsatisfiability means a form of completion, all assignments have been excluded as
potential satisfying assignments (“models”), while satisfiability means a lack of such
completion. More precisely, we aim at understanding minimal unsatisfiability, the
building blocks of unsatisfiability — similar to critical colourability, here removal
of any clause renders the clause-set satisfiable.

A fundamental question, the subject of this study, is the existence of “simple”
variables in clause-sets. “Simple” here means a variable occurring not very often.
A major use of the existence of such variables is in inductive proofs of properties
of minimally unsatisfiable clause-sets, using splitting on a variable to reduce n, the
number of variables, to n− 1: here it is vital that we have control over the changes
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imposed by the substitution, and so we want to split on a variable occurring as few
times as possible. “Splitting” of a clause-set F on variable v means the consideration
of the clause-sets 〈v → 0〉 ∗F , 〈v → 1〉 ∗F , that is, instantiating variable v by both
truth values 0, 1. A feature of clause-sets is the closure under splitting, and splitting
is a major tool for investigations into minimal unsatisfiability.

1.1 Deficiency as the main structural parameter

The definition of the class CLS of “clause-sets”, and of the class MU ⊂ CLS of
“minimally unsatisfiable clause-sets”, can be quickly (and precisely) given as follows,
using (just) natural numbers as “variables”:

A “literal” x is an element of Z \ {0}. A “clause” C is a finite set of literals,
such that there is no x ∈ C with −x ∈ C. Using −L := {−x : x ∈ L} for sets L of
literals, the “clash-freeness” condition for C becomes C ∩ −C = ∅. A “clause-set”
F is a finite set of clauses, the set of all clause-sets is denoted by CLS. The most
basic measurements for F ∈ CLS are:

• the number c(F ) := |F | ∈ N0 of clauses of F ;

• the number n(F ) := |var(F )| ∈ N0 of variables of F , where var(F ) is the set
of v ∈ N (variables as positive integers) with {v,−v} ∩

⋃

F 6= ∅;

• The “deficiency” δ(F ) := c(F )−n(F ) ∈ Z. This parameter is only informative
when certain (weak) assumptions are made for F , and for general F the
“maximal deficiency” δ∗(F ) := maxF ′⊆F δ(F

′) ∈ N0 is to be used.

A clause-set F is “satisfiable” if there exists a partial assignment ϕ, which here in
this introduction is just a clause, such that ϕ ∩D 6= ∅ for all D ∈ F .1) The set of
all satisfiable clause-sets is SAT ⊂ CLS, the set of all unsatisfiable clause-sets is
USAT := CLS \ SAT . Finally MU ⊂ USAT is the set of F ∈ USAT such that
for all C ∈ F we have F \ {C} ∈ SAT .

The background for the investigations of this report is the enterprise of classi-
fying F ∈ MU in dependency on δ(F ). The basic facts are δ∗(F ) = δ(F ) (as will
be discussed in Subsection 1.5), and the well-known δ(F ) ≥ 1, as first shown in [3].
For δ(F ) = 1 the structure is completely known ([3, 17, 49]; see Example 3.2), for
δ(F ) = 2 the structure after reduction of singular variables (occurring in one sign
only once) is known ([42]; see Example 3.3), while for δ(F ) ∈ {3, 4} only basic cases
have been classified ([99]).

The starting point of our investigation is Lemma C.2 in [49], where it is shown
that F ∈ MU with n(F ) > 0 must have a variable v ∈ var(F ) with at most δ(F )
positive and at most δ(F ) negative occurrences; we write this as ldF (v) ≤ δ(F ) and
ldF (−v) ≤ δ(F ), using the notion of literal degrees (the number of occurrences of
the literal), where for a literal x its degree is

ldF (x) := |{C ∈ F : x ∈ C}| ∈ N0.

Thus we have vdF (v) ≤ 2δ(F ), using the variable degree

vdF (v) := ldF (v) + ldF (−v) ∈ N0.

Using the minimum variable degree (min-var-degree)

µvd(F ) := min
v∈var(F )

vdF (v) ∈ N

1)The clause ϕ is the set of satisfied literals of the corresponding “partial assignment”. This def-
inition of “satisfying assignments”, via clauses intersecting every clause of F , generalises transver-
sals of hypergraphs, by taking complementation into account (ϕ does not contain clashes).
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of F with n(F ) > 0, the upper bounds becomes µvd(F ) ≤ 2δ(F ). A main theme
of this report is the consideration of µvd(MUδ=k) ∈ N for k ∈ N, the maxi-
mum of µvd(F ) for F ∈ MU with δ(F ) = k. The upper bound now becomes
µvd(MUδ=k) ≤ 2k.

We show a sharper bound on µvd(F ), namely we show that the worst-cases
ldF (v), ldF (−v) ≤ δ(F ) can not occur at the same time (for a suitable variable),
but actually ldF (v) + ldF (v)− δ(F ) only grows logarithmically in δ(F ). The really
interesting aspect here is the precise determination of µvd(MUδ=k), and we inves-
tigate the (elementary) number-theoretic function nM(k), which yields the upper
bound µvd(MUδ=k) ≤ nM(k) for all k ∈ N, where the function nM : N → N fulfils
k + ⌊log2(k + 1)⌋ ≤ nM(k) ≤ k + 1 + ⌊log2(k)⌋ for k ∈ N.

1.2 Refining deficiency by surplus

After having settled this basic min-var-degree upper bound for MUδ=k, we show a
sharper bound on µvd(F ) for a larger class of clause-sets F :

• The larger class of clause-sets considered is the class LEAN of lean clause-sets
(introduced in [50]), which are clause-sets having no non-trivial autarky. For
an overview on the theory of minimally unsatisfiable clause-sets and on the
theory of autarkies see [43]. LEAN ⊂ CLS is the set of F ∈ CLS such that
there is no partial assignment ϕ (a “non-trivial autarky”) with the properties

– for every clause D ∈ F with −ϕ ∩D 6= ∅ we have ϕ ∩D 6= ∅ (note that
this generalises the satisfaction criterion);

– there exists v ∈ var(F ) with {v,−v} ∩ ϕ 6= ∅.

Note LEAN ∩ SAT = ⊤, where ⊤ := ∅ ∈ CLS is the empty clause-set (the
standard satisfiable clause-set).

• The deficiency δ(F ) ∈ Z is strengthened by the surplus σ(F ) ∈ Z, defined in
case of n(F ) > 0 as follows.

Consider the bipartite clause-variable graph of F (generalising the incidence
graph of a hypergraph), with the clauses C ∈ F on one side of the biparti-
tion, and the variables v ∈ var(F ) on the other side, and an edge between
v and C if {v,−v} ∩ C 6= ∅. The “expansion” of a set ∅ 6= V ⊆ var(F )
of variables is |Γ(V )| − |V |, where Γ(V ) is the set of neighbours of V (inci-
dent clauses), and the surplus then is the minimum expansion, i.e., σ(F ) =
min∅6=V⊆var(F )|Γ(V )| − |V |.

In the terminology of [73, Section 1.3], δ∗(F ) is the deficiency of the bipartite
clause-variable graph (with bipartition (F, var(F )), while σ(F ) is the surplus
of the bipartite variable-clause graph (with bipartition (var(F ), F )).

Note that by considering V = var(F ) we have σ(F ) ≤ δ(F ), and by consider-
ing V = {v} for v ∈ var(F ) we get σ(F ) ≤ µvd(F )− 1.

We have σ(F ) ≥ 1 for F ∈ LEAN with n(F ) > 0 ([51, Lemma 7.7]), general-
ising the basic fact δ(F ) ≥ 1 for F ∈ MU .

Now a central result of this report (Theorem 9.8) is

µvd(F ) ≤ nM(σ(F ))

for F ∈ LEAN with n(F ) > 0. As an application we obtain (Theorem 10.2),
that via removing satisfiability-equivalently some clauses (via some autarky), we
can reduce every (multi-)clause-set F in polynomial time to a (multi-)clause-set F ′
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containing a variable occurring with degree at most σ(F ′) + 1 + log2(σ(F
′)). It is

an open problem whether such an autarky can be found in polynomial time (for
arbitrary clause-sets F ); we conjecture (Conjecture 10.3) that this is possible.

We also show sharpness of the upper bound, i.e., µvd(LEANδ=k) = nM(k)
for all k ∈ N, in Corollary 9.13 (proving Conjecture 23 from the conference version
[62]), which indeed holds for every class of clause-sets between VMU , i.e., “variable-
minimally unsatisfiable clause-sets” as introduced in [11], and LEAN ; the definition
of VMU is as the set of F ∈ USAT such that for all F ′ ⊆ F with var(F ′) ⊂ var(F )
we have F ′ ∈ SAT .

We then come back to the special case of minimal unsatisfiability. Here things
turn out to be much more complicated, and the numbers µnM(k) := µvd(MUδ=k) ∈
N for k ∈ N, the guaranteed minimum variable degrees for minimally unsatisfiable
clause-sets of deficiency k, seem to be very complicated (and very interesting) quan-
tities. We proof the sharpened bound µnM(k) ≤ nM1(k), which improves on nM(k)
for infinitely many k.

According to the goal of bringing different communities together, we try to
provide and explain much of the relevant background, so that this report is mostly
self-contained, and the results cited from the literature can be treated as black-
boxes.

1.3 Some basic intuitions about the upper bound nM

As already mentioned, the function nM : N → N is strictly increasing with range

nM(N) = N \ {2n − 1 : n ∈ N} = {2, 4, 5, 6, 8, . . . , 14, 16, 17, . . .}.

We show µvd(LEANδ=k) = nM(k) for deficiencies k ∈ N, that is, every lean clause-
set F with n(F ) > 0 contains a variable v ∈ var(F ) with vdF (v) ≤ nM(δ(F )), and
for every deficiency k ≥ 1 there are lean clause-sets F with µvd(F ) = nM(δ(F )).

The underlined values 2, 6, 14, . . . , which have the form 2n−2 for n ∈ N, are the
function values at the “jump positions” 1, 4, 11, . . . , which are of the form 2n−n−1
for n ≥ 2 (where the function values changes by +2, while otherwise it changes
by +1 for an increment of the argument). This basic structure of nM can be
motivated by the following constructions of F ∈ MU with “high” min-var-degree;
indeed these considerations only concern the lower bounds, given by appropriate
constructions, while the arithmetic nature of nM(k) rests on different considerations,
but for the deficiencies considered here, lower and upper bounds are equal, and the
lower bounds are easier to understand here.

The basic clause-sets are the An for n ∈ N0, which consist of all 2n sets (clauses)
of numbers ±1, . . . ,±n, using the natural numbers 1, . . . , n as variables. So A0 =
{∅}, A1 = {{−1}, {1}}, A2 = {{1, 2}, {−1, 2}, {1,−2}, {−1,−2}} and so on. It is
easy to see that we have An ∈ MU with n(An) = n, c(An) = 2n = µvd(An), and
δ(An) = 2n − n. We will see that the An have the largest possible min-var-degree
2n for given deficiency 2n −n, and we also have nM(2n − n) = 2n for n ∈ N. These
deficiencies k = 2n−n (numerical values are 1, 2, 5, 12, . . . ) are the positions directly
after the jump positions (excluding deficiency k = 1 as a special case).

How can we obtain from that more clause-sets in MU with high min-var-degree?
Consider A3: we have e.g. {1, 2, 3}, {1, 2,−3} ∈ A3; now logically these two clauses
are equivalent to {1, 2} (i.e., we have the same satisfying assignments; technically,
a “strict full subsumption resolution” is performed), and we obtain A′

3 := (A3 \
{{1, 2, 3}, {1, 2,−3}})∪ {{1, 2}} ∈ MU . Performing this process in general, using
{1, . . . , n}, {1, . . . , n − 1,−n} ∈ An, yields A

′
n ∈ MU for n ≥ 2, with n(A′

n) = n,
c(A′

n) = 2n − 1, δ(A′
n) = 2n − n− 1 , and µvd(A′

n) = 2n − 2 (the (single) variable
with minimum occurrences is n). These deficiencies are precisely the jump positions
2n − n− 1, and accordingly we have nM(2n − n− 1) = 2n − 2.
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Performing the same trick again to A′
3, we might replace {−1, 2, 3}, {−1,−2, 3} ∈

A′
n by {−1, 3}, obtaining A′′

3 ∈ MU . Again for general n ≥ 3 we get A′′
n ∈ MU ,

n(A′′
n) = n, c(A′′

n) = 2n − 2, δ(A′′
n) = 2n − n − 2, and µvd(A′′

n) = 2n − 3; note
here the crucial difference, that the min-var-degree has only been changed by −1.
The reason is that there are two variables now with minimum occurrences, namely
n− 1, n, where the degree of variable n changed first by −2, then by −1, while for
variable n − 1 the degree first changed by −1, and then by −2 (and for the other
variables 1, . . . , n− 2 we had degree changes by −1, −1).

Now one might imagine this process of strict full subsumption resolution contin-
uing until deficiency 2n−1 − (n− 1) + 1, always with change of the min-var-degree
by −1, just before the deficiency of the previous An−1 — this would yield the
function nM. However the combinatorial reality is more complicated, and as we
prove in this report (Section 14), at least we can not get until 2n−1 − (n − 1) + 1
for n ≥ 4 (in effect), that is, at these deficiencies k = 6, 13, 28, . . . we have
µvd(MUδ=k) ≤ nM1(k) = nM(k)− 1.2)

1.4 Related work on MU

A general overview on minimally unsatisfiable clause-sets (also “minimal unsatis-
fiable clause-sets/formulas”, or “MU”) is [43]; later developments are in [57, 58]
(generalisations to non-boolean clause-sets) and in [64, 65] (studying “singular DP-
reduction”, the elimination of variables which occur in one sign only once).

Two early papers on the complexity aspects are [81, 80], who introduced the
complexity class DP and showed that the decision “F ∈ MU ?” with input
F ∈ CLS is complete for this class. Another important early paper is [3], which
showed δ(F ) ≥ 1 for F ∈ MU , where the notion of “deficiency” was introduced by
[25]. Furthermore [3] showed polytime-decision of the sub-class SMUδ=1 ⊂ MUδ=1

(called “strongly minimal unsatisfiable” there), where SMU ⊂ MU is the set of
F ∈ USAT such that for all C ∈ F and all x ∈ Z \ {0} with {x,−x} ∩C = ∅ holds
(F \ {C})∪ {C ∪ {x}} ∈ SAT , that is, adding any literal to any clause renders the
clause-set satisfiable. We use the terminology “saturated minimally unsatisfiable”
introduced in [24], where the important connection to splitting was introduced, and
a simpler proof of δ(F ) ≥ 1 for F ∈ MU was given. Just for this introduction we
handle “partial assignments” via clauses ϕ (containing the satisfied literals; thus
−ϕ is the set of falsified literals), so for a literal x the partial assignment 〈x → 0〉
is given by {−x}, while 〈x→ 1〉 is given by {x}. The application of ϕ to F ∈ CLS
is defined as

ϕ ∗ F := {D \ −C : D ∈ F ∧ C ∩D = ∅} ∈ CLS,

that is, removing first the satisfied clauses from F , and then the falsified literals from
the remaining clauses. Now for F ∈ CLS holds F ∈ SMU iff for all x ∈ Z \ {0}
holds 〈x → 1〉 ∗ F ∈ MU (the “only if”-direction was shown in [24], the “if”-
direction in [49]). Due to this property plus the property, that every F ∈ MU can
be “saturated” by adding literals to clauses, the class SMU is an important helping
class for investigations into MU via the splitting method, splitting up F ∈ MU
into 〈v → 0〉 ∗ F and 〈v → 1〉 ∗ F for selected variables v.

We have already mentioned the literature concerned with characterising the
classes MUδ=k (and subclasses) for small deficiencies k ≤ 4. Less ambitious is the
goal of polytime decision of these classes: the problem was raised in [41], and has
been solved via two independent approaches in [49] and [23] (indeed establishing
polytime SAT decision for inputs F ∈ CLS and fixed δ∗(F )), later strengthened in

2)We do not apply the above method for gaining lower bounds as far as we can, but only as
needed in this report; see the end of Subsection 12.1 for some further remarks.
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[93] (showing that SAT decision is even fixed-parameter tractable in δ∗(F ); see also
[57] for generalisations and simplifications).

1.4.1 MUS

As we have already mentioned, we consider MU as the “primal” building block
for understanding unsatisfiability. In general an unsatisfiable clause-set can contain
many minimally unsatisfiable sub-clause-sets, called “MUSs”. The task of enumer-
ating all of them or at least some “good” ones is also of practical importance, to
extract more information on the “causes” of unsatisfiability. A recent overview is
[74], while a clean approach to enumerate all MUSs, via hypergraph transversals, is
in [71] (the earliest appearance of the underlying observation seems [10, Theorem 2];
compare also [58, Subsection 4.3] for generalisations of the fundamental approach).
See also [61] for a reflection on various types of such sub-clause-sets, and on the
connection to autarky theory (compare Subsection 1.6.3).

1.4.2 Tovey’s problem (uniform clause-sets)

This report appears to be the first systematic study of the problem of minimum
variable occurrences / degrees in minimally unsatisfiable clause-sets and generali-
sations, in dependency on the deficiency — asking for the existence of a variable
occurring “infrequently” in general, or for extremal examples where all variables
occur not infrequently. The “dual” problem is to consider maximum variable oc-
currences / degrees — asking for the existence of a variable occurring frequently in
general, or for extremal examples where all variables occur not frequently. More
precisely, the maximum variable degree is

νvd(F ) := max
v∈var(F )

vdF (v) ∈ N,

for n(F ) > 0, while for a class C ⊆ CLS of clause-sets, the quantity νvd(C) (to be
studied) is the minimum of νvd(F ) for F ∈ C.

This problem has been well-studied for p-uniform minimally unsatisfiable clause-
sets, starting with [94, 18, 47].3) We denote by p–CLS ⊂ CLS for p ∈ N0 the set of
all F ∈ CLS with ∀C ∈ CLS : |C| ≤ p, while by UCLS ⊂ CLS we denote the set of
all uniform clause-sets, i.e., those F ∈ CLS such that for C,D ∈ F , C 6= D, holds
|C| = |D|. Finally p-UCLS := p–CLS∩UCLS and p-UMU := p-UCLS∩MU . Now
the basic fact is

νvd(p-UMU) ≥ p+ 1

for p ∈ N ([94], generalised in [58, Corollary 7.3]). Trivially νvd(1-UMU) = 2,
and easily one sees νvd(2-UMU) = 3, while by [94] holds νvd(3-UMU) = 4. As
reported in [38], we have νvd(4-UMU) = 5, and these are all known precise values
of νvd(p-UMU) (where the notation f(p) := νvd(p-UMU) − 1 was introduced in
[47]). In [38] it was observed that extremal examples might be found in MUδ=1, and
this work was recently extended in [28], establishing the asymptotically tight bound
limp→∞

2
e
2p

p
/ νvd(p-UMU) = 1 (where indeed p-UMU ∩MUδ=1 is considered).

In our setting, studying the classes MUδ=k, the max-var-degree is not very
relevant, since we have νvd(MUδ=1) = 2, while νvd(MUδ=k) = 3 for k ≥ 2. This
can be seen as follows: As already noticed in [94], there is a poly-time transformation
from CLS to the class CLS(1, 2) ⊂ CLS, consisting of those F ∈ CLS where for
every variable v ∈ var(F ) we have ldF (v) = 1 and ldF (−v) ≤ 2. Namely if there

3)We remark that typically in the literature the connections to minimally unsatisfiable clause-
sets are not emphasised, but it is clear that when considering (uniform) unsatisfiable clause-sets
with a maximum variable degree as small as possible, then one can restrict attention to (uniform)
minimally unsatisfiable clause-sets (as worst-cases).
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is a literal x and two clauses C,D ∈ F with x ∈ C ∩ D, then we can introduce a
new variable v, replace x in C,D by v, and add the new clause {−v, x}, obtaining
F ′. We study such extensions under the name of “singular DP-extension”, but
it is also easy to see directly that F ′ is satisfiable iff F is, that F ′ is minimally
unsatisfiable iff F is, and that δ(F ′) = δ(F ). By repeating this transformation, we
obtain t1,2 : CLS → CLS(1, 2). So for F ∈ MU we get t1,2(F ) ∈ MU ∩ CLS(1, 2)
with δ(t(F )) = δ(F ). Whence for all k ∈ N we have νvd(MUδ=k) ≤ 3. Now
trivially νvd(MUδ=1) = 2 due to {{1}, {−1}} ∈ MUδ=1. On the other hand, if
for F ∈ MU holds νvd(F ) ≤ 2 (thus νvd(F ) = 2), then via so-called singular
DP-reduction this clause-set can be reduced to {⊥}, whence F ∈ MUδ=1 (this is
well-known; compare Example 3.2 later).

So for the study of the max-var-degree, the uniformity restriction seems essential.
This is similar to many investigations into (colour-)critical hypergraphs (discussed
in Subsection 1.6.1 below), where uniformity is a crucial assumption, and the clause-
length p is the main parameter. For investigations into the case of uniform (general)
clause-sets, where clauses share at most one variable, see [83, 88]. The number of
clauses in F ∈ p-UMU has been studied in [69], showing that for p = 2 holds
c(F ) ≤ 4n − 2, while for p ≥ 3 there are F with c(F ) = Ω(n(F )p). Finally, the
number of conflicts (clashes) in F ∈ p-UMU is considered in [89], and for a review
of the use of the Lovász Local Lemma in this context see [27].

In contrast, for the study of the minimum variable degree as in this report, in
dependency on the deficiency, the restriction to uniformity seems not interesting,
and is also not needed, but unrestricted clause-sets are considered. We remark
that for every p ∈ N, p ≥ 3, there is a polytime translation tp : CLS → p-UCLS,
such that tp(F ) is satisfiable iff F is, tp(F ) is minimally unsatisfiable iff F is, and
δ(tp(F )) = δ(F ). This works by replacing clauses C with |C| < p by clauses
C ∪{v}, C ∪{−v} for some new variable v (in the MU-case we will call this a “non-
strict full subsumption extension”), and by replacing clauses C with |C| > C by
clauses C′ ∪ {v}, C′′ ∪ {−v} for some new variable v and choosing clauses C′, C′′

with C = C′ ∪ C′′ and |C′| = p − 1, |C′′| ≥ p − 1 (in the MU-case again we have
a singular DP-extension). But the transformation tp appear to be useless, since it
completely garbles the structure of F .

We conclude these remarks on p-uniform clause-sets by the observation, that
for p ≥ 4 the instances involved above become quickly very big, and only methods
from random analysis are available (which by nature are very rough). It seems that
these considerations do not have practical relevance. In contrast, we consider all
minimal unsatisfiable clause-sets (and more), that is, the deficiency does not filter
out clause-sets, but only organises them in layers. And for a wide range of deficiency
values, say, k = 1, . . . , 10000, there are interesting and relevant examples.

1.5 Autarkies

An important tool, used in this report to go beyond MU , is the theory of autarkies,
which also provides a strong link to various areas of combinatorics; the relations to
hypergraph colouring will be discussed in Subsection 1.6.3. Recall that a partial
assignment ϕ is an autarky for F ∈ CLS iff every clause C ∈ F touched by ϕ
(i.e., ϕ ∩ (C ∪ −C) 6= ∅) satisfies C (i.e., ϕ ∩ C 6= ∅), which is equivalent to
∀F ′ ⊆ F : ϕ ∗ F ′ ⊆ F ′. Autarkies were introduced in [78] for improved worst-case
upper bounds for SAT decision, applying that for an autarky ϕ obviously ϕ ∗ F is
sat-equivalent to F . For a recent overview see [43].

Autarky reduction. Autarky reduction, the reduction of F ∈ CLS to ϕ ∗ F ∈
CLS for a non-trivial autarky ϕ, is an essential concept, algorithmically as well as
for theoretical understanding; see [43, Subsection 11.10] for an overview on finding
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autarkies. If we reduce all autarkies, then we obtain the (unique) lean kernel of F . If
there are no non-trivial autarkies, then we have a lean clause-sets, i.e., F ∈ LEAN ,
as already mentioned in Subsection 1.2; the concept was introduced in [50], and [43,
Subsection 11.8.3] contains more information. The lean kernel of F is the largest
lean sub-clause-set of a clause-set, that is,

⋃

{F ′ ⊆ F : F ′ ∈ LEAN}; for a recent
paper on the computation of the lean kernel see [75].

The decision of leanness is coNP-complete, and so consideration of special au-
tarkies is of interest; actually, these considerations are not just “algorithmic hacks”,
but in a sense represent various areas of combinatorics (for example matching the-
ory) via “autarky systems”.

Autarky systems. The notion of an “autarky system”, as a selection of special
autarkies with similar good properties as general autarkies, was introduced in [51],
partially further expanded in [56], and overviewed in [43, Subsection 11.11].

The starting point for an autarky system is to single out a restricted notion of
autarky. This restricted autarky notion implies a restricted satisfiability notion,
namely clause-sets satisfiable via autarky reduction, using only these special au-
tarkies. This is indeed equivalent for “normal autarky systems” to the clause-set
being satisfiable by a single special autarky.4) Often the general autarkies of the
system can be derived from the extreme case of satisfiability through such autarkies.
For arbitrary autarky systems also the notions “minimal unsatisfiability” and “lean”
are defined, and are central properties.

Balanced autarkies are an example of a rather general autarky system, the ba-
sis for autarkies for hypergraph colouring; here for an autarky, touched clauses
need not only have some satisfied literal, but also some falsified literal. The corre-
sponding satisfiability notion is “NAE-satisfiability”, and will be further discussed
in Subsection 1.6.3.

Matching autarkies. The autarky system especially of importance in this report,
besides the full system, is that of matching autarkies ; for a short introduction see
[43, Subsection 11.11.2]. They yield the set MLEAN ⊃ LEAN of matching-lean
clause-sets, and the set MSAT ⊂ SAT of matching-satisfiable clause-sets (called
“matched clause-sets” in [25]):

• A matching autarky for F ∈ CLS is an autarky ϕ for F such that for all
C ∈ F touched by ϕ one can select xC ∈ C with x ∈ ϕ such that the
underlying variables var(xC) are pairwise different.

• We have F ∈ MSAT ⇔ ∀F ′ ⊆ F : δ(F ) ≤ 0, i.e., δ∗(F ) = 0.

• And F ∈ MLEAN ⇔ ∀F ′ ⊂ F : δ(F ′) < δ(F ).

• Thus for F ∈ MLEAN holds δ∗(F ) = δ(F ), and for F 6= ⊤ holds δ(F ) ≥ 1
(note δ(⊤) = 0), a vast generalisation of this fact for MU .

• More strongly, we have for F 6= ⊤ that F ∈ MLEAN ⇔ σ(F ) ≥ 1.

• Every F ∈ CLS has a largest matching-lean sub-clause-set, the matching-lean
kernel, namely

⋃

{F ′ ⊆ F : F ′ ∈ MLEAN}, computable in polynomial time
(for example via reduction by matching autarkies).

4)“Normal autarky systems” were called “strong autarky systems” in [51, Section 8].
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Linear autarkies. A stronger autarky system than matching autarkies is given
by “linear autarkies”; we will not use them for the results of this report, but they are
an important link to combinatorics, and so we discuss them here; see [43, Subsection
11.11.3] for a more elaborated introduction. “Simple linear autarkies” for F ∈ CLS
have been introduced in [50], based on linear programming. For F ∈ CLS we
consider the clause-variable matrix M(F ), which is a c(F ) × n(F ) matrix over R

(or over Q for computational purposes), which encodes in the rows the clauses and
in the columns the variables, by using 0 for absence of the variable, and ±1 for
positive resp. negative sign. Now the simple linear autarkies ϕ are obtained from
solutions ~x ∈ Rn(F ) of M(F ) · ~x ≥ 0, by translating the values ~xi, where the indices
i correspond to the variables of F , into “unassigned” for ~xi = 0, “true” (i.e., 1) for
~xi > 0, and “false” (i.e., 0) for ~xi < 0. It is an easy exercise to see that this yields
indeed autarkies. We have a non-trivial simple linear autarky iff M(F ) · ~x ≥ 0 has
a non-trivial solution. We obtain the classes

• LLEAN of “linearly lean clause-sets” (not having a non-trivial simple linear
autarky), with LEAN ⊂ LLEAN ⊂ MLEAN ;

• LSAT of “linearly satisfiable clause-sets” (satisfiable by a sequence of simple
linear autarkies), with MSAT ⊂ LSAT ⊂ SAT .

Linear autarkies, as introduced in [51], are obtained from simple linear autarkies
by composition, corresponding to iterated reduction by simple linear autarkies;
simple linear autarkies yield an autarky system, while linear autarkies yield a normal
autarky system. The main point here is, that the reduction to the linearly-lean
kernel can be done by a single linear autarky, and linearly satisfiable clause-sets are
satisfiable by a single linear autarky. In Subsection 1.6.3 we discuss the special case
of “balanced linear autarkies”.

1.6 Connections to combinatorics

We now discuss the connections between SAT and combinatorics in a wider context
than the degree considerations of this report, concentrating on aspects related to
minimal unsatisfiability and autarkies (if one is only interested in the results of this
report, then these discussions may be ignored). A general source on SAT is the
handbook [7]; a classical connection to combinatorics, random satisfiability, is dis-
cussed in Chapter 8 ([2]) there, and of further general interest to combinatorics is
Chapter 10 ([86]) on symmetry (group theory), Chapter 13 ([87]) on fixed-parameter
tractable problems (for example treewidth and related notions), and Chapter 17
([100]) on the handling of various combinatorial designs to SAT solving, for ex-
ample from Ramsey theory. Ramsey theory has strong connections to hypergraph
colouring, which we discuss next; we mention, that applying SAT solving to solve
hypergraph colouring problems is a powerful tool, and a recent overview can be
found in [4] (where especially van-der-Waerden numbers are discussed).

1.6.1 Hypergraph colouring

Hypergraph-colouring, especially 2-colouring, and SAT are closely connected; see
[19, Section 5] for a general introduction and overview on hypergraph colouring
(from the combinatorial point of view), while a monograph is given with [40]. An
overview especially on the question of the minimum number of hyperedges for a
given number of vertices in non-k-colourable hypergraphs is given in [46].

Hypergraphs. For this introduction, a hypergraph G is a finite set of finite sub-
sets of Z; so G itself is the set of hyperedges, i.e., E(G) := G, while

⋃

G is the
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set of vertices, i.e., V (G) :=
⋃

G. The set of all hypergraphs is denoted by HYP .
Let the deficiency be δH(G) := |E(G)| − |V (G)|. Note that clause-sets are spe-
cial hypergraphs (CLS ⊂ HYP), but their deficiency is defined differently. Hy-
pergraphs G with δH(G) = 0 are called square hypergraphs. Special hypergraphs
are the positive clause-sets, and the set of all positive clause-sets is denoted by
PCLS := {F ∈ CLS :

⋃

F ⊂ N} = {G ∈ HYP : V (G) ⊂ N}. For F ∈ PCLS
we have δ(F ) = δH(F ); obviously every hypergraph can be renamed to a positive
clause-set. From general clause-sets F ∈ CLS we obtain two hypergraphs:

• F itself is a hypergraph (breaking the link between positive and negative
literals, which are now just unrelated vertices).

We note that we could have allows CLS = HYP , by allowing tautological
clauses (i.e., clauses containing clashing literals) and self-complementary liter-
als (−0 = 0). In certain contexts allowing such degenerations has advantages,
but in our context is seems best to ban them (for example so we have a direct
correspondence between clauses and partial assignments).

• The “variable-hypergraph” of F is {var(C) : C ∈ F} ∈ PCLS. This formation
for example is important to apply methods from matching theory.

For positive clause-sets both formations collapse to the identity, and we treat posi-
tive clause-sets as representing (general) hypergraphs by (special) clause-sets.

Colouring. A k-colouring for k ∈ N0 of G is a map f : V (G) → {0, . . . , k−1} such
that for all H ∈ G there are x, y ∈ H with f(x) 6= f(y); G is called k-colourable if
there exists a k-colouring of G. Note that if there are H ∈ G with |H | ≤ 1, then
G is not k-colourable for any k. A hypergraph G is critically k-colourable if G is
k-colourable, not k−1-colourable, but for all H ∈ G the hypergraphG\{H} is k−1-
colourable. In the SAT-context there is no need to discard hyperedges containing
at most one vertex, and then minimally non-k-colourability is more appropriate,
that is G is not k-colourable (possibly not colourable at all), while after removal of
any hyperedge G becomes k-colourable. The set of all minimally non-k-colourable
hypergraphs is denoted by MNCk ⊂ HYP for k ∈ N0. We have {∅}, {{x}} ∈
MNCk for all k ∈ N0 and x ∈ Z.

We are especially interested in MNC2. For G ∈ MNC2 holds δH(G) ≥ 0, as
shown in [90], and so we can consider the sets MNC2

δH=k for deficiencies k ∈ N0 (all

minimally non-2-colourable hypergraphs of deficiency (exactly) k).5) The famous
problem of deciding in polynomial time, whether a directed graph contains an even
cycle, is equivalent to the problem of deciding “F ∈ MNC2

δH=0 ?” for F ∈ HYP
(via simple transformations), and this problem was finally solved in [84, 76]. It
was conjectured in [56], that for all k ∈ N0 the classes MNC2

δH=k are decidable
in polynomial time (see also [43, Conjecture 11.12.1]). More on this in Subsection
1.6.4. In [1] one finds more information on vertex degrees in uniform elements of
MNC2

δH=0 (i.e., where all hyperedges have the same length).

Translating hypergraphs into clause-sets. For a positive hypergraph G ∈
PCLS we obtain the translation of 2-colouring to satisfiability via

F2(G) := G ∪ {−H : H ∈ G} ∈ CLS.

For a general discussion of such translations, also considering more colours, see [58,
Subsection 1.2]. A hypergraphG ∈ PCLS is 2-colourable iff F2(G) is satisfiable, and

5)Indeed in [55, Corollary 8.2] it is shown δH(G) ≥ 0 for all G ∈ MNCk for k ≥ 2, as a simple
application of the autarky method; note that for G := {{1, . . . , n}} ∈ MNCk for k ≤ 1 and n ≥ 2
holds δH(G) = 1− n < 0.
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G is minimally non-2-colourable iff F2(G) is minimally unsatisfiable, i.e., F2(G) ∈
MU ⇔ G ∈ MNC2 (this is easy to prove, and a special case of [55, Lemma 8.1]).
Regarding the deficiency we have δ(F2(G)) = δH(G) + |E(G)| for ∅ /∈ G, and thus
e.g. F2(MNC2

δH=0 ∩ PCLS) is not contained in any MUδ=k for some k ∈ N.
A slight generalisation of the image F2(PCLS) under this translation is the

class of complementation-invariant clause-sets F ∈ CLS, characterised by C ∈ F ⇔
−C ∈ F for clauses C, as introduced in [56] (see also [43, Subsection 11.4.5]), while
the image F2(PCLS) is the set of complementation-invariant PN-clause-sets, that
is, clause-sets F where every clause C ∈ F is positive (i.e., C ⊂ N) or negative
(−C ⊂ N). See Subsection 1.6.4 for how “autarkies”, as considered on F2(G), can
help understanding G.

Translating clause-sets into hypergraphs. In the other direction a translation
was provided in [72]. For F ∈ CLS let

e(F ) := {C ∪ {0} : C ∈ F} ∪ {{v,−v} : v ∈ var(F )} ∈ HYP.

The hypergraph e(F ) is 2-colourable iff F is satisfiable, and F is minimally unsat-
isfiable iff e(F ) is minimally non-2-colourable, i.e., e(F ) ∈ MNC2 ⇔ F ∈ MU (the
direction “⇐” of the latter statement is stated in the proof of Theorem 3 in [3],
the other direction is (also) very easy). Furthermore δH(e(F )) = δ(F )− 1. Thus e
embeds the classes MUδ=k into MNC2

δH=k−1, which motivates the conjecture, that

all MNC2
δH=k for k ∈ N0 are polytime decidable, as a strengthening of the polytime

decision of the MUδ=k for k ∈ N (recall Subsection 1.4).
We remark that via this embedding e we obtain a proof of δ(F ) ≥ 1 for F ∈ MU

from δH(G) ≥ 0 for G ∈ MNC (this is one of the proofs given in [3]). In [3] also an
alternative proof of δH(G) ≥ 0 is given, based on matching theory, plus one further
proof of δ(F ) ≥ 1, using linear algebra, as in [90]. In Subsection 1.6.3 we will further
comment on these proofs, as they are unfolded in the theory of “autarkies”.

We also remark, that the hypergraph class e(MUδ=1) ⊂ MNC2
δH=0 has the

property, that every hypergraph in it different from {{0}} has a vertex of degree
2 (since every F ∈ MUδ=1 different from {∅} has a variable of degree 2). More
generally, for all k ∈ N every hypergraph in e(MUδ=k) \ {{{0}}} ⊂ MNC2

δH=k−1

has a vertex of degree at most k + 1. We do not know whether the minimum
vertex-degrees of general G ∈ MNC2

δH=k for any (fixed) k ∈ N0 are bounded.

1.6.2 Hypergraph transversals

For G ∈ HYP let Tr(G) ∈ HYP , the transversal hypergraph of G, be defined as the
set of all minimal T ⊆ V (G) such that T ∩H 6= ∅ for all H ∈ G. The Transversal
Hypergraph Problem is the computational problem, given G,G′ ∈ HYP , to decide
whether Tr(G) = G′ holds. Equivalently, the input is G ∈ HYP , and it is to be
decided whether G = Tr(G) holds (obviously this is a special case of the Transversal
Hypergraph Problem, and by a polynomial-time translation the general case can
be reduced to it). For an overview on this important problem and its many guises
see [22]. It is known that the problem is solvable in quasi-polynomial time, and the
long outstanding problem is whether it can be solved in polynomial time.

An intersecting hypergraph is a hypergraph G ∈ HYP , such that for H,H ′ ∈ G
with H 6= H ′ holds H ∩H ′ 6= ∅, the class of all intersecting hypergraphs is denoted
by IHYP ⊂ HYP . By definition we have G ⊆ Tr(G) for G ∈ IHYP , and it is
not hard to see that for G ∈ IHYP holds G ∈ MNC2 iff Tr(G) = G. Thus the
Transversal Hypergraph Problem is equivalent to the problem, deciding whether
an intersecting hypergraph is minimally non-2-colourable. The natural question
arises for the decision of the classes (MNC ∩ IHYP)δH=k for k ∈ N0. The case

13



k = 0 has been handled in [90], indeed not just deciding the class in polynomial
time, but efficiently classifying the elements. The cases k ≥ 1 appear to be open,
and whether decision is possible in polynomial time for fixed k, or is even fixed-
parameter tractable (fpt) in k, is an interesting test case for the general Hypergraph
Transversal Problem, as well as it is relevant for the understanding of minimally
non-2-colourable hypergraphs.

The translation of intersecting hypergraphs G ∈ IHYP into clause-sets F2(G) ∈
CLS yields also a natural and interesting class of clause-sets. Bihitting clause-
sets, introduced in [26, Subsection 4.2], are those F ∈ CLS where F ′, F ′′ ⊆ F
with F ′ ∪ F ′′ = F , F ′ ∩ F ′′ = ∅ exist, such that for all C′ ∈ F ′, C′′ ∈ F ′′ holds
C′ ∩ −C′′ 6= ∅, while F ′, F ′′ itself are clash-free (i.e., (

⋃

F ′) ∩ −(
⋃

F ′) = ∅, and
(
⋃

F ′′)∩−(
⋃

F ′′) = ∅). Obviously, the images under F2 of intersecting hypergraphs
are precisely the bihitting complementation-invariant PN-clause-sets (i.e., the set of
bihitting clause-sets in the image of F2), and deciding their minimal unsatisfiability
is thus another manifestation of the Hypergraph Transversal Problem (directly re-
lated to the decision “G = Tr(G))?”). And another one is to decide SAT for general
bihitting clause-sets (as can be easily seen, and is discussed in [26, Subsection 4.3];
directly related to the decision “Tr(G) = G′ ?”).

In [55, Theorem 8.14] (the first 6 sections are covered by [57, 58]) the character-
isation of [90] (the intersecting G ∈ MNC2

δH=0) is translated into this language.

1.6.3 Autarkies for hypergraphs

We discuss here now two autarky systems (recall Subsection 1.5 for a general intro-
duction), which are especially relevant for hypergraph colouring.

Balanced autarkies. Balanced autarkies for F ∈ CLS (introduced in [56]; [43,
Subsection 11.11.4] provides an introduction) are partial assignments ϕ, which in
every clause of F they touch satisfy as well as falsify at least one literal (that is,
for C ∈ F with C ∩ (ϕ ∪ −ϕ) 6= ∅ holds C ∩ ϕ 6= ∅ as well as C ∩ −ϕ 6= ∅). This is
a normal autarky system, and thus we basically have all the good property general
autarkies have. Balanced autarkies are closely related to hypergraph colouring.
The balanced autarkies for F are precisely the autarkies of F ∪ {−C : C ∈ F}, and
every autarky for a complementation-invariant clause-set is automatically balanced.
A clause-set is balanced-satisfiable, i.e., can be satisfied by a balanced autarky, iff
it is NAE-satisfiable (“not-all-equal”; see [82] for basic results).

Balanced autarkies provide the general autarky form for PCLS (whose elements
are all trivially satisfiable, and thus unrestricted autarkies are not of interest here),
which represents hypergraphs for the 2-colouring problem: an F ∈ PCLS is 2-
colourable iff it is balanced-satisfiable, and F is minimally non-2-colourable iff it
is minimally balanced-unsatisfiable. Finally we have balanced lean clause-sets (i.e.,
having no non-trivial balanced autarkies), and this is the appropriate notion of
“leanness” for hypergraphs, as represented by the class PCLS; more precisely, a
hypergraph G is lean iff for an isomorphic F ∈ PCLS (isomorphic as hypergraph)
we have that F is balanced lean. For lean hypergraphs G we have δH(G) ≥ 0, and
this is properly treated by “balanced linear autarkies”.

Balanced linear autarkies. The special case of “balanced linear autarkies” was
introduced in [51, Section 6]; these are the simple linear autarkies for F ∪ {−C :
C ∈ F} (recall Subsection 1.5).6) Equivalently, the balanced linear autarkies ϕ for

6)More precisely one should speak of “balanced simple linear autarkies”, but for convenience
“simple” is dropped. We note that “balanced linear autarkies” are balanced and linear autarkies,
but in general a balanced and linear autarky need not be a balanced linear autarky, and one should
speak of “balanced-linear autarkies”; again this is an abuse of language, motivated by the fact
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F ∈ CLS are obtained from solutions ~x ∈ Rn(F ) of M(F ) · ~x = 0, by translating
the values ~xi as discussed before (it is an easy exercise to see that this yields indeed
balanced autarkies). We have a non-trivial balanced linear autarky iff M(F ) ·~x = 0
has a non-trivial solution, and so, in other words, F is balanced linearly lean iff
the columns of M(F ) are linearly independent (iff rank(M(F )) = n(F )). Thus if
F ∈ CLS is balanced linearly-lean, then δ(F ) ≥ 0 holds; furthermore, as shown in
[55, Lemma 7.2], there is then a matching in the clause-variable graph covering all
variable nodes, and thus even δ∗(F ) = δ(F ) holds. By noting that F ∈ CLS is
balanced linearly lean iff F ∪{−C : C ∈ F} is linearly lean, and considering PCLS,
we obtain that for lean hypergraphs G (especially, minimally non-2-colourable) we
have δH(G) ≥ 0. To say the argument again explicitly: Consider a hypergraph
G ∈ PCLS; then G (as a clause-set) is balanced linearly lean iff the variable-clause
matrix has linearly independent rows, iff F2(G) is linearly lean (again, as a clause-
set), which is implied by F2(G) being minimally unsatisfiable (or weaker, being
lean), which in turn is equivalent to G (as a hypergraph) being minimally-non-2-
colourable. This conclusion “The rows of the incidence matrix [our variable-clause
matrix] of a minimally-non-2-colourable hypergraph are linearly independent over
R.” is shown in [90]; see [32, Lemma 4.7] for this and related results, while the
conclusion “δH(G) ≥ 0” is discussed as Principle 2.1 in [32]. For properties of
minimally balanced linearly unsatisfiable clause-sets see [56, Section 4].

Fundamental inequalities. We have yet seen two fundamental inequalities,
namely δ(F ) ≥ 1 for F ∈ MLEAN , as first shown in [3] for minimally unsatisfiable
clause-sets, and δ(F ) ≥ 0 for balanced linearly lean clause-sets, first shown in [90]
(as δH(G) ≥ 0 for minimally non-2-colourable hypergraphs).7)Autarky theory shows
the general structure of the arguments: We find “obstructions”, which prevent these
bounds from holding, where such obstructions are given by a subset F ′ ⊆ F where
there is a partial assignment ϕ with ϕ ∗ F ′ = ⊤, while var(ϕ) ∩ var(F ′ \ F ) = ∅.
Now minimally unsatisfiable F do not have such F ′, and thus the envisaged bound
holds for them, and this is the argumentation in e.g. [90, 3].

But one can go beyond this, exploiting autarky reduction. Note that ϕ is pre-
cisely an autarky, and furthermore possibly one of a special structure. If we just
look at general autarkies, then we obtain the first generalisation, to lean clause-sets
or balanced lean clause-sets (covering the hypergraph cases). However often, due
to the special structure, these special autarkies can be found in polynomial time,
and their application yields some F ′ ⊆ F , such that the bound holds for F ′ (while
for F ∈ MU we just have F ′ = F ). If we have even an “autarky system”, then F ′

is uniquely determined, that is, does not rely on the choice of the autarkies in the
reduction process. The case of main importance for this report is δ(F ) ≥ 1, where
the autarkies are matching autarkies, and the reduced F ′ is the matching-lean ker-
nel of F , while those F with F ′ = F are precisely the F ∈ MLEAN . On the
other hand, for hypergraph colouring the fundamental fact is δ(F ) ≥ 0 for balanced
linearly-lean clause-sets, where the autarkies are balanced linear autarkies, and the
reduced F ′ is the balanced-linearly-lean kernel of F . In fact, via autarky reduction
we obtain a general method to study decompositions, which we will discuss in the
context of “QMA”.

1.6.4 Qualitative matrix analysis (QMA)

QMA can be understood as the analysis of matrices M over the real numbers in
abstraction of the absolute value of the entries, but only their signs count, that is,

that linear autarkies which are also balanced are apparently too general a concept to be useful.
7)An application yielding Fisher’s inequality (design theory) is discussed in Subsection 7.4 of

[55] (while Seymour’s inequality is discussed there in Subsection 8.2).
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one considers the qualitative class Q(M), which consists of all matrices with the
same dimensions as M , which have entry-wise the same signs as M (positive, zero,
negative), and investigates when a property of M holds for all M ′ ∈ Q(M). For
example, a matrix M , such that all M ′ ∈ Q(M) have linearly independent rows, is
called an L-matrix. The monography [9] is an excellent source on QMA until the
1990’s, while a more recent overview is given in [36].

Starting from [16], which exploits Farkas’ lemma to understand (un)satisfiability,
the connections to QMA have been first explored in Sections 3 and 5 in [51]; see [43,
Subsection 11.12.1] for a more substantial introduction. It is shown in [51, Remark 5
in Section 5], that L-matrices correspond (nearly) precisely (up to transposition and
handling of zero-rows/columns and repeated rows/columns) to balanced lean clause-
sets, while lean clause-sets correspond (nearly) precisely to so-called L+-matrices
(as investigated in [70]). The square L-matrices are called SNS-matrices ; SNS-
matrices are at the heart of the poly-time decision for MNC2

δH=0 (recall Subsection
1.6.1), and the connections to autarky theory are explored in [56]; see [43, Subsection
11.12.2] for an overview.

Further in the translation of terms, now regarding unsatisfiability: unsatisfiable
clause-sets correspond to sign-central matrices, minimally unsatisfiable clause-sets
correspond to minimally sign-central matrices. So [9, Theorem 5.4.3] is yet another
proof of δ(F ) ≥ 1 for F ∈ MU . The variable-degree, as studied in the current
report, corresponds to the number of non-zero entries in the rows of the matrices
(while the deficiency is the difference of the number of columns and the number of
rows). The elements of MUδ=1 correspond to S-matrices, the elements of SMUδ=1

correspond to maximal S-matrices.
As mentioned, autarky systems A (like balanced autarkies, matching autarkies,

etc.) also yield a framework for decomposition theorems. The basic decomposition
is into A-lean and A-satisfiable sub-clause-sets, as given in [51, Theorem 8.5] (for
normal autarky systems), which corresponds to a certain unique decomposition of
the clause-variable matrix into a triangular shape with two blocks on the diagonal,
and generalises various matrix decompositions in QMA, as discussed in [51, Foot-
note 7, Page 246]. A-lean clause-sets itself can be further decomposed, and the
main result is [56, Lemma 6] (reviewed in [43, Subsection 11.11.5]), generalising [9,
Theorem 2.2.5], stating that a clause-set F ∈ CLS is minimally A-unsatisfiable iff
F is barely A-lean (it is lean, but removal of any single clause destroys this) and
A-indecomposable (no triangular decomposition into A-lean blocks is possible for
the clause-variable matrix).

1.6.5 Biclique partitions of (multi-)graphs, and algebraic graph theory

We finish this overview on related themes in combinatorics by a field of graph theory,
which, like QMA, can be understood as a study of clause-sets from a special angle,
focusing on the conflict-structure of clauses.

Certain aspects of algebraic graph theory. The starting point is [33], where
the problem of “addressing a graph” was introduced. One considers a symmetric
matrix D of dimension m ∈ N over N0, with a zero-diagonal, where the entries are
interpreted as “distances” (in [33] the Di,j are the distances between the nodes of
some graph), and asks for the smallest N ∈ N0, such that there are m codewords
c1, . . . , cm ∈ {0, 1, ∗}N with the property, that the modified Hamming distance
between ci and cj , which simply ignores positions with ∗, is Di,j .

From our point of view, such a codeword is nothing else than a clause over the
variables 1, . . . , N , while the modified Hamming distance is the number of clashes
(conflicts). So the question is about the existence of clauses Ci for i ∈ {1, . . . ,m}
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over variables 1, . . . , N , such that Di,j = |Ci ∩ −Cj | for i, j ∈ {1, . . . ,m}. How-
ever yet “clause-sets” are not perceived/known as combinatorial objects, and their
perspective is missing from the literature. See Chapter 9 of [95, Chapter 9] for an
introduction. A basic result of [33] is that if D has all entries outside the diagonal
equal to 1, then N = m − 1 (see also [32, Lemma 6.6] for a discussion in the con-
text of eigenvalue methods; for a direct combinatorial proof see [96]). This follows
from the general result N ≥ max(n+(D), n−(D)) of [33] (the “Lemma of Witsen-
hausen”), where n+(D) resp. n−(D) is the number of positive/negative eigenvalues
of D. For the general case in [98] it is shown, that if the distances Di,j are indeed
the distances between the nodes of some graph, then we have N ≤ m− 1.

Actually, the Lemma of Witsenhausen works for arbitrary matrices D over N0

with zero diagonal. Taking up the clause-set perspective again, the minimal number
N of variables in a clause-set representing D (it is an easy exercise to see that N is
finite, i.e., a representation is always possible) is equal to the minimal number of 0, 1-
matrices of rank 1 which add up toD: A variable contributes precisely a “rectangle”,
i.e., a matrix which is 1 at the entries I × J for some ∅ 6= I, J ⊆ {1, . . . ,m}, and
otherwise 0, and these are precisely the 0, 1-matrices of rank 1. ConsideringD as the
adjacency matrix A = D of some multigraph (where parallel edges are allowed), we
see that N is also equal to the minimum number of bicliques into which the edge-set
of that multigraph can be partitioned, and N is therefore denoted by bcp(A) ∈ N0

(the “biclique partition number” of A resp. the corresponding multigraph).8)

The notion “hermitian rank” has been introduced and studied in [35] for arbi-
trary hermitian matrices A (square matrices with complex numbers as entries, such
that transposing the matrix and taking the complex conjugate of each entry yields
back the original matrix), denoted by h(A) := max(n+(A), n−(A)) ∈ N0. So the
Lemma of Witsenhausen takes the form, that for symmetric matrices A over N0

with zero diagonal holds bcp(A) ≥ h(A).

Conflict analysis. The essential observation is now that we can go back and forth
between biclique partitions of multigraphs and clause-sets. In one direction we can
understand clause-sets F as representations of biclique partitions of multigraphs,
where for each vertex we get a clause, and from each biclique we obtain a variable,
where the two sides of the biclique are the positive and negative occurrences of the
variable. So we can understand a multigraph together with a biclique partition as a
clause-set, and we can use tools from clause-set-logic to analyse the pair multigraph
with biclique-partition. The deficiency then becomes the difference between the
number of nodes and the number of bicliques. Satisfiability means that it is possible
to select from each biclique one side such that all vertices are covered.

In the other direction we can understand biclique partitions of multigraphs (or,
equivalently, representing a matrix A as above as a sum of rank-1 matrices over
{0, 1}) as representations of clause-sets F , namely the nodes of the conflict multi-
graph cmg(F ) are given by the clauses, while the edges are the conflicts (clashing
literal occurrences x,−x), and the bicliques are given by the variables (their positive
and negative occurrences). In this way we can analyse the influence of the “conflict
structure” on properties of clause-sets; the basic notions, as introduced in [54] with
underlying report [53], are as follows.

For F ∈ CLS let CM(F ) (the conflict matrix ) be the square matrix of dimension
c(F ) over N0, with entries |C ∩ −D| for C,D ∈ F (thus with zero diagonal), i.e.,
CM(F ) is the adjacency matrix of cmg(F ). So we can use the hermitian rank as a
measure h : CLS → N0 (as first done in [54, Subsection 3.2]), namely

h(F ) := h(CM(F ));

8)In [54] we used “ns(A) instead, the “symmetric conflict number”.
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see Points 1, 3 in [26, Section 2] for various equivalent characterisations.9) By
definition we have bcp(F ) := bcp(CM(F )) ≤ n(F ), and thus h(F ) ≤ n(F ). Since
for a principal submatrix A′ of a hermitian matrix A holds h(A′) ≤ h(A) (this
follows by “interlacing”; see [31, Theorem 9.1.1]), we get h(ϕ ∗ F ) ≤ h(F ) for all
partial assignments ϕ, and also h(F ′) ≤ h(F ) for all F ′ ⊆ F , which gives motivation
to consider h(F ) as a complexity measure for F ∈ CLS.

In [54] also the hermitian defect δh : CLS → N0 has been introduced as

δh(F ) := c(F )− h(F ),

and thus δ(F ) ≤ δh(F ); see Point 2 in [26, Section 2] for a geometric characterisation
(as the “Witt index” of the quadratic form associated with CM(F )). Actually
δ∗(F ) ≤ δh(F ) holds and even stronger properties (see [54, Subsection 3.3]). An
important property is (again) δh(ϕ ∗ F ) ≤ δh(F ) for all F ∈ CLS and partial
assignments ϕ together with δh(F

′) ≤ δh(F ) for F
′ ⊆ F , by [54, Corollary 9], and so

we might consider the hermitian defect as a stabilised version of the maximal defect
(both are also complexity measures; recall that we have fixed-parameter tractable
SAT decision for input F ∈ CLS in the parameter δ∗(F )). Note that in general
we can have δ∗(ϕ ∗ F ) > δ∗(F ), for example F := {{1}} has δ∗(F ) = δ(F ) = 0,
while for F ′ := 〈1 → 0〉 we get F ′ = {⊥}, and thus δ∗(F ′) = δ(F ′) = 1. See
[49, Subsection 3.3] and [57, Subsection 11.2] for more information on δ∗(ϕ ∗ F );
splitting on a single(!) variable is very important for this report, with the basic fact
δ∗(〈x→ 1〉 ∗ F ) ≤ δ(F ) for F ∈ MU and any literal x.

The first direct applications applied δ(F ) ≤ δh(F ) for F ∈ CLS, namely that
for a hitting clause-set F ∈ HIT (equivalently, all entries of CM(F ) outside the
diagonal are non-zero) with a regular conflict multigraph (i.e., all entries of CM(F )
outside the diagonal are equal) we have δh(F ) ≤ 1, and thus δ(F ) ≤ 1 ([54, Theorem
33]).10) We get that SMUδ=1 = UHITδ=1 is (precisely) the class of unsatisfiable
hitting clause-sets with regular conflict multigraph ([54, Corollary 34]; a combinato-
rial proof of this was independently found in [91, Lemma 11]), and is also (precisely)
the class of unsatisfiable clause-sets F with δh(F ) ≤ 1 ([54, Theorem 26]).

A clause-set F ∈ CLS is called exact ([54, Subsection 3.4]) if bcp(F ) = n(F ),
that is, F is optimal in realising cmg(F ) with respect to the number of variables. De-
ciding exactness is coNP-complete, while the special class of eigensharp clause-sets,
defined by h(F ) = n(F ), or, equivalently, δh(F ) = δ(F ), is decidable in polynomial
time. With [54, Theorem 14] every eigensharp clause-set is matching lean. This
leads to [54, Conjecture 16], “Every exact clause-set, whose conflict-matrix is the
distance matrix of some connected graph, is matching lean.”, which generalises the
already mentioned main result of [98] (the proof of the “squashed cube conjecture”).

As already mentioned, we consider h(F ) for F ∈ CLS as some form of complexity
measure, measuring the complexity of representing the conflicts of F via simple
matrices. In [26] polytime SAT decision in case h(F ) ≤ 1 was shown, while the
cases h(F ) ≤ k for fixed k ≥ 2 are open; an interesting stepping stone is to show
polytime SAT decision for F ∈ CLS with bcp(F ) ≤ k (recall CLSbcp≤k ⊆ CLSh≤k).
The notion of blocked clauses, a special type of clauses which can be removed sat-
equivalently, introduced in [48], is important here, and [26, Theorem 3] shows,
that from F ∈ CLSh≤1 after elimination of all blocked clauses (which yields a
unique result) we obtain F ′ ⊆ F with bcp(F ′) ≤ 1. We recall from Subsection
1.6.2, that SAT-decision for F ′ is now a special case of the Transversal Hypergraph
Problem, namely, as shown in [26, Lemma 11], the problem is exactly the Exact
Transversal Hypergraph Problem, where every transversal must be “exact”, that is,
must intersect every hyperedge in exactly one vertex; this problem is decidable in

9)For Point 1(c) there it must be a “diagonal matrix A′”.
10)In [54] unfortunately the term “uniform” was (mis)used instead of “regular”.
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polynomial time by [21], and thus we get SAT-decision for CLSh≤1 in polynomial
time. The characterisation of F ∈ MU with bcp(F ) ≤ 1 is an open problem (while
we have polytime membership decision for MUbcp≤1), and by [26, Conjecture 16]
they would have a very simple structure.

We conclude by mentioning that in [58, Section 6] the basic facts are gener-
alised to non-boolean clause-sets, and that by extending the reduction of multi-
clique partitions to biclique partitions from [34] a new and interesting translation
from non-boolean to boolean clause-sets was obtained.

1.7 Overview on results

Sections 2 to 6 provide foundations for the main results in the later sections. In Sec-
tion 2 basic notions and concepts regarding clause-sets and autarkies are reviewed.
In Section 3 we discuss minimal unsatisfiability, with some auxiliary results on satu-
ration (adding literal occurrences to clauses, to make minimal unsatisfiability robust
against splitting) and splitting. Section 4 reviews the concept of “variable-minimal
unsatisfiability”, as introduced in [11], i.e., the class MU ⊂ VMU ⊂ USAT . There
are mistakes in this paper, and we rectify them here:

• we show that VMU ⊂ LEAN holds (Lemma 4.3);

• we provide a corrected characterisation of VMU (Lemma 4.5);

• and we give a corrected proof of polytime decision of VMUδ=k for fixed k
in Theorem 4.7, where we also obtain the stronger result, that decision of
VMU (i.e., deciding whether for input F ∈ CLS holds F ∈ VMU or not) is
fixed-parameter tractable in the deficiency δ(F ).

Section 5 is then concerned with singular variables, eliminating them via singular
DP-reduction, and creating them via “singular extensions”. An important auxiliary
result is Lemma 5.4, showing that eliminating singular variables is harmless for
bounds on the minimum variable-degree; we also show various auxiliary results
on unit-clauses in minimally unsatisfiable clause-sets. This block of preparatory
sections is concluded by Section 6 on full subsumption resolution, an ubiquitous
reduction (and extension); as an application, in Theorem 6.13 we can determine
precisely the possible n(F ) and c(F ) for F ∈ MUδ=k.

The first main results (but still on the preparation side) one finds in Section
7, which introduces the numbers nM(k) ∈ N and proves exact formulas and sharp
lower and upper bounds; the point here is that the introduction of nM(k) happens
via a recursion which is tailor-made for our application in Section 8, but which
makes it somewhat difficult to determine the numbers in a global way. A main
technical result is Theorem 7.15, while Theorem 7.21 proves the general formula.

In Section 8 then we find a basic central result of this report, the upper bound
µvd(MUδ=k) ≤ nM(k) (Theorem 8.3). Section 9 is concerned with generalising
this upper bound. An interesting auxiliary class SED ⊂ CLS, clause-sets where
deficiency and surplus coincide, is introduced in Subsection 9.1; the main lemma
here is Lemma 9.5, which shows that unsatisfiable elements of SED are in fact in
VMU . In Subsection 9.2 the upper bound for MU then is lifted to lean clause-sets
in Theorem 9.8, and also sharpened via replacing the deficiency δ by the surplus σ.
Theorem 9.12 shows that the upper bound is sharp for any class between VMU ∩
SED and LEAN .

Section 10 concerns algorithmic applications. A corollary of Theorem 9.8 is,
that if the asserted upper bound on the minimum variable degree is not fulfilled,
then a non-trivial autarky must exist (Lemma 10.1). Since the variable-set of such
a non-trivial autarky is polytime computable, we show in Theorem 10.2 that we can

19



indeed establish the upper bound shown for lean clause-sets also for general clause-
sets, after a polytime autarky-reduction. In Subsection 10.2 then the problem of
finding such autarky (that is, finding the assignment) is discussed, with Conjecture
10.3 making precise our believe that one can find such autarkies efficiently. Theorem
10.9 pinpoints the “critical” class MLCR ⊂ SAT , which is polytime decidable,
and where we know that these clause-sets are satisfiable, but we even don’t know
how to find any non-trivial autarky efficiently. This block on generalisations of
the min-var-degree upper bound is concluded by Section 11, where we discuss the
possibilities to generalise it to matching-lean clause-sets (where only the absence of
special (non-trivial) autarkies is guaranteed).

In Section 12 we then turn to the study of the numbers µnM(k) := µvd(MUδ=k),
looking now for improved upper bounds and matching lower bounds. We present
two infinite classes of deficiencies k with µnM(k) = nM(k), and present a general
method of obtaining lower bounds for µnM(k), via counting full clauses (clauses
containing all variables — these clause are strong structural anchors). In Section 13
we introduce a general recursive method to obtain upper bounds like nM(k), via the
“non-Mersenne operator” NM(f), which takes a “valid bounds function” f , that is,
some partial information on µnM(k), and improves it (Definition 13.12). Theorem
13.10 shows that this indeed yields a valid method for improving upper bounds on
µnM(k), while in Theorem 13.15 we demonstrate how this method recovers nM(k),
by just starting with the information µnM(1) = 2. In Section 14 we harvest (first)
fruits of these methods. First in Theorem 14.1 we show µnM(k) = nM(k) for k ≤ 5.
Then in Theorem 14.3 we prove µnM(6) = nM(k)− 1 (using a variety of structural
results on MU provided in this report). Plugging this information on µnM into
our machinery, we obtain the improved upper bound µnM ≤ nM1 in Theorem 14.5,
while in Theorem 14.5 we determine nM1(k) numerically.

Finally, in Section 15 open problems are stated, thoroughly discussing research
perspectives, including nine conjectures. Subsection 15.2 discusses improved up-
per bounds for µnM(k) from the forthcoming work [68]. Subsection 15.3 is about
improved lower bounds, via counting full clauses. In Lemma 15.2 we cite from
the work in progress [66] (to be completed soon), which provides improved lower
bounds via the “Smarandache primitive function” S2(k), yielding the first-order
asymptotic determination of µnM(k) ∼ k (Corollary 15.4), where now the open
question is about the asymptotic determination of µnM(k)− k. In Subsection 15.4
we discuss generalisations to non-boolean clause-sets.

The central Conjecture 15.6 of the project of “understandingMU”, on the finitely
many “characteristic patterns” for each MUδ=k, is discussed in Subsection 15.5.
An important special case is Conjecture 15.7 (now a fully precise statement), about
the classification of unsatisfiable hitting clause-sets (or “disjoint/orthogonal tau-
tologies” in the terminology of DNFs). In Lemma 15.9 we show how two of the
conjectures together yield computability of nM(k).

This report is a substantial extension of the conference paper [62]: Section 3
there has been extended to Section 7 here, with considerable more details and
examples on non-Mersenne numbers. Section 4 there is covered by Sections 8, 9
and 10, with various additional results (for example showing sharpness of the upper
bound for LEAN ). And the results for Section 5 there are contained in Subsection
11 here. All other sections in this report are new.

2 Preliminaries

We follow the general notations and definitions as outlined in [43], where also further
background on autarkies and minimal unsatisfiability can be found. We use N =
{1, 2, . . .} and N0 = N ∪ {0}. For the binary logarithm we use ld(x) := log2(x)
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(“logarithm dualis”).
We apply standard set-theoretic concepts, like that of a map as a set of pairs,

and standard set-theoretic notations, like f(S) = {f(x) : x ∈ S} for maps f and
S ⊆ dom(f), and “⊂” for the strict subset-relation. We use also the less-known
notation “A ·∪B” for union in case A,B are disjoint, that is, A ·∪B := A∪B is only
defined for A∩B = ∅. For maps f, g with the same domain X we use f ≤ g :⇔ ∀x ∈
X : f(x) ≤ g(x) (i.e., pointwise comparison), while f < g :⇔ ∀x ∈ X : f(x) < g(x).

2.1 Clause-sets

The basic structure is a set LIT , the elements called “literals”, together with a
fixed-point free involution called “complementation”, written x ∈ LIT 7→ x ∈ LIT ;
so the laws are x 6= x and x = x for x, y ∈ LIT . We assume Z \ {0} ⊆ LIT , with
x = −x for x ∈ Z \ {0}. For a set L of literals we define L := {x : x ∈ L}.
Furthermore a set N ⊆ VA ⊂ LIT , the elements called “variables”, is given, with
LIT = VA ·∪VA. Variables are also called “positive literals”, while literals v for
v ∈ VA are called “negative literals”. The “underlying variable” of a literal is given
by the operation var : LIT → VA (“forgetting complementation”), with var(v) := v
and var(v) := v for v ∈ VA.

Example 2.1 We can thus write e.g. 1, 6 for two (different) variables, and 1, 5,−1
for three (different) literals. In examples we will also use v, w, a, b, c and such letters
for variables (as it is customary), and accordingly v etc. for literals, and in this
context (only) it is then understood that these variables are pairwise different. So
{v, w, x, x}, when given in an example (without further specification), denotes a set
of literals with |{v, w, x, x}| = 4 and |{v, w, x, x} ∩ VA| = 3.

Without restriction we could assume LIT = Z \ {0} (as we did in the Introduc-
tion), but it is often convenient to use arbitrary mathematical objects as variables.
All our objects build from literals are finite, and thus, because of the infinite supply
of variables, there will always be “new variables” (that’s the mathematical point of
having natural numbers as variables — we won’t use the arithmetical structure).

A clause C is a finite and clash-free set of literals (i.e., C ∩C = ∅), the set of all
clauses is CL. A clause-set is a finite set of clauses, the set of all clause-sets is CLS.
The simplest clause is the empty clause ⊥ := ∅ ∈ CL, the simplest clause-set is the
empty clause-set ⊤ := ∅ ∈ CLS. The set of all hitting clause-sets is denoted by
HIT ⊂ CLS, those F ∈ CLS such that two different clauses C,D ∈ F , C 6= D,
have at least one clash, i.e., C ∩D 6= ∅. In the language of DNF, hitting clause-sets
are known as “orthogonal” or “disjoint” DNF’s; see [13, Chapter 7].

Example 2.2 We have e.g. {1, 2,−3} ∈ CL, while {−1, 1} /∈ CL. The only clause-
set in HIT containing the empty clause is {⊥} ∈ HIT . An example of a non-hitting
clause-set is {{1, 2}, {−1, 2}, {3}} ∈ CLS \ HIT , where we obtain an element of
HIT if we add literal −2 to the third clause.

We use var(F ) :=
⋃

C∈F var(C) for the set of variables of F ∈ CLS, where
var(C) := {var(x) : x ∈ C} is the set of variables of clause C ∈ CL. The possible
literals for a clause-set F are given by lit(F ) := var(F ) ·∪ var(F ), while the actually
occurring literals are just given by

⋃

F (the union of the clauses of F ). A literal x
is pure for F if x /∈

⋃

F . For a clause-set F we use the following measurements:

• n(F ) := |var(F )| ∈ N0 is the number of variables,

• c(F ) := |F | ∈ N0 is the number of clauses,
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• δ(F ) := c(F ) − n(F ) ∈ Z is the deficiency (the difference of the number of
clauses and the number of variables),

• ℓ(F ) :=
∑

C∈F |C| ∈ N0 is the number of literal occurrences.

We call a clause C full for a clause-set F if C ∈ F and var(C) = var(F ), while
a clause-set F is called full if every clause is full. For a finite set V of variables let

A(V ) := {C ∈ CL : var(C) = V } ∈ CLS.

Obviously A(V ) ∈ HIT is the set of all 2|V | full clauses over V , and F ∈ CLS is
full iff F ⊆ A(var(F )). We use An := A({1, . . . , n}) for n ∈ N0. Dually, a variable
v ∈ VA is called full for a clause-set F if for all C ∈ F holds v ∈ var(C). A
clause-set is full iff every v ∈ var(F ) is full.

Example 2.3 For F := {⊥, {1}, {−1, 2}} we have:

1. var(F ) = {1, 2}, lit(F ) = {−1, 1,−2, 2},
⋃

F = {−1, 1, 2}.

2. Literal 2 is pure for F (the other literals in lit(F ) are not pure).

3. n(F ) = 2, c(F ) = 3, δ(F ) = 1, ℓ(F ) = 3.

4. {−1, 2} is a full clause of F , while the two other clauses are not full.

5. F has no full variable, while F \ {⊥} has the (single) full variable 1.

The standard “complete” full clause-sets are A0 = {⊥}, A1 = {{−1}, {1}},

A2 = {{−1,−2}, {−1, 2}, {1,−2}, {1, 2}},

and so on.

We often define a class of clause-sets via some measure µ as follows:

Definition 2.4 Consider a class C ⊆ CLS and a measure µ : CLS → R. For a ∈ R

we use Cµ=a := {F ∈ C : µ(F ) = a}, and similarly we use Cµ<a and analogous
notations.

When we use the form “Cµ✷a”, then µ stands for a measure (e.g., µ = δ or µ = n).

Example 2.5 CLSn=0 = CLSℓ=0 = {⊤, {⊥}}, CLSc=0 = {⊤}, and CLSn<0 = ∅.

2.2 Semantics

A partial assignment is a map ϕ : V → {0, 1} for some finite (possibly empty)
set V ⊂ VA of variables, where var(ϕ) := V and lit(ϕ) := var(ϕ) ·∪ var(ϕ). The set
of all partial assignments is denoted by PASS. For a literal x ∈ lit(ϕ) we also define
ϕ(x) ∈ {0, 1}, via ϕ(v) := 1 − ϕ(v) for v ∈ var(ϕ). Via a small abuse of language
we define ϕ−1(ε) := {x ∈ lit(ϕ) : ϕ(x) = ε} ∈ CL for ε ∈ {0, 1}. Special partial
assignments are the empty partial assignment 〈〉 := ∅, and for literals x ∈ LIT and
ε ∈ {0, 1} the partial assignment 〈x → ε〉 ∈ PASS, with var(〈x → ε〉) = {var(x)}
and 〈x→ ε〉(x) = ε.

The application of a partial assignment ϕ ∈ PASS to a clause-set F is denoted
by ϕ ∗ F , which yields the clause-set obtained from F by removing all satisfied
clauses (which have at least one literal set to 1), and removing all falsified literals
from the remaining clauses:

ϕ ∗ F := {C \ ϕ−1(0) : C ∈ F ∧ C ∩ ϕ−1(1) = ∅} ∈ CLS.
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This definition is motivated by the default interpretation of a clause-set as a “con-
junctive normal form” (CNF), where a clause is understood as a disjunction of
literals (thus is satisfied iff at least one literal in it is satisfied), while a clause-
set is understood as a conjunction of its clauses (thus is satisfied iff all clauses
are satisfied). A clause-set F is satisfiable iff there is a partial assignment ϕ with
ϕ ∗F = ⊤, otherwise F is unsatisfiable. The set of satisfiable clause-sets is denoted
by SAT ⊂ CLS, while USAT := CLS \ SAT denotes the set of all unsatisfiable
clause-sets.

Example 2.6 If F ∈ USAT and for F ′ ∈ CLS holds F ⊆ F ′, then also F ′ ∈
USAT (satisfying a clause-sets gets harder the more clauses there are).

By definition we have ϕ ∗ F = ⊤ iff ∀D ∈ F : ϕ−1(1) ∩D 6= ∅; thus F ∈ SAT
iff there is a clause C ∈ CL with C ∩ D 6= ∅ for all D ∈ F . (We could write
“C ∩D 6= ⊥” here, but it appears somewhat more natural to use “∅” here.)

The unsatisfiable hitting clause-sets are denoted by UHIT := USAT ∩ HIT .

Example 2.7 ⊤ ∈ SAT ∩ HIT and {⊥} ∈ UHIT . In general a full clause-set F
is unsatisfiable iff F = A(var(F ))), and thus A(V ) ∈ UHIT for all finite V ⊂ VA.

The fundamental property for F ∈ HIT : Consider ϕ, ψ ∈ PASS, such that there
are C,D ∈ F , C 6= D, with ϕ ∗ {C} = ψ ∗ {D} = {⊥} (that is, ⊥ ∈ ϕ ∗ F ∩ ψ ∗ F ,
where there are different falsified clauses for these two partial assignments). Then
ϕ, ψ are incompatible, i.e., there is v ∈ var(ϕ) ∩ var(ψ) with ϕ(v) 6= ψ(v).

It follows easily that for F ∈ HIT holds F ∈ USAT ⇔
∑

C∈F 2−|C| = 1.
A nice exercise is to show UHITδ≤0 = ∅ (in Section 2.6 a more general result

is stated).

Finally, the semantical implication F |= C for F ∈ CLS and clauses C ∈ CL
holds iff ∀ϕ ∈ PASS : ϕ ∗ F = ⊤ ⇒ ϕ ∗ {C} = ⊤. We have F ∈ USAT ⇔ F |= ⊥.

2.3 Resolution

Two clauses C,D ∈ CL are resolvable if |C ∩D| = 1, i.e., they clash in exactly one
variable (called the resolution variable var(x), while x is called the resolution literal).
For two resolvable clauses C and D, the resolvent C ⋄D := (C ∪D) \ {x, x} ∈ CL
for C ∩D = {x} is the union of the two clauses minus the resolution literal and its
complement. As it is well-known (the earliest source is [8, 77]), a clause-set F is
unsatisfiable iff via resolution (i.e., closing F under addition of resolvents) we can
derive ⊥, and, more generally, we have F |= C iff from F via resolution a clause
C′ ⊆ C is derivable.

An important reduction for clause-sets F ∈ CLS and variables v ∈ VA, resulting
in a clause-set satisfiability-equivalent to F (satisfiable iff F is; sometimes called
“equi-satisfiable”) and with variable v eliminated, is DP-reduction

DPv(F ) := {C ∈ F : v /∈ var(C)} ∪ {C ⋄D : C,D ∈ F ∧C ∩D = {v}} ∈ CLS

(also called “variable elimination”), obtained from F by removing all clauses con-
taining variable v from F , and replacing them by their resolvents on v. See [65] for a
fundamental study of DP-reduction. The satisfying assignments ϕ of DPv(F ) (i.e.,
ϕ∗DPv(F ) = ⊤) with var(ϕ) = var(F )\{v} are precisely the satisfying assignments
ϕ of F with var(ϕ) = var(F ), when restricting ϕ to var(F )\ {v}. Logically, DPv(F )
is equivalent to ∃ v : F , the existential quantification of v for F (but we do not use
quantifiers in this report, so this remark might be ignored here).

23



2.4 Multi-clause-sets and restrictions

These notions are generalised to multi-clause-sets, which are maps F : CL → N0,
such that the underlying set of clauses {C ∈ CL : F (C) 6= 0} is finite, and so we
speak of the underlying clause-set; the set of all multi-clause-sets is denoted by
CLS := {F ∈ NCL

0 : CL \ F−1(0) is finite}.11) Clause-sets are implicitly promoted
to multi-clause-sets, if needed, by using their characteristic functions, and multi-
clause-sets are implicitly cast down, if needed, to clause-sets by considering the
underlying clause-set; “if needed” refers to operations which either require multi-
clause-sets or clause-sets. If however we want to make explicit these operations, we
use cls : CLS → CLS (with cls(F ) := CL \ F−1(0)) and cls : CLS → CLS (with
cls(F )(C) := 1 if C ∈ F , and cls(F )(C) := 0 otherwise). For F ∈ CLS we extend
the basic operations in the obvious way:

• var(F ) := var(cls(F )), lit(F ) := lit(cls(F )),
⋃

F :=
⋃

cls(F ).

• n(F ) := n(cls(F )) ∈ N0, c(F ) :=
∑

C∈CL F (C) ∈ N0, δ(F ) := c(F ) − n(F ) ∈
Z, ℓ(F ) :=

∑

C∈F F (C) · |C| ∈ N0.

The application of partial assignments ϕ ∈ PASS to a multi-clause-set F ∈ CLS
yields a multi-clause-set ϕ ∗ F ∈ CLS, where the multiplicity of a clause C ∈ CL in
ϕ ∗ F is the sum of all multiplicities of clauses D ∈ F (i.e., D ∈ cls(F )) which are
shortened to C by ϕ:

(ϕ ∗ F )(C) :=
∑

D∈F,D∩ϕ−1(1)=∅, D\ϕ−1(0)=C

F (D).

Example 2.8 If ϕ is a total assignment for F (assigns all variables of F , that is,
var(ϕ) = var(F )), then ϕ ∗ F is {m ∗ ⊥}, denoting the multiplicity of a clause by a
(formal) factor, with m =

∑

C∈F,C∩ϕ−1(1)=∅ F (C) ∈ N0 (so m = 0 ⇔ ϕ ∗ F = ⊤).

For us the clause-sets are the objects of interests, while multi-clause-sets are only
auxiliary devices, created by the operation of “restriction” defined next (Definition
2.9). However we have to take care of the details, and thus together with introducing
a class C ⊆ CLS we also introduce the corresponding class C ⊆ CLS of multi-clause-
sets (using the generalised definition of C), where we must discuss the relation. To
start with, the classes SAT and USAT are invariant under multiplicities, that
is, a multi-clause-set is in it iff the underlying clause-set is in the underlying class of
clause-sets (SAT resp. USAT ). The other extreme we have with the class HIT of
multi-hitting-clause-sets, which disallows multiplicities, that is, all multiplicities
must be 1 (since clauses can not clash with themselves, by definition of clauses),
and thus up to the canonical identification the classes HIT and HIT are identical.

An important operation with multi-clause-set is the “restriction” to a set of
variables (see Subsection 3.5 in [57] for more information):

Definition 2.9 For a set V ⊆ VA of variables and a multi-clause-set F ∈ CLS by
F [V ] ∈ CLS the restriction of F to V is denoted, which is the multi-clause-set
obtained by removing clauses from F which have no variables in common with V ,
and removing from the remaining clauses all literals where the underlying variable
is not in V :

F [V ](C) :=
∑

D∈F, var(D)∩V 6=∅, D∩(V ·∪V )=C

F (D).

Here it is essential that F [V ] is a multi-clause-set, and if previously unequal clauses
become equal, then accordingly the multiplicity is increased.

11)In earlier papers we used “MCLS” instead of “CLS”.
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Example 2.10 {{a}, {a, b}, {b}, {a, b}}[{a}] = {2 ∗ {a}, {a}}.

Simple properties of this operation are (for multi-clause-sets F and V, V ′ ⊆ VA):

1. F [∅] = ⊤, F [V ] = F \ {⊥} for var(F ) ⊆ V (where F \ F ′ for a clause-set F ′

means that all occurrences of clauses from F ′ are removed from F ).

2. (F [V ])[V ′] = F [V ∩ V ′].

Clause-sets F,G are called isomorphic, if the variables of F can be renamed
and potentially flipped so that F is turned into G. More precisely, an isomorphism
α from F to G is a bijection α : lit(F ) → lit(G) which preservers complementation
(α(x) = α(x)), and which maps the clauses of F precisely to the clauses of G; when
considering multi-clause-sets, then the isomorphism must preserve the multiplicity
of clauses (that is, G(α(C)) = F (C) for all C ∈ CL).

2.5 Degrees

For the number of occurrences of a literal x ∈ LIT in a (multi-)clause-set F ∈ CLS
we write

ldF (x) :=
∑

C∈F, x∈C

F (C) ∈ N0,

called the literal-degree, while the variable-degree of a variable v is defined as
vdF (v) := ldF (v)+ldF (v) ∈ N0. A (multi-)clause-set F is called variable-regular
if all variables v ∈ var(F ) have the same degree, or, stronger, literal-regular, if all
literals x ∈ lit(F ) have the same degree. A singular variable in a (multi-)clause-
set F is a variable occurring in one sign only once (i.e., 1 ∈ {ldF (v), ldF (v)}). A
(multi-)clause-set is called non-singular if it does not have singular variables. The
central concept for this report is the degree of a variable with minimal occurrences:

Definition 2.11 We define the minimum variable degree µvd : CLS → N ∪
{+∞} (“min-var-degree” for short) as follows (which also works for multi-clause-
sets F ):

• For F ∈ CLS with n(F ) 6= 0 we let µvd(F ) := minv∈var(F ) vdF (v) ∈ N.

• While for n(F ) = 0 we set µvd(F ) := +∞.

For a class C ⊆ CLS of clause-sets let µvd(C) ∈ N0 ∪ {+∞} be the supremum of
µvd(F ) for F ∈ C with n(F ) > 0, where we set µvd(C) := 0 if there is no such F
(while otherwise we have µvd(C) ≥ 1).

By definition we have µvd(C) ≤ µvd(C′) for C ⊆ C′ ⊆ CLS.

Example 2.12 For F := {2 ∗ {a, b}, {a, b}, {b, c}} ∈ CLS we have:

• ldF (a) = 2, ldF (a) = 1, ldF (b) = 3, ldF (b) = 1, ldF (c) = 1, ldF (c) = 0.

• vdF (a) = 3, vdF (b) = 4, vdF (c) = 1.

• µvd(F ) = 1.

Examples for µvd(C) are:

• µvd(∅) = 0.

• µvd(CLS) = +∞.
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• µvd({⊤, {⊥}, {{v}, {v}}, F}) = 2.

The simplest but relevant class of clause-sets for us is given by the A(V ) (the
unsatisfiable full clause-sets; these are the simplest unsatisfiable clause-sets):

Lemma 2.13 For n ∈ N0 we have

1. n(An) = n, c(An) = 2n, δ(An) = 2n − n.

2. An is full and unsatisfiable, and thus An ∈ UHITδ=2n−n.

3. An is literal-regular (thus variable-regular), with µvd(An) = 2n.

Further properties of unsatisfiable full clause-sets one finds in Example 2.20, Lemma
3.9, Corollary 3.11, Lemmas 6.9, 6.10, Corollaries 6.11, 6.12, and Examples 9.2, 9.10.
Properties of satisfiable full clause-sets are found in Example 10.7.

2.6 Autarkies

Besides algorithmic considerations, which were always present since the introduction
of the notion of an “autarky” in [78], also a kind of a “combinatorial SAT theory”
has been developed around this notion of generalised satisfying assignments. A
general overview is given in [43], with recent additions and generalisations in [57].
An autarky (see [43, Section 11.8]) for a clause-set F ∈ CLS is a partial assignment
ϕ ∈ PASS which satisfies every clause C ∈ F it touches, i.e., for all C ∈ F
with var(ϕ) ∩ var(C) 6= ∅ holds ϕ ∗ {C} = ⊤; equivalently, for all C ∈ F holds
C ∩ ϕ−1(0) 6= ∅ ⇒ C ∩ ϕ−1(1) 6= ∅. The simplest examples for autarkies are as
follows:

Example 2.14 The empty partial assignment 〈〉 is an autarky for every F ∈ CLS
(no clause is touched), and more generally all ϕ ∈ PASS with var(ϕ) ∩ var(F ) = ∅
are autarkies for F , the trivial autarkies. On the other end of the spectrum every
satisfying assignment for F (i.e., ϕ ∗ F = ⊤) is an autarky for F (every clause is
satisfied). A literal x ∈ LIT is a pure literal for F iff 〈x→ 1〉 is an autarky for F .

If ϕ is an autarky for F , then ϕ ∗ F ⊆ F holds, and thus ϕ ∗ F is satisfiability-
equivalent to F . Autarkies mark redundancies, and the corresponding notion of
clause-sets without such redundancies was introduced in [50], namely a clause-set
F is lean if there is no non-trivial autarky for F , and the set of all lean clause-sets
is denoted by LEAN ⊂ USAT ·∪{⊤}. The class LEAN of lean multi-clause-sets is
invariant under multiplicities.

Example 2.15 Some simple examples:

1. ⊤, {⊥}, {{v}, {v}}, {{v}, {v}, {w}, {w}} ∈ LEAN .

2. If F, F ′ ∈ LEAN , then F ∪ F ′ ∈ LEAN .

3. If F ∈ LEAN and F ′ ∈ CLS with var(F ′) ⊆ var(F ), then F ∪ F ′ ∈ LEAN .

4. {{v}, {v}, {w}} /∈ LEAN .

A weakening is the notion of a matching-lean clause-set F (introduced in
[51, Section 7]; see [43, Section 11.11] for an overview), which has no non-trivial
matching autarky, which are special autarkies given by a matching condition:
for every clause touched, a satisfied literal with unique underlying variable must
be selectable; the class of all matching-lean clause-sets is denoted by MLEAN ⊃
LEAN .
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Example 2.16 A clause-set F ∈ CLS is matching-lean (F ∈ MLEAN ) iff for all
F ′ ⊂ F holds δ(F ′) < δ(F ) ([51, Theorem 7.5]). Thus for every matching-lean
multi-clause-set F 6= ⊤ we have δ(F ) ≥ 1 ([51], generalising [3]).

F := {{1, 3}, {2,−3}, {3}, {−3}} has the matching autarky 〈1 → 1, 2 → 1〉, while
for F ′ := F ∪ {{1, 2}} we have F ′ ∈ MLEAN . Note δ(F ) = 1 = δ({{3}, {−3}}),
while δ(F ′) = 2.

It is decidable in polynomial time whether F ∈ MLEAN holds (which follows
for example by the characterisation of MLEAN via the surplus below). The class
MLEAN ⊃ LEAN of matching-lean multi-clause-sets is not invariant under mul-
tiplicities: For a multi-clause-set F holds cls(F ) ∈ MLEAN ⇒ F ∈ MLEAN , but
not the other way around:

Example 2.17 {{v}} /∈ MLEAN , but {2 ∗ {v}} ∈ MLEAN , and more generally
{{x1, . . . , xn}} /∈ MLEAN for n ≥ 1, while {(n+ 1) ∗ {x1, . . . , xn}} ∈ MLEAN .
Indeed it is easy to see that for every F ∈ CLS there is F ′ ∈ CLS with cls(F ′) = F
and F ′ ∈ MLEAN .

The process of applying autarkies as long as possible to a clause-set F ∈ CLS is
confluent, yielding the lean kernel of F (the largest lean sub-clause-set of F , that
is,

⋃

{F ′ ⊆ F : F ′ ∈ LEAN}; see [50, Section 3]). Computation of the lean kernel
is NP-hard, since the lean kernel of satisfiable clause-sets is ⊤. But the matching-
lean kernel of F (the largest matching-lean sub-clause-set of F , that is,

⋃

{F ′ ⊆
F : F ′ ∈ MLEAN}; see [51, Section 3]), now obtained by applying matching
autarkies as long as possible, which again is a confluent process, is computable
in polynomial time. Note that a clause-set F is lean resp. matching lean iff the
lean resp. matching-lean kernel is F itself. Due to the polytime computability of
the matching-lean kernel, which is a sub-clause-set obtained by removing clauses
redundant in a strong sense, “w.l.o.g.” for the purpose of SAT-decision one might
consider the inputs as matching-lean.

Example 2.18 For inputs F ∈ MLEAN by [93, Theorem 4] we have SAT-decision
in time O(2δ(F ) · n(F )3) (see [57] for generalisations), and thus SAT-decision for
inputs F ∈ MLEAN is fixed-parameter tractability (fpt) in the parameter δ(F ).

We note here (though we won’t use it in this report), that for inputs F ∈
MLEANδ=k the computation of the lean kernel can be done in polynomial time
for fixed k ([57, Theorem 10.3]; this computational problem appears not to be fpt).

A multi-clause-set F 6= ⊤ is matching lean iff for the surplus we have σ(F ) ≥ 1
([51, Lemma 7.7]), which is defined as follows (see Subsection 11.1 in [57] for more
information; in [93] a clause-set has “q-expansion” iff σ(F ) ≥ q):

Definition 2.19 For a multi-clause-set F let σ(F ) ∈ Z be defined as the minimum
of δ(F [V ]) (recall Definition 2.9) over all ∅ 6= V ⊆ var(F ) if n(F ) > 0, while
σ(F ) := 0 in case of n(F ) = 0.

Note that for ∅ 6= V ⊆ var(F ) we have

δ(F [V ]) = c(F [V ])− |V | =
∑

C∈F,var(C)∩V 6=∅

F (C) − |V |.

The surplus is computable in polynomial time. Some basic properties of the surplus
are (for multi-clause-sets F ):

1. σ(F ) ≤ δ(F [var(F )]) = δ(F \ {⊥}) ≤ c(F ).
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2. For every ∅ ⊂ V ⊆ var(F ) holds σ(F [V ]) ≥ σ(F ).

3. For F ′ ≤ F with var(F ′) = var(F ) we have σ(F ′) ≤ σ(F ).

4. −n(F ) ≤ σ(F ), and for n(F ) > 0 holds 1− n(F ) ≤ σ(F ) ≤ c(F )− 1.

Example 2.20 σ(A0) = 0, while σ(An) = 2n − n = δ(An) for n ∈ N (since every
variable occurs in every clause). If we take F ∈ CLS and some v ∈ VA \ var(F ),
then σ(F ·∪{{v}}) ≤ 0.

3 Minimally unsatisfiable clause-sets

In this section we review minimally unsatisfiable clause-sets; see [43] for an overview,
while [58, 65] contain recent developments. First the basic definitions and examples
are given in Subsection 3.1. In Subsection 3.2 we consider in some detail the funda-
mental process of “saturation”, which is about adding “missing literal occurrences”
to minimally unsatisfiable clause-sets. Saturation repairs the problem that splitting
of F ∈ MU into 〈v → 0〉 ∗ F and 〈v → 1〉 ∗ F may destroy minimal unsatisfiable,
i.e., 〈v → 0〉 ∗ F /∈ MU or 〈v → 1〉 ∗ F /∈ MU might hold, due to some clauses
missed to be deleted, and this process is considered in Subsection 3.3.

3.1 MU and subclasses

An unsatisfiable clause-set F is called minimally unsatisfiable, if for every clause
C ∈ F the clause-set F \ {C} is satisfiable, and the set of minimally unsatisfiable
clause-sets is denoted by MU ⊂ USAT . A clause-set F ∈ MU is called sat-
urated, if replacing any C ∈ F by any super-clause C′ ⊃ C yields a satisfiable
clause-set, and the set of saturated minimally unsatisfiable clause-sets is denoted
by SMU ⊂ MU .

Example 3.1 The simplest element of USAT \MU is {⊥, {1}}, while the simplest
element of MU\SMU is {{1, 2}, {−1}, {−2}} (see Example 3.5 for a “saturation”).

Unsatisfiable hitting clause-sets fulfil UHIT ⊂ SMU (see [65, Lemma 2] for the
proof). The subsets of non-singular elements (i.e., there is no literal occurring only
once) are denoted by MU ′ ⊂ MU , SMU ′ ⊂ SMU , and UHIT ′ ⊂ UHIT .

Example 3.2 By [17] holds MU ′
δ=1 = SMU ′

δ=1 = UHIT ′
δ=1 = {{⊥}} , while for

the characterisation of MUδ=1 ⊃ SMUδ=1 = UHITδ=1 see also [3, 49]. As shown
in [17], for F ∈ MUδ=1 with n(F ) > 0 holds µvd(F ) = 2.

We consider the “reasons” for unsatisfiability as given by the elements ofMUδ=1

as “noise”, only “masking” the pure contradiction of the only element of MU ′
δ=1 =

{{⊥}} (in Section 5 the elimination of singular variables will be discussed). “Real
reasoning” starts with deficiency 2:

Example 3.3 By [42], the elements of MU ′
δ=2 are up to isomorphism precisely the

Fn for n ≥ 2, where

Fn := {{1, . . . , n}, {−1, . . . ,−n}, {−1, 2}, . . . , {−(n− 1), n}, {−n, 1}}.

All Fn are literal-regular, with µvd(Fn) = 4. It is easy to see that all Fn are
saturated, and thus MU ′

δ=2 = SMU ′
δ=2. The only hitting clause-sets amongst the
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Fn are for n = 2, 3, and thus up to isomorphism the elements of UHIT ′
δ=2 are

F2,F3, with F2 = A2 and

F3 = {{1, 2, 3}, {−1,−2,−3}, {−1, 2}, {−2, 3}, {−3, 1}}.

We have σ(Fn) = 2 = δ(Fn), since any m ≤ n variables occur at least in m different
binary clauses plus in the two “long clauses”. Further properties of the Fn we have
in Examples 3.13, 6.2, 8.2, 9.2. See Section 7 in [65] for more information.

As shown in [65, Theorem 74], for every F ∈ MUδ=2 there is a unique n ≥ 2 such
that Fn “embeds” into F , and this n is called the “non-singularity type” of F .
So for MUδ=2 we have identified the (in a sense) unique reason of unsatisfiability,
the (possibly hidden) presence of a cycle v1 → . . . → vn → v1 together with the
assertions, that one vi must be true and one must be false (only the n is unique in
general, not the vi). We will come back to the theme of classifying MUδ=k in the
Conclusion, Subsection 15.5.

By definition, MU disallows multiplicities (since a duplicated clause is the trivial
logical redundancy), and this also holds for the subclasses SMU and UHIT (as well
as for all other subclasses of MU considered here). A fundamental fact is δ(F ) ≥ 1
for all F ∈ MU (note that every minimally unsatisfiable clause-set is lean), which
motivates the investigation of the layers MUδ=1,MUδ=2, . . . . Special elements of
UHIT are the A(V ) for finite sets V of variables (recall Lemma 2.13), which are
the minimally unsatisfiable clause-sets with maximal deficiency for a given number
of variables, as we will see in Corollary 6.11.

3.2 Saturation

We recall the fact ([24, 62]) that every minimally unsatisfiable clause-set F ∈ MU
can be saturated, i.e., by adding literal occurrences to F we obtain F ′ ∈ SMU
with var(F ′) = var(F ) such that there is a bijection α : F → F ′ with C ⊆ α(C) for
all C ∈ F . Since we need to consider saturation in many situations, we introduce
some special notations for it from [65] (Subsection 2.2). First we introduce the
notation S(F,C, x) for adding a literal x to a clause C in a clause-set F :

Definition 3.4 ([65]) The operation (adding literal x to clause C in F )

S(F,C, x) := (F \ {C}) ∪ (C ·∪{x}) ∈ CLS

is defined if F ∈ CLS, C ∈ F , and x is a literal with var(x) ∈ var(F ) \ var(C).

Some technical remarks:

1. var(S(F,C, x)) = var(F ).

2. If C ·∪{x} /∈ F , then c(S(F,C, x)) = c(F ), and thus also δ(S(F,C, x)) = δ(F ).

3. For F ∈ MU we have:

(a) S(F,C, x) ∈ MU iff S(F,C, x) is unsatisfiable (since all what happened
is that a clause has been weakened, i.e., extended).

(b) If S(F,C, x) ∈ MU , then c(S(F,C, x)) = c(F ) (no subsumption here).

(c) F is saturated iff there are no C, x such that S(F,C, x) ∈ USAT .

Example 3.5 For F := {{a, b}, {a}, {b}} ∈ MU \ SMU we have S(F, {a}, b) =
{{a, b}, {a, b}, {b}} ∈ SMU .
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A “saturation” of a minimally unsatisfiable clause-set is obtained by adding
literals to clauses as long as possible while maintaining unsatisfiability (which is the
same as maintaining minimal unsatisfiability):

Definition 3.6 ([65]) A saturation F ′ ∈ SMU of F ∈ MU is obtained by a
saturation sequence F = F0, . . . , Fm = F ′, m ∈ N0, such that

(i) for 0 ≤ i < m there are Ci, xi with Fi+1 = S(Fi, Ci, xi),

(ii) for all 1 ≤ i ≤ m we have Fi ∈ USAT ,

(iii) the sequence cannot be extended (without violating conditions (i) or (ii)).

Note that n(F ′) = n(F ) and c(F ′) = c(F ) holds (and thus δ(F ′) = δ(F )). If we
drop requirement (iii), then we speak of a partial saturation sequence, while
F ′ ∈ MU is a partial saturation of F ∈ MU.

Some technical remarks:

1. F ′ ∈ MU is a partial saturation of F ∈ MU iff

• var(F ′) = var(F )

• there is a bijection α : F → F ′ such that for all C ∈ F we have C ⊆ α(C).

2. For a partial saturation sequence F0, . . . , Fm we have ℓ(Fm) = ℓ(F0) +m.

3. F ′ is a saturation of F ∈ MU iff F ′ is a partial saturation of F with F ′ ∈
SMU .

Example 3.7 A saturation sequence for F := {{a, b, c}, {a}, {b}, {c}} with m = 3
is obtained by adding literals b, c to clause {a}, and adding literal c to clause {b}.

We can perform a partial saturation F ❀ S(F,C, x) iff F without C implies
(logically) C ·∪{x} (note that C ·∪{x}, C ·∪{x} implies C):

Lemma 3.8 Consider F ∈ MU, C ∈ F , and a literal x with var(x) ∈ var(F ) \
var(C). Then S(F,C, x) is a partial saturation of F if and only if F \{C} |= C ·∪{x}.

Proof: First assume that S(F,C, x) is a partial saturation of F , but F \ {C} 6|=
C ·∪{x}. So there is a partial assignment ϕ with ϕ∗(F \{C}) = ⊤ but ϕ∗{C ·∪{x}} =
{⊥} (whence ϕ(x) = 1). But then we have ϕ ∗ S(F,C, x) = ⊤. Reversely assume
F \{C} |= C ·∪{x}, but that S(F,C, x) is not a partial saturation of F . So S(F,C, x)
has a satisfying assignment ϕ; due to F ∈ USAT we have ϕ(x) = 1 and ϕ ∗ {C} =
{⊥}. But this yields ϕ ∗ (F \ {C}) = ⊤ and ϕ ∗ {C ·∪{x}} = {⊥}. �

See Lemma 6.5, Part 6, for another characterisation of partial saturations. The
dual notion of “saturated” is “marginal”: F ∈ MU is marginal iff replacing any
clause by a strict subclause yields a clause-set not inMU . The decision “F marginal
minimally unsatisfiable ?” for inputs F ∈ CLS is DP -complete ([45, Theorem 2]).
By [44, Theorem 8] however this decision is easy for inputs F ∈ SMU , namely
there is the following characterisation of minimally unsatisfiable clause-sets which
are marginal and saturated at the same time:

Lemma 3.9 ([44]) F ∈ MU is marginal and saturated iff F = A(var(F )).
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Thus F ∈ SMU is marginal iff F = A(var(F )); so if F ∈ SMU is not full,
then there is a literal occurrence which can be removed without destroying minimal
unsatisfiability, that is, there exists a clause C ∈ F and x ∈ C such that F ′ :=
(F \ {C}) ·∪{C \ {x}} ∈ MU (note that F ′ ∈ USAT in any case, but minimality in
general is not maintained). And for inputs F ∈ SMU the existence of such C, x is
decidable in linear time (namely they exist iff F is not full). But finding such C, x
should be hard in general, that is, the decision problem, whether a concrete literal
can be removed, even for inputs F ∈ SMU should be NP-complete:

Question 3.10 Is the promise problem for input F ∈ SMU , C ∈ F , x ∈ C,
whether “(F \ {C}) ·∪{C \ {x}} ∈ MU ?”, NP-complete? (That is, is there a
polytime computation G ∈ CLS ❀ (F,C, x) ∈ SMU ×CL×LIT , with x ∈ C ∈ F ,
such that G ∈ SAT ⇔ (F \ {C}) ·∪{C \ {x}} ∈ MU ?)

And is the promise problem for input F ∈ MU , whether F is marginal, NP-
complete? (That is, is there a polytime computation G ∈ CLS ❀ F ∈ MU, such
that G ∈ SAT iff F is marginal?)

Back to saturation: precisely all saturated clause-sets except the A(V ) are ob-
tained as non-trivial saturations of some minimally unsatisfiable clause-set:

Corollary 3.11 Consider F ∈ SMU .

1. F is trivially the saturation of itself.

2. If F = A(var(F )), then this is also the only possibility for F being a saturation,
that is, if F is the saturation of some F ′ ∈ MU , then we have F ′ = F .

3. Otherwise F is a saturation of some clause-set other than it itself, that is, if
F 6= A(var(F )), then there is some F ′ ∈ MU with F ′ 6= F such that F is a
saturation of F ′.

Proof: Part 1 is trivial. For Part 2 assume that F = A(var(F )), and we have
F = S(F ′, C, x) for some F ′ ∈ MU : But since F is marginal, F ′ is not minimally
unsatisfiable. Finally for Part 3 note, that if F 6= A(var(F )), then by Lemma 3.9
F is not marginal, and thus there is C ∈ F and x ∈ C such that for C′ := C \ {x}
and F ′ := (F \ {C}) ·∪{C′} we have F ′ ∈ MU . Now F = S(F ′, C′, x). �

As discussed above, we expect the decision whether for inputs F ∈ SMU ,
C ∈ F and x ∈ C we have (F \ {C}) ·∪{C′} ∈ MU to be NP-complete. But
this decision is easy for F ∈ UHIT , namely iff no “subsumption resolution” with
another clause containing x can be performed, that is, there is no D ∈ F with x ∈ D
and C \ {x} ⊆ D:

Lemma 3.12 Consider F ∈ UHIT , C ∈ F and x ∈ C. Let C′ := C \ {x}, and let
F ′ := (F \ {C}) ·∪{C′}. Then we have F ′ ∈ MU iff there is no D ∈ F \ {C} with
C′ ⊂ D.

Proof: If there is D ∈ F \ {C} with C′ ⊂ D, then F ′ /∈ MU . So assume there is
no such D. Assume F ′ /∈ MU . Thus there is E ∈ F ′ with F ′ \ {E} unsatisfiable.
We must have E 6= C′, since otherwise F \ {C} would be unsatisfiable. Since F
is hitting, E clashes with every clause of F ′ \ {C′}. It follows that C′ ⊂ E must
hold (since the falsifying assignments for E are disjoint with those for any clause in
F ′ \ {C′}), contradicting the minimal unsatisfiability of F . �

Some examples on removable literal occurrences illustrate Lemma 3.12:
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Example 3.13 For F := {{a, b}, {a, b}, {b}} ∈ UHITδ=1 we can exactly remove
one of the two literal-occurrences of b and still obtain a clause-set in MU (of course
not in UHIT anymore; the resulting clause-sets are in fact marginally minimally
unsatisfiable). For F2 = A2 = {{1, 2}, {−1,−2}, {−1, 2}, {−2, 1}} ∈ UHIT ′

δ=2 we
can not remove any literal occurrence without leaving MU (i.e., F2 is marginal).

3.3 Splitting

An important (equivalent) characterisation of saturation for F ∈ CLS, as shown in
[58], is that splitting on any variable v will yield minimally unsatisfiable clause-sets
〈v → 0〉 ∗ F , 〈v → 1〉 ∗ F . This enables induction on the number of variables,
which is a central method for this report; see Lemma 8.1 for the basic example. We
also have that if for some variable both splitting results are minimally unsatisfiable
resp. saturated, then this can be lifted to the original clause-set, provided that no
contraction takes place. These basic facts are collected in the following lemma.

Lemma 3.14 For all clause-sets F ∈ CLS we have:

1. F ∈ SMU iff for all v ∈ var(F ) and all ε ∈ {0, 1} we have 〈v → ε〉∗F ∈ MU .

2. If for some variable v holds 〈v → 0〉 ∗ F ∈ MU and 〈v → 1〉 ∗ F ∈ MU , and
if for all C ∈ F with v ∈ var(C) we have C \ {v, v} /∈ F , then F ∈ MU .

3. If for some variable v holds 〈v → 0〉 ∗ F ∈ SMU and 〈v → 1〉 ∗ F ∈ SMU ,
and if for all C ∈ F with v ∈ var(C) we have C \ {v, v} /∈ F , then F ∈ SMU .

Proof: Part 1 is Corollary 5.3 in [58]. For Part 2 assume F /∈ MU ; thus there is
C ∈ F with F ′ := F \ {C} ∈ USAT . We consider three cases:

1. v /∈ var(C): Due to the assumption on subsumption-freeness we haveC ·∪{v} /∈
F ′. Now C ∈ 〈v → 0〉 ∗F , while (〈v → 0〉 ∗F ) \ {C} = 〈v → 0〉 ∗F ′ ∈ USAT ,
contradicting 〈v → 0〉 ∗ F ∈ MU .

2. v ∈ C: By assumption holds C′ := C \ {v} /∈ F ′. Now C′ ∈ 〈v → 0〉 ∗F , while
(〈v → 0〉∗F )\{C′} = 〈v → 0〉∗F ′ ∈ USAT , contradicting 〈v → 0〉∗F ∈ MU .

3. v ∈ C: By assumption holds C′ := C \ {v} /∈ F ′. Now C′ ∈ 〈v → 1〉 ∗F , while
(〈v → 1〉∗F )\{C′} = 〈v → 1〉∗F ′ ∈ USAT , contradicting 〈v → 1〉∗F ∈ MU .

Finally consider Part 3. By Part 2 we already know that F ∈ MU holds. Assume
that F /∈ SMU ; thus there is C ∈ F and a literal x with F ′ := S(F,C, x) ∈ USAT .
So by Lemma 3.8 we have F \ {C} |= C′ := C ·∪{x}. There exists at least one
ε ∈ {0, 1} with 〈v → ε〉 ∗ {C′} 6= ⊤, and then 〈v → ε〉 ∗ (F \ {C}) |= 〈v → ε〉 ∗ C′.
If var(x) = v, then this contradicts minimal unsatisfiability of 〈v → ε〉 ∗ F . And if
var(x) 6= v, then 〈v → ε〉 ∗ F \ 〈v → ε〉 ∗ {C} |= (〈v → ε〉 ∗ C) ·∪{x}, contradicting
saturatedness of 〈v → ε〉 ∗ F by Lemma 3.8. �

The additional assumption C \ {v, v} /∈ F for Parts 2, 3 is equivalent to saying
that when applying 〈v → 0〉, 〈v → 1〉, then no contraction takes place. An alterna-
tive way of stating this would be to use multi-clause-sets, since then no contractions
would be performed, and the doubled clauses would destroy minimal unsatisfiability.
In [62] (Lemma 1) (and in the underlying report [63], Lemma 2.1) that additional
assumption for Parts 2, 3 is missing by mistake:

Example 3.15 An example for 〈v → 0〉 ∗ F ∈ UHIT and 〈v → 1〉 ∗ F ∈ UHIT ,
but F /∈ MU is trivially given by {⊥, {v}, {v}} (note that F is a set — for a
multi-clause-set F the contraction would not occur).
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4 Variable-minimal unsatisfiability

In [11] the generalisation of minimal unsatisfiability to “variable-minimal unsatisfia-
bility” has been introduced, and the class of all such clause-sets is denoted by VMU ,
the set of clause-sets F ∈ USAT such that for every F ′ ⊆ F with F ′ ∈ USAT
holds var(F ′) = var(F ). The corresponding class VMU of multi-clause-sets is
invariant under multiplicities. Thus, as with LEAN (and different from MU), re-
garding variable-minimal unsatisfiability w.l.o.g. multi-clause-sets can be cast down
to clause-sets. The basic (trivial) characterisation of VMU is:

Lemma 4.1 For F ∈ CLS holds F ∈ VMU if and only if F ∈ USAT and for all
v ∈ var(F ) holds {C ∈ F : v /∈ var(C)} ∈ SAT .

By definition we have MU ⊂ VMU , moreover, as shown in Lemma 6 of [11],
for every deficiency k ≥ 2 we have MUδ=k ⊂ VMUδ=k (for example, for every
F ∈ MUδ=k, k ∈ N, and every non-full clause C ∈ F , i.e., var(C) ⊂ var(F ), we can
add to F a full clause subsumed by C, obtaining F ′ ∈ VMUδ=k+1 \MUδ=k+1).

In [11] there is the false statement “VMU 6⊆ LEAN ”, based on following erro-
neous example:

Example 4.2 [11, Page 266] gives the example F4 := {{a}, {b}, {a, b}, {a, b}} with
the assertion “F4 ∈ VMU \ LEAN ”. Obviously we have F4 ∈ VMU, but we
also have F4 ∈ LEAN . Using the characterisation from [50] (which is the only
characterisation used in [11]), that F ∈ LEAN holds iff every clause of F can be
used in a tree-resolution refutation of F , we see this as follows: the sole subset of
F4 in MU is {{a}, {b}, {a, b}}, while the clause {a, b} can(!) also be used in a
tree-resolution refutation — it is obviously superfluous, but nevertheless there is a
tree-resolution refutation using it, namely via ({a} ⋄{a, b}) ⋄{a, b} = {a}.

Based on the characterisation of lean clause-sets via autarkies, it is easy to show
that VMU consists of special lean clause-sets (thus Figure 1 in [11] needs to be
corrected, showing instead that LEAN is indeed a superclass of VMU):

Lemma 4.3 VMU ⊂ LEAN \ {⊤}.

Proof: While in [11] the characterisation of LEAN via variables usable in resolu-
tion refutation was (only) used, here we need to use the equivalent characterisation
via autarkies, shown in Theorem 3.16 in [50], and used as our definition in Sub-
section 2.6, namely that for F ∈ CLS holds F ∈ LEAN iff there is no autarky ϕ
for F with var(ϕ) ∩ var(F ) 6= ∅: if we had such an autarky for F ∈ VMU , then
ϕ ∗ F ∈ USAT with ϕ ∗ F ⊂ F and var(ϕ ∗ F ) ⊆ var(F ) \ var(F ), contradicting
F ∈ VMU . That we indeed have a strict subset can for example be seen by Lemma
3.2 in [50], which shows that if we extended a minimally unsatisfiable clause-sets via
Extended Resolution, then we always stay in LEAN ; another example is clause-set
F3 on Page 266 in [11]. �

Thus it follows VMUδ=1 = MUδ=1 (shown in Lemma 6 in [11]), since by Corol-
lary 5.7 in [50] holds LEANδ=1 ∩ USAT = MUδ=1.

For F ∈ VMU obviously there is some F ′ ⊆ F with var(F ′) = var(F ) and
F ′ ∈ MU ; Lemma 5 in [11] asserts the converse, but this is false, as the following
simple example shows:

Example 4.4 Consider F := {⊥, {v}, {v}} and F ′ := {{v}, {v}}; we have F ′ ∈
MU and var(F ′) = var(F ), but F /∈ VMU , since {⊥} ∈ USAT . If we don’t want
to use the empty clause, then we can consider any F ′ ∈ MU with v ∈ var(F ′) and
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{{v}, {v}} ∩ F ′ = ∅, and let F := F ′ ·∪{{v}, {v}} — again we have F ′ ∈ MU and
var(F ′) = var(F ), but F /∈ VMU.

The corrected version of Lemma 5 from [11] is as follows:

Lemma 4.5 For F ∈ CLS let UF be the set of F ′ ⊆ F with var(F ′) = var(F ),
δ(F ′) ≥ 1, and F ′ ∈ USAT . Then F ∈ VMU if and only if F ∈ UF and all
minimal elements of UF w.r.t. the subset-relation are minimally unsatisfiable.

Proof: The condition is necessary, since if F ∈ VMU , then on the one hand we
have F ∈ LEAN \ {⊤}, and thus δ(F ) ≥ 1 by [50] (or use Lemma 3 in [11]); and
on the other hand if there would be a minimal element F ′ ∈ UF which wouldn’t
be minimally unsatisfiable, then there would be some F ′′ ⊂ F ′ with F ′′ ∈ MU ,
whence by definition of UF we get var(F ′′) ⊂ var(F ) contradicting F ∈ VMU .

For the other direction assume, that we have UF as specified, and we have to
show F ∈ VMU . Since F ∈ UF , we have F ∈ USAT . Consider now some F ′ ⊆ F
with F ′ ∈ USAT , and assume var(F ′) ⊂ var(F ). Consider some minimal F ′′ ∈ UF

(regarding inclusion) with F ′ ⊂ F ′′ ⊆ F . Furthermore consider a minimal element
G ∈ UF with G ⊆ F ′′; by assumption G ∈ MU , and since F ′ ⊂ F ′′, we have
G ⊂ F ′′. If for C ∈ F ′′ we had var(F ′′ \ {C}) ⊂ var(F ′′), then there would be
x ∈ C such that x or x is pure in F ′′, thus also pure in G, whence C /∈ G (since
G ∈ MU), contradicting var(G) = var(F ). Now choose some C ∈ F ′′ \ F ′ (we
have var(F ′′ \ {C}) = var(F ′′)); by minimality of F ′′ we now have δ(F ′′ \ {C}) ≤ 0
(otherwise all conditions for UF are fulfilled for F ′′ \ {C}), whence δ(F ′′) = 1.
But then due to var(F ′′) = var(G) and G ⊂ F ′′ it follows δ(G) ≤ 0, contradicting
G ∈ MU . �

The following examples show applications of Lemma 4.5:

Example 4.6 Consider the two (non-)examples from Example 4.4:

1. For F = {⊥, {v}, {v}} we have the minimal element {⊥, {v}} of UF which is
not minimally unsatisfiable.

2. For F = F ′ ·∪{{v}, {v}} (note that from the assumptions follows var(F ′) ⊃
{v}) consider a minimal F ′′ ⊆ F ′ with var(G) = var(F ) and δ(G) ≥ 1 for
G := F ′′ ·∪{{v}, {v}} (note ⊤ ⊂ F ′′ ⊂ F ): now G is a minimal element of
UF which is not minimally unsatisfiable.

Based on Lemma 5 in [11], also the proof of Theorem 3 in [11] is false (the
procedure goes astray on the clause-sets of Example 4.4). Fortunately we can give
a simple proof of the assertion, which even shows fixed-parameter tractability (fpt)
of the decision problem “F ∈ VMUδ=k ?” in the parameter k:

Theorem 4.7 Membership “F ∈ VMUδ=k ?” for input F ∈ CLS is fpt in the
parameter k ∈ Z.

Proof: If F /∈ MLEAN , then F /∈ VMU (by Lemma 4.3). So we can assume now
F ∈ MLEAN , and thus we have δ(F ′) < δ(F ) for all F ′ ⊂ F . Now the decisions
of Lemma 4.1, as discussed in Example 2.18, are fpt in k. �
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5 Eliminating and creating singularity

In this section we continue the study of the handling of singular variables in min-
imal unsatisfiable clause-sets, as initiated in [64, 65]. In Section 5.1 we study the
reduction process, eliminating singular variables. A main insight is Lemma 5.4,
showing that the elimination is harmless concerning the minimum variable degree.
In Subsection 5.2 we introduce the inverse elimination (“extension”); the main point
here is the precise statement of the various conditions. Finally in Subsection 5.3 we
consider a special case of singularity, namely unit-clauses.

5.1 Singular DP-reduction

In [65] (Section 3) the process of “singular DP-reduction” has been studied for
minimally unsatisfiable clause-sets. By it we can reduce the case of arbitrary
F ∈ MU to (non-singular) F ′ ∈ MU ′ (that is, for every v ∈ var(F ′) we have
ldF ′(v), ldF ′(v) ≥ 2). The definition is as follows (see Definition 8 in [65]):

Definition 5.1 ([65]) The relation F
sDP
−−→ F ′ (singular DP-reduction) holds for

clause-sets F, F ′ ∈ CLS, if there is a singular variable v in F , such that F ′ is ob-
tained from F by DP-reduction on v, that is, F ′ = DPv(F ). The reflexive-transitive

closure of this relation is denoted by F
sDP
−−→∗ F ′.

By sDP(F ) ⊂ MU for F ∈ MU the set of non-singular F ′ ∈ MU with F
sDP
−−→∗ F

′

is denoted. For us the main property of sDP(F ) is that it is not empty. In [65] it is
shown that for S ∈ SMU we have |sDP(F )| = 1, and that for arbitrary F ∈ MU
and F ′, F ′′ ∈ sDP(F ) we have n(F ′) = n(F ′′).

Example 5.2 In [65] the following is shown for F ∈ MU :

1. For δ(F ) = 1 we have sDP(F ) = {⊥}.

2. For δ(F ) = 2 all elements of sDP(F ) are isomorphic.

3. For δ(F ) ≥ 3 in general there are non-isomorphic elements in sDP(F ).

By the results of Sections 3.1, 3.2 in [65] we have the following basic preservation
properties:

Lemma 5.3 ([65]) For F, F ′ ∈ MU with F
sDP
−−−→∗ F

′ we have:

1. δ(F ′) = δ(F ).

2. F ∈ MU ⇒ F ′ ∈ MU .

3. F ∈ SMU ⇒ F ′ ∈ SMU .

4. F ∈ UHIT ⇒ F ′ ∈ UHIT .

Although singular DP-reduction can reduce the variable-degree of some vari-
ables, it can not decrease the minimum variable-degree:

Lemma 5.4 For F, F ′ ∈ MU with F
sDP
−−−→∗ F

′ we have µvd(F ′) ≥ µvd(F ).
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Proof: It is sufficient to consider the case F ′ = DPv(F ) for a singular variable v.
Assume µvd(F ′) < µvd(F ); thus var(F ′) 6= ∅ (otherwise we have µvd(F ′) = +∞),
and we consider w ∈ var(F ′) with vdF ′(w) = µvd(F ′). So we have vdF ′(w) <
vdF (w), and thus by Lemma 24 in [65], for all clauses C ∈ F with v ∈ var(C) we
have w ∈ var(C). But then µvd(F ′) = vdF ′(w) ≥ vdF (v) ≥ µvd(F ) > µvd(F ′), a
contradiction. �

Thus in order to determine the minimum variable-degree for minimally unsatis-
fiable clause-sets in dependency on the deficiency, w.l.o.g. one can restrict attention
to saturated and non-singular instances:

Corollary 5.5 For all k ∈ N holds:

1. µvd(MUδ=k) = µvd(SMU ′
δ=k).

2. µvd(UHITδ=k) = µvd(UHIT ′
δ=k).

Proof: For Part 1 we note that by Lemma 5.4 for every F ∈ MUδ=k we can find
F ′ ∈ SMU ′

δ=k with µvd(F ′) ≥ µvd(F ), and thus µvd(MUδ=k) ≤ µvd(SMU ′
δ=k),

while µvd(MUδ=k) ≥ µvd(SMU ′
δ=k) holds due to SMU ′

δ=k ⊆ MUδ=k. The same
reasoning applies for Part 2. �

See Lemma 15.9 for some conditions under which k ∈ N 7→ µvd(UHITδ=k) and
k ∈ N 7→ µvd(MUδ=k) would be computable.

5.2 Singular DP-extensions

We consider now the reverse direction of singular DP-reduction, from DPv(F ) to F ,
as a singular extension, and also generalise it to arbitrary clause-sets. This process
was mentioned in [65, Examples 15,19,54] for minimally unsatisfiable DPv(F ), called
“inverse singular DP-reduction” there:

Definition 5.6 Consider a clause-set G ∈ CLS, a variable v ∈ VA \ var(G), and
m ∈ N. A singular m-extension of G with v is a clause-set F ∈ CLS obtained
as follows (employing four choice steps):

1. m different clauses D1, . . . , Dm ∈ G are chosen.

2. A subset C ⊆
⋂m

i=1D
′
i is chosen.

3. A literal x with var(x) = v is chosen.

4. Clauses D′
i ∈ CL for i ∈ {1, . . . ,m} with (Di \ C) ⊆ D′

i ⊆ Di are chosen.

5. Let C′ := C ·∪{x}, and let D′′
i := D′

i
·∪{x} for i ∈ {1, . . . ,m}.

6. F is obtained from G by adding C′ and replacing the Di with D
′′
i :

F := (G \ {D1, . . . , Dm}) ·∪{C′, D′′
1 , . . . , D

′′
m}.

Example 5.7 Consider G := {{a, b, c}, {a, b, c}}, m := 2, and the choices C :=
{a}, x := v, and D′

1 := {b, c}, D′
2 := {a, b, c}. Then the 2-extension F of G is

F = {{v, a}, {v, b, c}, {v, a, b, c}}.

By definition we have for an m-extension F of G ∈ CLS with v the following
simple properties:

1. c(F ) = c(G) + 1, n(F ) = n(G) + 1, δ(F ) = δ(G).
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2. v is singular for F , vdF (v) = m+ 1.

3. DPv(F ) = G.

We now show that indeed the process of Definition 5.6 is precisely the inversion
of singular DP-reduction:

Lemma 5.8 Consider m ∈ N, G,F ∈ CLS and v ∈ VA. Then F is an m-extension
of G by v iff the following conditions are fulfilled:

1. v is singular for F ;

2. vdF (v) = m+ 1;

3. DPv(F ) = G, c(G) = c(F )− 1.

Proof: If F is an m-extension of G by v, then the three properties hold, as we have
already mentioned. So assume these three properties hold. Now let the m clauses
D1, . . . , Dm be the result of singular DP-reduction on v for F ; they must be pairwise
different, and all m resolutions must be possible, otherwise c(G) < c(F ) − 1. And
let C be singular occurrence of v minus the variable v. Now all properties of a
singular m-extension are easily checked. �

Singular extensions behave well regarding minimal unsatisfiability:

Lemma 5.9 Consider m ∈ N, G ∈ CLS and an m-extension F of G by v ∈ VA.
Then F ∈ MU ⇔ G ∈ MU .

Proof: This follows by Lemma 5.8 together with Lemma 9, Parts 1, 2 in [65]. �

In the situation of Lemma 5.9, regarding saturatedness we only have the direc-
tion F ∈ SMU ⇒ G ∈ SMU , while for the other direction the conditions of [65,
Lemma 12] need to be observed (this would yield “saturated extensions”, which
however we do not need here).

5.3 Unit clauses

We conclude this section by considering unit-clauses in minimally unsatisfiable
clause-sets. The following (fundamental, simple) lemma is proven in [65] (Lemma
14); there in Subsection 3.3 one finds further information on unit-clauses in mini-
mally unsatisfiable clause-sets.

Lemma 5.10 ([65]) Consider F ∈ MU .

1. If v is full and singular in F , then we have {v} ∈ F or {v} ∈ F .

2. If {x} ∈ F , then v := var(x) is singular in F (with ldF (x) = 1). If here F is
saturated, then v is also full in F .

So unit-clauses in minimally unsatisfiable clause-sets are strong cases of singular
variables. They can obviously be removed by singular DP-reduction, while singular
≥ 2-extensions can not remove all unit-clauses:

Lemma 5.11 Consider a clause-set F ∈ MU containing at least one unit-clause,
and obtain F ′ from F by a singular m-extension, where m ≥ 2. Then also F ′ must
contain at least one unit-clause.
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Proof: For a unit-clause {x} ∈ F to be removed in F ′, it needs to be one of the Di

(using the terminology of Definition 5.6). Then the intersection C must be empty
(otherwise any other Di needed to contain x, and since m ≥ 2 this would mean a
subsumption in F ). Thus the extension introduces the new unit-clause C′. �

The following examples shows that the assumptions F ∈ MU and m ≥ 2 in
Lemma 5.11 are needed:

Example 5.12 First consider F := {{a}, {a, b}, {a, b}} ∈ MU. Via a 1-singular
extension we obtain F ′ := {{v, a}, {v, a}, {a, b}, {a, b}}, which has no unit-clauses.
A 2-singular extension of F , which touches {a}, has C = ⊥, and thus C′ is a new
unit-clause. If on the other hand we consider F := {{a}, {a, b}} ∈ CLS \MU, then
F ′ := {{v, a}, {v, a}, {v, b}} is a 2-extension without unit-clauses.

For certain F ∈ MUδ=2 the existence of a unit-clause is actually necessary for
singularity:

Lemma 5.13 Consider F ∈ MUδ=2 with µvd(F ) ≥ 4. Then F is singular if and
only if F contains a unit-clause.

Proof: That if F contains a unit-clause, then F must be singular, follows by
Lemma 5.10, Part 2. So assume now that F is singular, and we have to show that

F contains a unit-clause. Consider a reduction sequence F = F0
sDP
−−→ F1

sDP
−−→

. . .
sDP
−−→ Fm, where Fm is non-singular (note m ≥ 1). So there exists n ≥ 2 such

that Fm is isomorphic to Fn (recall Example 3.3), and thus every variable of Fm

has degree 4. So by Lemma 5.4 we know µvd(Fi) = 4 for i ∈ {0, . . . ,m}. We show
by induction on m that F contains a unit-clause. If m = 1, then in order to obtain
the min-var-degree of at least 4, at least 3 side-clauses D1, . . . , D3 ∈ Fn for the
singular extension have to be chosen (using Definition 5.6), but every literal occurs
precisely twice in Fn (because of variable-degree 4 and non-singularity), and thus
the intersection C has to be empty, and the new clause introduced by the singular
extension is a unit-clause, whence F contains a unit-clause. Finally assume m > 1.
So by induction hypothesis, F1 contains a unit-clause, and thus by Lemma 5.11 also
F0 contains a unit-clause. �

We will later see (Theorem 8.3) that the condition µvd(F ) ≥ 4 in Lemma 5.13
is equivalent to µvd(F ) = 4; the following examples show that this condition can
not be improved:

Example 5.14 A 1-singular extension of A2 is

F1 := {{1, 2, 3}, {1, 2,−3}, {−1, 2}, {1,−2}, {−1,−2}} ∈ MUδ=2,

where F1 is singular, has no unit-clause, and µvd(F1) = 2. While a 2-singular
extension of A2 is

F2 := {{1, 3}, {1, 2,−3}, {1,−2,−3}, {−1, 2}, {−1,−2}} ∈ MUδ=2,

where F2 is singular, has no unit-clause, and µvd(F2) = 3.

We conclude with a simple form of adding a new variable, by adding it in one
sign as unit-clause, and adding it in the other sign to all given clauses:

Definition 5.15 A full singular unit-extension of a clause-set F ∈ CLS (by
unit-clause {x}) is a clause-set F ′ ∈ CLS obtained from F by adding a unit-clause
{x} with var(x) /∈ var(F ), and by adding literal x to all clauses of F , i.e., F ′ :=
{{x}} ·∪{C ·∪{x} : C ∈ F} for some x ∈ LIT \ lit(F ).
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A full singular unit-extension F ′ of F by {x} is a case of a singular c(F )-extension

of F with var(x), and thus F ′ sDP
−−→ F .12)

Example 5.16 Starting from {⊥}, the (up to the choice of the new literal) first full
singular unit-extension is {{v}, {v}}, the second one is {{w}, {v, w}, {v, w}}. In this
way we get special examples of SMUδ=1 (since we started with {⊥} ∈ SMUδ=1).

If we start with ⊤ instead, then first we get {{v}}, and then {{w}, {v, w}}.
Example 15, Part 1, in [65] contains two example of “inverse unit elimination”,

where Example (a) there is an example of a full singular unit-extension, while Ex-
ample (b) there would be a non-full singular unit-extension (where the new variable
is not full; not used in this report). There is the dual notion of a “full variable”
for a clause-set F , which is some element of

⋂

C∈F var(C), which explains why we
speak of a “full extension” (namely the new variable is full).

The process of full singular unit-extension of a clause-set F maintains many
properties of F , and we list here those we use:

Lemma 5.17 Consider a full singular unit-extension F ′ of F (by {v}):

1. n(F ′) = n(F ) + 1 and c(F ′) = c(F ) + 1.

2. δ(F ′) = δ(F ).

3. σ(F ′) = σ(F ) for F 6= {⊥}.

4. µvd(F ′) = µvd(F ) for n(F ) > 0.

5. F ′ is satisfiable iff F is satisfiable.

6. For F 6= ⊤: F ′ is lean iff F is lean.

7. F ′ is (saturated) minimally unsatisfiable iff F is (saturated) minimally unsat-
isfiable.

8. F ′ is hitting iff F is hitting.

Proof: Parts 1, 2 follow directly by definition. For Part 3 we notice that for F = ⊤
we have σ(F ′) = σ(F ) = 0, while for n(F ) > 0 consider ∅ ⊂ V ⊆ var(F ′): if v /∈ V ,
then F ′[V ] = F [V ], and thus the minimisation for σ(F ) is included in σ(F ′), and
if v ∈ V , then δ(F ′[V ]) = c(F ′)− |V | ≥ δ(F ′) = δ(F ) ≥ σ(F ), and thus these V do
not contribute to the minimisation.

For Part 4 we just note that the variables of F keep their degrees in F ′, while the
new variable has degree vdF ′(v) = c(F ′) > c(F ), and thus does not contribute to
the min-var degree. Part 5 is trivial, and follows also by the satisfiability-equivalence
of DPv(F ) and F . For Part 6 we note, that an autarky for F ′ involving v must
be a satisfying assignment for F ′, while the autarkies for F ′ not involving v are
the same as the autarkies for F . Part 7 concerning (just) minimal unsatisfiability
follows with Lemma 9 in [65], while regarding saturatedness we can use Lemma 12
in [65] (both assertions also follow easily by direct reasoning). Part 8 is trivial. �

So our fundamental classes are respected by full singular unit-extension:

Corollary 5.18 If F ∈ MUδ=k (k ∈ N), then every full singular unit-extension is
also in MUδ=k. If furthermore F is saturated resp. hitting, then every full singular
unit-extension is also saturated resp. hitting.

12)The case m = 0 is excluded in Definition 5.6, since it is not needed, and would only complicate
the formulation.
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Obviously, full singular unit-extension is unique up to isomorphism:

Lemma 5.19 Consider a clause-set F ∈ CLS and clause-sets F ′, F ′′ ∈ CLS ob-
tained from F by repeated full singular unit-extensions. Then F ′, F ′′ are isomorphic
if and only if n(F ′) = n(F ′′).

Proof: The number of repeated full singular unit-extensions leading to F ′ resp.
F ′′ is the number of variables in these clause-sets with degree strictly greater than
c(F ), and sorting these variables by increasing degree yields the sequence of exten-
sions. Thus just from knowing the number of variables in F ′, F ′′ we can reconstruct
them up to isomorphism (using that a full singular unit-extension of F by {x} is
isomorphic to one by {y}, for arbitrary literals x, y with new variables). �

6 Full subsumption resolution / extension

In this section we investigate the second reduction concept for this report, “full sub-
sumption resolution”. As with singular DP-reduction from Section 5, in general the
reduction uncovers hidden structure, while the inverse process, “full subsumption
extension”, serves as a generator for minimally unsatisfiable clause-sets with various
properties. However in this report, unlike with singular DP-reduction, we will not
consider full subsumption resolution for arbitrary F ∈ MU , but only starting from
some A(V ), while a deeper use will be important in [67]. Subsection 6.1 discusses
the basic definitions (there are various technicalities one needs to be aware of), and
first applications are given in Subsection 6.2.

The basic idea is, for a clause-set F containing two clauses R ·∪{v}, R ·∪{v} ∈ F ,
to replace these two clauses by the clause R, i.e., we consider the case where the
resolvent R of parent clauses C,D subsumes both parent clauses (thus the name).
This is a very old procedure, based on the trivial observation that (R ∨ v) ∧ (R ∨ ¬v)
is logically equivalent to R. If we perform this in the inverse direction, as an “ex-
tension”, then every clause-set F ∈ CLS can be transformed into its “distinguished
CNF” F ′ ⊆ A(var(F )) (just expand every non-full clause), which is uniquely deter-
mined. We however have to be more careful about deficiency and membership in
MU , and thus will consider only “full subsumption resolution”, where the resolvent
must not be present already, while for the “strict” form additionally the resolution
variable v must occur also in other clauses. Then from A(V ) by strict full subsump-
tion resolution we can obtain precisely the F ∈ UHIT with var(F ) = V (Lemma
6.9). For the inverse forms, we have to be even more carefully, making sure that
neither any of the two parent clauses is already present (this prevents the above
expansion of arbitrary F ∈ CLS to A(var(F ))).

The (more general) well-known “subsumption resolution” is the reduction F ❀

(F \ {C}) ∪ {C \ {x}} for F ∈ CLS, that is the removal of a literal x ∈ C from a
clause C ∈ F , in case there exists D ∈ F with x ∈ D and D \ {x} ⊆ C (note that
C ⋄D = C \{x} subsumes C). An early use is in [85] (under the name “replacement
principle”), while the terminology “subsumption resolution” is used in [29] (for
SAT solving). The earliest sources with a systematic treatment appear to be [59,
Section 7] and [60, Section 7]. An experimental study of the practical importance
of subsumption resolution in connection with DP-reductions F ❀ DPv(F ) (under
suitable additional conditions to make DP-reduction feasible; see Subsection 1.3 in
[65] for an overview on such restrictions) is performed in [20] (under the name of
“self-subsuming resolution”), continued in [37]. A theoretic (similar) use one finds
in [79, Section 4], where a variable v is called “DP-simplicial” for F ∈ CLS iff all
resolutions performed by the reduction F ❀ DPv(F ) are subsumption resolutions.
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Our special form, where both parent clauses are subsumed we call full sub-
sumption resolution, namely the reduction F ❀ (F \ {C,D}) ·∪{C ⋄D} in case of
C,D ∈ F such that C ∩ D = {x} and C \ {x} = D \ {x}. A main tool is Lemma
6.5, where especially Part 6 is somewhat subtle, and can be easily overlooked. Via
this tool we have a controlled way of transforming F ∈ MU resp. F ∈ UHIT
into A(var(F )), and in Theorem 6.13 this yields the determination of the possible
numbers of variables and clauses in minimally unsatisfiable clause-sets of a given
deficiency.

6.1 Basic definitions

Before defining “full subsumption reduction” F ❀ (F \ {R ·∪{v}, R ·∪{v}}) ·∪{R}
in Definition 6.7 (so R is new and the two clauses R ·∪{v}, R ·∪{v} vanish), we
introduce the “strict” form, which is more important to us, and which has the
additional condition that v must still occur (in other clauses of F ; the “non-strict”
form on the other hand guarantees that v vanishes (see Definition 6.7)):

Definition 6.1 For clause-sets F, F ′ ∈ CLS by F
sfsR
−−→ F ′ we denote that F ′ is

obtained from F by one step of strict full subsumption resolution, that is,

• there is a clause R ∈ F ′

• and a literal x with var(x) /∈ R

• such that for the clauses C := R ·∪{x} and D := R ·∪{x}

• we have F = (F ′ \ {R}) ·∪{C,D};

• we furthermore require var(x) ∈ var(F ′).

• As usual, the literals x, x are the resolution literals, var(x) is the resolution
variable, C,D are the parent clauses, and R is the resolvent.

We write F
sfsR
−−−→k F

′ for k ∈ N0 if exactly k steps have been performed, while we

write F
sfsR
−−−→∗ F

′ for an arbitrary number of steps (including zero).

We requireR /∈ F , that is, the (full subsumption) resolvent is not already present
in the original clause-set. This is of course satisfied if F ∈ MU . We also require
that the variable v does not vanish, for the sake of keeping control on the deficiency.

Example 6.2 Some simple examples are:

1. F2 = {{1, 2}, {−1,−2}, {−1, 2}, {−2, 1}}
sfsR
−−−→ {{2}, {−1,−2}, {−2, 1}}, and

no further reduction is possible (note that the only possibility is blocked, since
variable 1 would vanish).

2. {{v}, {v}} 6
sfsR
−−−→ {⊥}, as v vanishes, while {{v}, {v}, {v, x}}

sfsR
−−−→ {⊥, {v, x}}.

3. {{v, w}, {v, w}, {v, w}} 6
sfsR
−−−→ {{v, w}, {{w}, {v, w}}}, as one parent clause is

kept, while {{v, w}, {v, w}, {v, w}}
sfsR
−−−→ {{{w}, {v, w}}}.

4. {{v, w}, {v, w}, {v, w}, {v}, {w}} can not be reduced by strict-full-subsumption
resolution, since all possible resolvents are already there.

The expansion of a clause R to two clauses R ·∪{v}, R ·∪{v} under the above
requirements is called “extension”:
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Definition 6.3 For clause-sets F, F ′ ∈ CLS we say that F is obtained from F ′

by strict full subsumption extension if F
sfsR
−−−→ F ′. And for k ∈ N0 we say that

F is obtained from F ′ by strict full subsumption extension with k steps

if F
sfsR
−−−→k F

′.

So one step of strict full subsumption extension for a clause-set F uses a non-full
clause R ∈ F and a variable v ∈ var(F ) \ var(R), and replaces R by the two clauses
R ·∪{v}, R ·∪{v}, where none of them is already present.

Example 6.4 From {{a}, {b}} by one step of strict full subsumption extension we
can obtain {{a, b}, {a, b}, {b}} or {{a}, {a, b}, {a, b}}; note that no new variable has
been introduced, that the original clause ({a} resp. {b}) vanished, and that its re-
placement clauses were not already present. For {{a, b}, {a}} no strict full subsump-
tion extension is possible. Further examples are obtained by “reading Example 6.2
backwards”.

The basic properties of strict full subsumption resolution are collected in the
following lemma.

Lemma 6.5 For clause-sets F, F ′ ∈ CLS with F
sfsR
−−−→k F

′ (k ∈ N0, with resolution
variable v and resolvent R) we have:

1. F ′ is logically equivalent to F .

2. var(F ′) = var(F ).

3. c(F ′) = c(F )− k, δ(F ′) = δ(F )− k.

4. µvd(F ) ≥ µvd(F ′).

5. F ∈ MU ⇒ F ′ ∈ MU .

6. If k = 1 and F ′ ∈ MU, then exactly one of the following three possibilities
holds:

(a) S(F ′, R, v) is a partial saturation of F ′ (recall Definition 3.6).

(b) S(F ′, R, v) is a partial saturation of F ′.

(c) F ∈ MU.

7. F ∈ SMU ⇒ F ′ ∈ SMU .

8. F ∈ HIT ⇔ F ′ ∈ HIT .

Proof: Parts 1, 2, 3, 4 follow directly from the definition. Parts 5, 7 hold since we
strengthen two clauses into one, which on the other hand is logically equivalent to
its parent clauses. Part 8 follows by trivial combinatorics.

Now consider Part 6. That the two possibilities for partial saturation exclude
each other follows by Lemma 3.8 (and F ′ \ {R} 6|= R). And that each possibility
for partial saturation excludes F ∈ MU follows by definition. Finally, that the
negation of the two partial saturation possibilities implies F ∈ MU follows again
by Lemma 3.8. �

Part 6 of Lemma 6.5 handles a subtle source for errors: One could easily think
that for F ′ ∈ MU a strict full subsumption extension yields another F ∈ MU , but
this is not so, as there are three possible cases to be considered here, illustrated by
the following examples:
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Example 6.6 Consider F := {{v, a}, {v, a}, {v}, {v, a}}. So F
sfsR
−−−→1 F

′ for F ′ :=
{{a}, {v}, {v, a}}. We have F ′ ∈ MU , but F /∈ MU , and indeed S(F ′, R, v) =
{{a, v}, {v}, {v, a}} is a partial saturation of F ′ (while S(F ′, R, v) isn’t one).

The condition on the resolution variable for strict full subsumption resolution
(that it must not vanish) is exactly needed for Parts 2, 3 of Lemma 6.5. If this
condition is dropped, then we speak of full subsumption resolution:

Definition 6.7 full subsumption resolution is defined as strict full subsump-
tion resolution, but now the resolution variable is allowed to vanish. If the resolution
variable definitely vanishes, then we speak of if non-strict full subsumption res-
olution. In the other direction we speak of full subsumption extension resp.
non-strict full subsumption extension.

So if F ′ is obtained from F by one step of non-strict full subsumption extension,
then we have c(F ′) = c(F ) + 1, n(F ′) = n(F ) + 1 and δ(F ′) = δ(F ).

Example 6.8 Considering the non-examples from Example 6.2:

1. {{v}, {v}} 6
sfsR
−−−→ {⊥}, but by full subsumption resolution we obtain {⊥}.

2. {{v, w}, {v, w}, {v, w}} 6
sfsR
−−−→ {{v, w}, {{w}, {v, w}}}, and the transition is

also not possible by full subsumption resolution.

3. {{v, w}, {v, w}, {v, w}, {v}, {w}} is irreducible by full subsumption resolution.

As follows from the characterisation of SMUδ=1 = UHITδ=1 in [49], a clause-set
F ∈ CLS can be reduced by a series of non-strict full subsumption resolutions to
{⊥} iff F ∈ SMUδ=1 = UHITδ=1.

6.2 Extensions to full clause-sets

If we start with the full clause-sets A(V ), then by strict full subsumption resolution
we obtain exactly all unsatisfiable hitting clause-sets:

Lemma 6.9 If for some finite V ⊂ VA we have A(V )
sfsR
−−−→∗ F , then F ∈ UHIT

holds. And for F ∈ UHIT we have A(var(F ))
sfsR
−−−→∗ F .

Proof: The first part follows by Lemma 6.5, Part 8 (and A(V ) ∈ UHIT ). And
for the second part note, that if F ∈ UHIT has a non-full clause, then an strict
full subsumption extension step can be applied, where the result is still in UHIT
(again by Lemma 6.5, Part 8; if F has only full clauses, then F = A(var(F ))). �

Recall that in Example 6.6 we have seen, that strict full subsumption extension
does not maintain minimal unsatisfiability in general. But from arbitrary mini-
mally unsatisfiable F we can obtain A(var(F )), when we additionally allow partial
saturation:

Lemma 6.10 For F ∈ MU we can obtain A(var(F )) from F by a series of strict
full subsumption extensions in combination with partial saturations.

Proof: If F ∈ MU has a non-full clause, and if strict full subsumption extension
can not be applied in order to obtain F ′ ∈ MU , then by Lemma 6.5, Part 6, a
partial saturation is possible. �

We obtain sharp upper bounds on deficiency and number of clauses in terms of
the number of variables:
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Corollary 6.11 For F ∈ MU holds:

1. δ(F ) ≤ 2n(F ) − n(F ).

2. c(F ) ≤ 2n(F ).

In both cases we have equality iff F is full (i.e., F = A(var(F ))).

Proof: For Part 1 note that by Lemma 6.10 we can transform F into A(var(F )) by
a series of steps not decreasing the deficiency. Thus δ(F ) ≤ δ(A(var(F ))) = 2n(F )−
n(F ). For Part 2 note c(F ) = δ(F )+n(F ) ≤ 2n(F ) (by Part 1). For F = A(var(F ))
these inequalities are indeed equalities. If we had δ(F ) = 2n(F )−n(F ) for some non-
full F , then some strict full subsumption extension must be possible, contradicting
the upper bound of Part 1. And if we have c(F ) ≤ 2n(F ) for some non-full F , then
again some strict full subsumption extension must be possible, contradicting the
upper bound of Part 2. �

We explicitly state the instructive reformulation, that the An are the minimally
unsatisfiable clause-sets of maximal deficiency for given number n of variables:

Corollary 6.12 Consider m ∈ N0 and F ∈ MUn=m such that δ(F ) is maximal.13)

Then F = A(var(F )). Thus the maximal deficiency for F ∈ MUn=m is 2m − m
(realised by Am ∈ MUn=m ∩MUδ=2m−m).

So form = 0, 1, 2, 3, 4, 5, 6 variables the maximal deficiency of minimally unsatis-
fiable clause-sets is 1, 1, 2, 5, 12, 27, 58; in general the deficiencies of the form 2m−m
are central for our investigations (note that the function m ∈ N0 7→ 2m −m ∈ N is
monotonically increasing). We are now able to determine the numbers of variables
and numbers of clauses possible for minimally unsatisfiable clause-sets with a given
deficiency:

Theorem 6.13 For k ∈ N let o(k) ∈ N0 be the smallest n ∈ N0 with 2n − n ≥ k.

1. {n(F ) : F ∈ MUδ=k} = {n ∈ N0 : n ≥ o(k)}.

2. {c(F ) : F ∈ MUδ=k} = {n ∈ N : n ≥ o(k) + k}.

Proof: Part 2 follows by Part 1, so it remains to show Part 1. By Corollary
6.11 we see that the left-hand side is a subset of the right-hand side. To show the
other direction, we first note that increasing the number of variables by keeping the
deficiency constant is achieved by one non-strict full subsumption extension step.
It remains to show the existence of F ∈ MUδ=k with n(F ) = o(k). For k = 1
we have F = {⊥}, so assume k > 1. Let F0 := A(o(k) − 1) (so δ(F0) = k − 1;
note o(k) − 1 ≥ 1). Add a variable by one step of non-strict full subsumption
extension, obtaining F1 ∈ MUδ=k−1 with one new variable, and then take a clause
in F1 without that new variable and perform one step of strict full subsumption
extension (on that new variable), obtaining F2 with n(F2) = n(F1) = o(k) and
δ(F2) = δ(F1) + 1 = k. �

o(k) for k ≥ 1 by definition is the smallest n ≥ 0 with δ(An) ≥ k, and by
Theorem 6.13 it is the smallest n ≥ 0 such that there is F ∈ MUδ=k with n(F ) = n.
We have o(1) = 0, o(2) = 2, o(3) = · · · = o(5) = 3, o(6) = · · · = o(12) = 4
and o(13) = · · · = o(27) = 5. Except for the first term, the sequence (o(k))k∈N

is sequence http://oeis.org/A103586 in the “On-Line Encyclopedia of Integer
Sequences”.

13)That is, F ∈ MU , n(F ) = m, and for all F ′ ∈ MU with n(F ′) = m we have δ(F ′) ≤ δ(F ).
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7 Non-Mersenne numbers

In this section we study the function nM : N → N via a recursive definition (Defini-
tion 7.1; see Table 1). The understanding of this recursion is the underlying topic
of this section. This recursion is naturally obtained from splitting on variables
with minimum occurrence in minimally unsatisfiable clause-sets, and will be used
in Theorem 8.3 later. The sequence nM is sequence http://oeis.org/A062289 in
the “On-Line Encyclopedia of Integer Sequences”:

• It can be defined as the enumeration of those natural numbers containing “10”
in their binary representation; in other words, exactly the numbers whose
binary representation contains only 1’s are skipped.

• Thus the sequence leaves out exactly the number of the form 2n− 1 for n ∈ N

(that is, 1, 3, 7, 15, 31, . . . ), whence the name.

• The sequence consists of arithmetic progressions of slope 1 and length 2m− 1,
m = 1, 2, . . . , each such progression separated by an additional step of +1.

k 1 2 3 4 5 · · · 11 12 · · · 26 27 · · · 57 58
nM(k) 2 4 5 6 8 · · · 14 16 · · · 30 32 · · · 62 64

Table 1: Values for nM(k), k ∈ {1, . . . , 58}

The key deficiencies in Table 1 are the following two classes:

1. The k-values k = 1, 2, 5, 12, 27, 58, . . . are the deficiencies k = 2n − n of the
clause-sets An, n ∈ N, while the corresponding values nM(k) = 2k are the
minimum variable-degree of the clause-sets An (see Lemma 2.13), as explained
in Subsection 1.3.

2. The k-values 1, 4, 11, 26, 57, . . . are the positions just before these deficiencies,
as also discussed in Subsection 1.3; we call them “jump positions”, since
precisely at these positions the function value increases by 2 for the next
argument (compare Definition 7.12).

The recursion in Definition 7.1 is new, and so we can not use these character-
isations, but must directly prove the basic properties; the deficiencies k = 2n − n
will be handled in Corollary 7.23, while the jump positions are handled in Lemma
7.20. Later we will obtain two further alternative characterisations of nM:

• Combinatorial characterisations are obtained in Corollary 9.13, where we will
see that nM(k) for k ∈ N is the maximal min-var-degree for lean clause-sets
or variable-minimal unsatisfiable clause-sets with deficiency k.

• In Subsection 13.2 we will develop a general recursion scheme, which has the
function nM “built-in”, as shown in Theorem 13.15.

Definition 7.1 For k ∈ N let nM(k) := 2 if k = 1, while else

nM(k) := max
i∈{2,...,k}

min(2 · i, nM(k − i+ 1) + i).

The intuition underlying Definition 7.1 of nM(k), as later unfolded in Theorem 8.3,
is that we want to get an upper bound on the min-var-degree of an F ∈ MUδ=k

(recall Definition 2.11), and for that we consider a variable v ∈ var(F ) of minimum
var-degree, set it to 0, 1, and infer an upper bound on vdF (v) from the two splitting
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results. The index i runs over the possible literal-degrees of v (thus we have to
maximise over it), where i actually is the maximum degree over both signs, and
thus we can take the minimum with i+ i for the var-degree. In the splitting results
〈v → ε〉 ∗ F (ε ∈ {0, 1}) the deficiency is reduced by i − 1, since i occurrences
(i.e., clauses) and one variable are lost, and we apply recursively the lower bound
nM(k − (i− 1)), where then the i cancelled occurrences have to be re-added.

Example 7.2 Computing nM(k) for 2 ≤ k ≤ 5:

1. nM(2) = min(2 · 2, nM(2 − 2 + 1) + 2) = min(4, 4) = 4.

2. nM(3) = max(min(2 · 2, nM(3 − 2 + 1) + 2),min(2 · 3, nM(3 − 3 + 1) + 3)) =
max(min(4, 6),min(6, 5)) = 5.

3. nM(4) = max(min(2 ·2, nM(4−2+1)+2),min(2 ·3, nM(4−3+1)+3),min(2 ·
4, nM(4− 4 + 1) + 4)) = max(min(4, 7),min(6, 7),min(8, 6)) = 6.

4. nM(5) = max(min(2 ·2, nM(5−2+1)+2),min(2 ·3, nM(5−3+1)+3),min(2 ·
4, nM(5− 4+1)+4),min(2 · 5, nM(5− 5+1)+5) = max(min(4, 8),min(6, 8),
min(8, 8),min(10, 7)) = 8.

7.1 Basic properties

We begin our investigations into nM(k) by some simple bounds:

Lemma 7.3 Consider k ∈ N.

1. k + 1 ≤ nM(k) ≤ 2 · k for k ∈ N.

2. For k ≥ 2 we have nM(k) ≥ 4.

Proof: The upper bound of Part 1 follows directly from the definition (by the min-
component 2i). The lower bounds follows by induction: nM(1) = 2 ≥ 1 + 1, while
for k > 1 we have nM(k) ≥ min(2k, nM(k − k + 1) + k) = min(2k, 2 + k) = k + 2.
Part 1 follows by Part 1 and nM(2) = 4. �

A basic tool for investigating sequences is the Delta-operator, which measures
the differences in values between to neighbouring arguments:

Definition 7.4 For a sequence a : N → R and k ∈ N let ∆a(k) := a(k+1)− a(k)
be the step in the value of the sequence from k to k + 1.

A few obvious properties of this Delta-operator are as follows:

1. ∆ : RN → RN is linear: ∆(λ · a+ µ · b) = λ ·∆(a) + µ ·∆(b).

2. a ∈ RN is constant iff ∆a = (0).

3. a is increasing iff ∆a ≥ 0, while a is strictly increasing iff ∆a > 0. Here for
sequences a, b : RN → RN of real numbers we use a ≤ b :⇔ ∀n ∈ N : an ≤ bn,
and a < b :⇔ ∀n ∈ N : an < bn.

The first key insight is, that the next number in the sequence of non-Mersenne
numbers is obtained by adding 1 or 2 to the previous number:

Lemma 7.5 For k ∈ N holds ∆nM(k) ∈ {1, 2}.
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Proof: For k = 1 we get ∆nM(1) = 2. Now consider k ≥ 2. We have

nM(k + 1) = max(min(4, nM(k) + 2), max
i∈{3,...,k+1}

min(2i, nM(k − i+ 2) + i)) =

max
i∈{3,...,k+1}

min(2i, nM(k − i+ 2) + i) =

max
i∈{2,...,k}

min(2(i+ 1), nM(k − (i + 1) + 2) + (i+ 1)) =

max
i∈{2,...,k}

min(2i+2, nM(k−i+1)+i+1) = 1+ max
i∈{2,...,k}

min(2i+1, nM(k−i+1)+i).

Thus on the one hand we have nM(k + 1) ≥ 1 + maxi∈{2,...,k} min(2i, nM(k − i +
1)+ i) = 1+nM(k), and on the other hand nM(k+1) ≤ 1+maxi∈{2,...,k} min(2i+
1, nM(k − i+ 1) + i+ 1) = 2 + nM(k). �

Thus increasing the deficiency k by one increases nM(k) at least by one:

Corollary 7.6 nM : N → N is strictly increasing.

And changing nM(a+ b) to nM(a) + b can not increase the value:

Corollary 7.7 We have nM(a + b) ≥ nM(a) + b for a ∈ N and b ∈ N0, and thus
nM(a− b) ≤ nM(a)− b for b < a.

Proof: We have nM(a+ b)− nM(a) =
∑b−1

i=0 ∆nM(a+ i) ≥ b · 1, whence the first
inequality. Applying it yields nM(a− b) + b ≤ nM(a− b+ b) = nM(a). �

Instead of considering the maximum over k − 1 cases i ∈ {2, . . . , k} to compute
nM(k) (according to Definition 7.1), we can now simplify the recursion to only one
case inM(k) ∈ {2, . . . , k}, and for that case also consideration of the minimum is
dispensable. inM(k) is the first index i in Definition 7.1, where the minimum is
attained by the nM-term, that is, where 2i ≥ nM(k − i+ 1) + i:

Definition 7.8 For k ∈ N, k ≥ 2, let inM(k) ∈ N be the smallest i ∈ {2, . . . , k}
with i ≥ nM(k − i + 1) (note that k ≥ nM(k − k + 1) = 2, and thus inM(k) is
well-defined).

Example 7.9 We have

1. inM(2) = 2.

2. inM(3) = 3, since nM(3− 2 + 1) = 4, nM(3 − 3 + 1) = 2.

3. inM(4) = 4, since nM(4− 3 + 1) = 4, nM(4 − 4 + 1) = 2.

4. inM(5) = 4, since nM(5− 3 + 1) = 5, nM(5 − 4 + 1) = 4.

5. inM(6) = 5, since nM(6− 4 + 1) = 5, nM(6 − 5 + 1) = 4.

As promised, from inM(k) we can compute nM(k) by one recursive call of nM:

Lemma 7.10 For k ∈ N, k ≥ 2, we have:

1. 0 ≤ inM(k)− nM(k − inM(k) + 1) ≤ 2.

2. ∆ inM(k) ∈ {0, 1}.

3. nM(k) = nM(k − inM(k) + 1) + inM(k).
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Proof: For Part 1 we consider the sequence i 7→ fk(i) := i − nM(k − i + 1);
this sequence starts with fk(2) = 2 − nM(k − 1) ≤ 0, and finishes with fk(k) =
k − nM(1) ≥ 2, and inM(k) is the smallest i with fk(i) ≥ 0. By Lemma 7.5
we have ∆fk(i) = ∆i(i) − ∆nM(k − i + 1)(i) ∈ {1 + 1, 1 + 2} = {2, 3}. So for
inM(k)−nM(k−inM(k)+1) = fk(inM(k)) by definition we have fk(inM(k)) ≥ 0, while
fk(inM(k)) ≤ 2 due to ∆fk(inM(k)) ≤ 3 (otherwise inM(k) wouldn’t be minimal).

For Part 2 we consider the sequence k 7→ gi(k) := i − nM(k − i + 1). Again
by Lemma 7.5 we get ∆gi(k) ∈ {−1,−2}. It follows immediately ∆ inM(k) ≥ 0.
Now assume ∆ inM(k) ≥ 1; thus −2 ≤ ginM(k)(k + 1) < 0, whence, as shown before,
ginM(k)+1(k + 1) ≥ −2 + 2 = 0, and thus ∆ inM(k) = 1.

For Part 3 we consider the sequence i 7→ hk(i) := nM(k − i+ 1) + i; by Lemma
7.5 we have ∆hk(i) ∈ {−1 + 1,−2 + 1} = {0,−1}. Thus, and by definition of
inM(k), we get nM(k) = max(2 ·1, . . . , 2 · (inM(k)−1), hk(inM(k))) = max(2 inM(k)−
2, hk(inM(k))). Finally hk(inM(k)) ≥ 2 inM(k)−2 ⇔ nM(k−inM(k)+1)+2 ≥ inM(k),
which holds by Part 1. �

We obtain an alternative, functional characterisation of inM(k):

Corollary 7.11 For k ∈ N, k ≥ 2 the value inM(k) ∈ {1, . . . , k} is uniquely char-
acterised by the two inequalities

inM(k) ≥ nM(k − inM(k) + 1)

inM(k) ≤ nM(k − inM(k) + 2).

Proof: As shown in the first part of the proof of Lemma 7.10, the sequence i 7→
fk(i) := i− nM(k − i+ 1) is strictly increasing. �

7.2 Characterising the jumps

After these preparations we are able to characterise the “jump positions”, which
are defined as those k where the function nM increases by 2:

Definition 7.12 Let J := {k ∈ N : ∆ nM(k) = 2} be the set of jump positions.

Thus ∆nM(k) = 1 iff k /∈ J , and by Table 1 we see J = {1, 4, 11, 26, 57, . . .}. Note
that nM(k) = 1 + k + |{k′ ∈ J : k′ < k}|. It is useful to define two auxiliary
functions:

Definition 7.13 Let i′(k) := k − inM(k) + 1 ∈ N for k ∈ N, k ≥ 2. And let
h(k) := nM(i′(k)) ∈ N for k ∈ N, k ≥ 2.

Some basic properties:

1. We have ∆i′(k) = 1−∆ inM(k).

2. Thus by Lemma 7.10, Part 2, holds ∆i′(k) ∈ {0, 1}.

3. By Lemma 7.10, Part 3, we have nM(k) = h(k) + inM(k).

4. Thus ∆h(k) = ∆nM(k)−∆ inM(k).

5. By Lemmas 7.5 and 7.10, Part 2 we get ∆h(k) ∈ {0, 1, 2}.

6. By Lemma 7.10, Part 1 we have inM(k)− h(k) ∈ {0, 1, 2}.

7. By Corollary 7.11 we have h(k) = nM(i′(k)) ≤ inM(k) ≤ nM(i′(k) + 1).
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It is instructive to consider initial values of the auxiliary functions in Table 2;
this table is constructed as follows:

• The values for nM(k) are from Table 1 (it would be possible to completely
construct the whole table row by row, but we leave this as an exercise to the
reader, once the section is completed).

• The columns i′, h duplicate the columns k, nM, but with repetitions.

• Columns i′ and inM are connected via inM +i′ = k + 1.

• Columns nM, inM and h are connected via nM = inM +h.

• The values of column inM are determined according to Corollary 7.11 by the
condition h ≤ inM ≤ h′, where h′(k) is the nM-value following h(k).

k nM ∆nM inM ∆ inM i′ ∆i′ h ∆h inM −h

1 2 2 - - - - - - -
2 4 1 2 1 1 0 2 0 0
3 5 1 3 1 1 0 2 0 1
4 6 2 4 0 1 1 2 2 2
5 8 1 4 1 2 0 4 0 0
6 9 1 5 0 2 1 4 1 1
7 10 1 5 1 3 0 5 0 0
8 11 1 6 0 3 1 5 1 1
9 12 1 6 1 4 0 6 0 0
10 13 1 7 1 4 0 6 0 1
11 14 2 8 0 4 1 6 2 2
12 16 1 8 1 5 0 8 0 0

Table 2: Values of auxiliary functions; underlined the jump positions

First we show some further simple properties of the auxiliary functions:

Lemma 7.14 Consider k ≥ 2.

1. If ∆ inM(k) = 0, then:

(a) ∆ inM(k + 1) = 1.

(b) inM(k)− h(k) ∈ {1, 2}.

(c) inM(k + 1) = h(k + 1).

2. ∆ inM(k) = 1 ⇔ ∆i′(k) = 0 ⇔ ∆h(k) = 0.

3. If ∆ inM(k) = 1, then:

(a) k /∈ J .

(b) inM(k)− h(k) ∈ {0, 1}.

Proof: For Part 1a assume ∆ inM(k + 1) = 0 (and thus ∆i′(k + 1) = 1 due to
∆i′ = 1 −∆ inM). Because of ∆h = ∆nM−∆ inM we obtain ∆h(k + 1) ≥ 1. Thus
inM(k) = inM(k+2) ≥ h(k+2) ≥ h(k+1)+1 = nM(i′(k+1))+1 = nM(i′(k)+1)+1,
contradicting inM(k) ≤ nM(i′(k) + 1). For the remainder of Part 1 note ∆h(k) =
∆nM(k) ≥ 1.

For Part 1b note inM(k) = inM(k + 1) ≥ h(k + 1) ≥ h(k) + 1.
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For Part 1c assume inM(k + 1) > h(k + 1). Thus inM(k) = inM(k + 1) ≥
h(k + 1) + 1 ≥ h(k) + 2, whence inM(k) = h(k) + 2. If we would have ∆h(k) = 2,
then inM(k) = inM(k + 1) > h(k + 1) = h(k) + 2; thus h(k + 1) = h(k) + 1. Now
inM(k) = h(k) + 2 = h(k + 1) + 1 = nM(i′(k + 1)) + 1 = nM(i′(k) + 1) + 1, a
contradiction.

Part 2 is obvious, and Part 3a follows. Finally, Part 3b follows by inM(k + 1) ≤
h(k + 1) + 2 and inM(k + 1) = inM(k) + 1, while h(k + 1) = h(k) due to Part 2,
whence inM(k) ≤ h(k) + 1. �

We obtain the main characterisation of the jump positions via the auxiliary
functions:

Theorem 7.15 For k ≥ 2 the following conditions are equivalent:

1. k ∈ J

2. ∆h(k) = 2

3. inM(k) = h(k) + 2

4. ∆ inM(k − 1) = 1 and inM(k − 1) = h(k − 1) + 1

5. ∆ inM(k−2) = ∆ inM(k−1) = 1 (yielding various equivalent forms via Lemma
7.14, Part 2).

Proof: Condition 1 implies Condition 2 due to ∆ inM(k) = 0 in case of k ∈ J by
Lemma 7.14, Part 3a. Condition 2 implies Condition 3, since ∆h(k) = 2 implies
∆ inM(k) = 0, and so by Lemma 7.14, Part 1c we have inM(k) = inM(k+1) = h(k+1),
while the assumption says h(k+1) = h(k)+2. In turn Condition 3 implies Condition
1, since by Lemma 7.14, Part 3b we get ∆ inM(k) = 0, and thus ∆nM(k) = ∆h(k),
where in case of ∆h(k) ≤ 1 we would have h(k) + 2 = inM(k) ≤ nM(i′(k) + 1) =
nM(i′(k + 1)) = h(k + 1) ≤ h(k) + 1. So now we can freely use the equivalence of
these three conditions.

Condition 3 implies Condition 4, since we have ∆ inM(k) = 0, and thus ∆ inM(k−
1) = 1 with Lemma 7.14, Part 1a, from which we furthermore get inM(k) = inM(k−
1)+1 and h(k−1) = h(k), and so inM(k−1) = inM(k)−1 = h(k)+1 = h(k−1)+1.
Condition 4 implies Condition 5, since in case of ∆ inM(k−2) = 0 we had inM(k−1) =
h(k− 1) with Lemma 7.14, Part 1c. In turn Condition 5 implies Condition 3, since
inM(k) = inM(k − 1) + 1 = inM(k − 2) + 2, while h(k) = h(k − 1) = h(k − 2), where
by definition inM(k− 2) ≥ h(k− 2) holds, whence inM(k) ≥ h(k) + 2, which implies
inM(k) = h(k) + 2. �

We understand now the shape of the four ∆-sequences:

Corollary 7.16 By definition the sequence (∆nM(k))k∈N is 1 except at the jump
positions k, where it is 2. The other three ∆-sequences are shaped as follows:

1. The sequence (∆ inM(k))k∈N,k≥2 consists of alternating 0, 1’s except the two
positions k − 2, k − 1 before a jump position k ∈ J , where we have two con-
secutive 1’s (while at the jump position we have 0).

2. The sequence (∆i′(k))k∈N,k≥2 consists of alternating 0, 1’s except two positions
before a jump position k, where we have two consecutive 0’s.

3. The sequence (∆h(k))k∈N,k≥2 consists of alternating 0, 1’s except two positions
before a jump position k, where we have two consecutive 0’s, followed by a 2
at the jump position k, which is followed by 0.
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Proof: Part 1: By Lemma 7.14, 1a we have ∆ inM(k) = 0 ⇒ ∆ inM(k + 1) = 1,
while by Theorem 7.15, Part 5 we have ∆ inM(k) = ∆ inM(k + 1) = 1 ⇒ k + 2 ∈ J ,
and by Lemma 7.14, Part 3a we have k ∈ J ⇒ ∆ inM(k) = 0.

Part 2 follows from Part 1 by ∆i′ = 1−∆ inM.
Part 3: By Lemma 7.14, Part 2 the 0′s in the sequence ∆h are precisely the 1’s

in the sequence ∆ inM, while a 0 of ∆ inM translates into a 2 precisely at the jump
positions by Theorem 7.15, Part 2. The assertion follows now by Part 1. �

Especially instructive is understanding of the i′-sequence:

Corollary 7.17 The i′-sequence (i′(k))k∈N,k≥2 consists of doublets m,m for con-
secutivem = 1, 2, . . . ,, except for k ∈ J\{1}, where we have at positions k−2, k−1, k
a triplet m,m,m. These triplet-values occur exactly when m ∈ J .

Proof: The doublet/triplet structure follows by Corollary 7.16, Part 2. Now
consider a triplet i′(k − 2) = i′(k − 1) = i′(k) = m for k ∈ J \ {1} , m ∈ N. By
definition we have ∆nM(m) = ∆h(k) (due to h(k) = h(i′(k)) = nM(m), h(k+1) =
nM(i′(k + 1)) = nM(i′(k) + 1) = nM(m + 1)). By Theorem 7.15, Part 2 we have
thus have ∆nM(m) = 2, i.e., m ∈ J . The triplets do not leave out some jump-
value in J , since for m ∈ J and for the last position k with i′(k) = m we have
∆nM(m) = ∆h(k). �

Example 7.18 We see now how we can built up the three columns k, nM, i′ of Table
2 together with an enumeration of the set J , which is built up as the set I (I is an
initial part of J , which in the limit becomes J):

1. We start with the first row k := 1, initialising the value n of nM(1) = n
to n := 2, while inM is undefined; k = 1 is the first jump position, that is,
I := {1}.

2. We go to the second row, k := k+ 1. We update n := n+ 2 and initialise the
running value of i′(k) = m to m := 1.

3. We repeat the following steps ad infinitum:

(a) If m ∈ I, then three rows are created:

i. inM(k) = n, i′(k) = m, k := k + 1, n := n+ 1

ii. inM(k) = n, i′(k) = m, k := k + 1, n := n+ 1

iii. inM(k) = n, i′(k) = m, I := I ·∪{k}, k := k + 1, n := n + 2,
m := m+ 1.

(b) If m /∈ I, then two rows are created:

i. inM(k) = n, i′(k) = m, k := k + 1, n := n+ 1

ii. inM(k) = n, i′(k) = m, k := k + 1, n := n+ 1, m := m+ 1.

Next we show that i′(k) for jump positions is the previous jump position:

Lemma 7.19 For k ∈ J , k ≥ 2, holds i′(k) = max{k′ ∈ J : k′ < k}.

Proof: We prove the assertion by induction on k (regarding the enumeration of J).
We have i′(4) = 1, and so the induction holds for k = 4, the smallest jump position
k ≥ 2. Now assume that the assertion holds for all elements of J ∩ {1, . . . , k − 1},
where k > 4, and we have to show the assertion for k. By Corollary 7.17 we know
i′(k) ∈ J , where 2 ≤ i′(k) < k. Assume there is m ∈ J with i′(k) < m < k. By
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induction hypothesis we get i′(k) ≤ i′(m) < m. However by Lemma 7.14 we get
∆i′(m) = 1, and thus i′(k) > i′(m) (since k > m). �

We obtain the promised characterisation of the jump positions:

Lemma 7.20 We have J = {2m+1 − (m+ 1)− 1 : m ∈ N}.

Proof: Let km for m ∈ N be the mth element of J ; so the assertion is km =
2m+1 − m − 2. We have k1 = 4 − 1 − 2 = 1 = min J ; in the remainder assume
m ≥ 2. We prove the assertion by induction, in parallel with inM(km) = 2m+1−2m.
For m = 2 we have k2 = 8 − 2 − 2 = 4 = min J \ {1}, while inM(4) is the smallest
i ∈ {2, 3, 4} with i ≥ nM(5 − i), which yields inM(4) = 4 = 23 − 22. Now we
consider the induction step, from m − 1 to m. The induction hypothesis yields
km−1 = 2m−m−1 and inM(km−1) = 2m−2m−1. Lemma 7.19 yields i′(km) = km−1,
from which by i′(km) = km − inM(km) + 1 follows

km = 2m −m− 2 + inM(km).

Via a telescoping series we get

inM(km) = ∆ inM(km − 1) + · · ·+∆ inM(km−1) + inM(km−1).

By Corollary 7.16, Part 1 the sequence ∆ inM(km−1), . . . ,∆ inM(km − 1) has the
form 0, 1, 0, 1, . . . , 0, 1, 1, and thus their sum has the value 1

2 (km − km−1 − 1) + 1.
So we get

inM(km) =
1

2
(km − km−1 − 1) + 1 + inM(km−1) =

1

2
(2m −m− 2 + inM(km)− 2m +m+ 1− 1) + 1 + 2m − 2m−1 =

1

2
inM(km)− 1 + 1 + 2m − 2m−1,

from which inM(km) = 2m+1− 2m follows. Finally km = 2m−m− 2+2m+1− 2m =
2m+1 −m− 2. �

7.3 Applications

Now the closed formula for nM(k) can be proven:

Theorem 7.21 For k ∈ N let fld(k) := ⌊ld(k)⌋. Then we have for k ∈ N the
equality nM(k) = k + fld(k + 1 + fld(k + 1)).

Proof: Let g(k) := fld(k+1+fld(k+1)) and f(k) := k+g(k) (so nM(k) = f(k) is
to be shown, for k ≥ 1). We have f(1) = 1+fld(2+fld(2)) = 1+fld(3) = 2 = nM(1).
We will now prove that the function g(k) changes values exactly at the transitions
k 7→ k + 1 for k ∈ J , that is, for indices k = km := 2m+1 −m − 2 (using Lemma
7.20) with m ∈ N we have ∆g(km) = 1, while otherwise we have ∆g(km) = 0, from
which the assertion follows (by the definition of J).

We have g(1) = 1 and g(2) = 2. Now consider m ∈ N and km + 1 ≤ k ≤ km+1.
We show g(k) = m + 1, which proves the claim. Note that g(k) is monotonically
increasing. Now g(k) ≥ g(km+1) = ⌊ld(2m+1−m+⌊ld(2m+1−m)⌋)⌋ = ⌊ld(2m+1−
m+m)⌋ = m+1 and g(k) ≤ g(km+1) = ⌊ld(2m+2−m−2+⌊ld(2m+2−m−2)⌋)⌋ ≤
⌊ld(2m+2 −m− 2 +m+ 1)⌋ = ⌊ld(2m+2 − 1)⌋ = m+ 1. �

As a result, we obtain very precise bounds for nM(k):
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Corollary 7.22 k + fld(k + 1) ≤ nM(k) ≤ k + 1 + fld(k) holds for k ∈ N.

Proof: The lower bound follows trivially. The upper bound holds (with equality)
for k ≤ 2, so assume k ≥ 3. We have to show g(k) = fld(k+1+fld(k+1)) ≤ 1+fld(k),
which follows from ld(k + 1+ fld(k + 1)) ≤ 1 + ld(k). Now ld(k + 1+ fld(k + 1)) ≤
ld(k + 1 + ld(k + 1)) ≤ ld(k + k) = 1 + ld(k). �

Note that (k+1+fld(k))− (k+fld(k+1)) ∈ {0, 1}, where this difference is zero
iff k + 1 is a power of 2. Finally we can prove the already mentioned characteri-
sation, which motivates the terminology of “non-Mersenne numbers”, namely that
(nM(k))n∈N enumerates N \ {2n − 1 : n ∈ N}.14) For that we consider the positions
directly after the jump positions, which by Lemma 7.20 are the positions 2n−n for
n ≥ 2. From that position on until the next jump position, which is 2n+1 − n− 2,
the nM-values increase constantly by 1 per step. So we just need to understand the
values of nM(2n − n), to understand all of nM, which is achieved as follows (note
that (2n+1 − n− 2)− (2n − n) = 2n − 2):

Corollary 7.23 Consider n ∈ N, k := 2n − n, and m ∈ N0 with m ≤ 2n − 1.

1. nM(k) = 2n.

2. More generally for m < 2n − 1 holds nM(k +m) = 2n +m.

3. For m = 2n− 1 we have k+m = 2n+1− (n+1), and thus nM(k+m) = 2n+1.

Proof: By Theorem 7.21, Part 1 follows with nM(2n − n) = 2n − n+fld(2n − n+
1 + fld(2n − n+ 1)) = 2n − n+ fld(2n − n+ 1 + (n− 1)) = 2n − n+ fld(2n) = 2n.
Part 2 follows by Lemma 7.20, and Part 3 follows by Part 1. �

Besides nM(2n − n) = 2n also the following special value is of importance:

Corollary 7.24 For n ∈ N, n ≥ 2, we have nM(2n − n− 1) = 2n − 2.

It is also useful to have simple formulas for the inM(k)-values around the jump
positions:

Corollary 7.25 For n ∈ N, n ≥ 3 the values of inM(2n − n +m) are as follows,
using p := 2n−1 (where for m = −4 we need n ≥ 4):

m −4 −3 −2 −1 0 1 2 3 4
inM p− 2 p− 2 p− 1 p p p+ 1 p+ 1 p+ 2 p+ 2

Proof: We have inM(2n − n) = 2n−1 by Corollary 7.11:

2n−1 ≥ nM(2n − n− 2n−1 + 1) = nM(2n−1 − (n− 1)) = 2n−1

2n−1 ≤ nM(2n − n− 2n−1 + 2) = nM(2n−1 − (n− 1) + 1) = 2n−1 + 1.

The remaining values follow by Corollary 7.16, Part 1. �

We conclude with an alternative characterisation of the jump-set J :

Corollary 7.26 For k ∈ N the following conditions are equivalent:

1. nM(k) < 2 · inM(k)− 1.

2. nM(k) = 2 · inM(k)− 2.

14)Note that we are not speaking of “non-Mersenne primes”.
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3. k ∈ J , that is, k = 2m+1 −m− 2 for some m ∈ N.

Proof: If k ∈ J , then by Theorem 7.15, Part 3, we have nM(k) = 2 · inM(k)− 2 <
2 · inM(k) − 1. And if k /∈ J , then by the same lemma we have inM(k) ≤ h(k) + 1,
and thus nM(k) = h(k) + inM(k) ≥ 2 · inM(k)− 1. �

8 The min-var-degree upper bound for MU

In a sense the main auxiliary lemma of this report is the following statement on
the deficiencies obtained when splitting a saturated minimally unsatisfiable clause-
set, which receives its importance from the fact that every minimally unsatisfiable
clause-set can be saturated (recall Subsection 3.2; this method was first applied in
this context in [49]).

Lemma 8.1 Consider F ∈ SMUδ=k for k ∈ N and a variable v ∈ var(F ) realising
the minimum var-degree (i.e., vdF (v) = µvd(F )). Using m0 := ldF (v) and m1 :=
ldF (v) we have 〈v → ε〉 ∗F ∈ MUδ=k−mε+1 for ε ∈ {0, 1}, where n(〈v → ε〉 ∗F ) =
n(F )− 1. Since minimally unsatisfiable clause-sets have deficiency at least one, we
get mε ≤ k.

Proof: We have n(〈v → ε〉 ∗ F ) = n(F ) − 1 since F contains no pure variable,
while v realises the minimum of var-degrees. Thus δ(〈v → ε〉 ∗F ) = δ(F )−mε +1,
while 〈v → ε〉 ∗ F ∈ MU by Lemma 3.14, Part 1. �

Some explanations on this fundamental lemma:

Example 8.2 If in the situation of Lemma 8.1 the value of mε is minimal, i.e.,
mε = 1, then we have δ(〈v → ε〉 ∗ F ) = δ(F ) = k, while if mε is maximal, i.e.,
mε = k, then we have δ(〈v → ε〉 ∗ F ) = 1. The deficiency is strictly decreased for
both splitting results iff v is non-singular. The point of v realising the minimum
var-degree is, that we have control over the number of eliminated variables (namely
no further variable is eliminated). If v ∈ var(F ) is arbitrary, then δ(〈v → ε〉 ∗F ) =
k − mε + 1 + r, where r is the number of variables in F which occur only in the
clauses containing v for ε = 0 resp. in the clauses containing v for ε = 1.

A class of concrete examples is given by the Fn ∈ SMU ′
δ=2 (n ≥ 2; recall

Example 3.3), where for every v ∈ var(Fn) and ε ∈ {0, 1} holds 〈v → ε〉 ∗ Fn ∈
MUδ=1 (since every literal of Fn has degree 2).

The definition of nM(k) (recall Definition 7.1) matches the recursion-structure
of Lemma 8.1, and we obtain an upper bound on the min-var-degree for minimally
unsatisfiable clause-sets:

Theorem 8.3 For all k ∈ N and F ∈ MUδ≤k we have µvd(F ) ≤ nM(k). More
precisely, for n(F ) > 0 there exists a variable v ∈ var(F ) with vdF (v) ≤ nM(k) and
ldF (v), ldF (v) ≤ k.

Proof: The assertion is known for k = 1, so assume k > 1, and we apply induction
on k. Assume δ(F ) = k (due to k > 1 we have n(F ) > 1). Saturate F and obtain F ′.
Consider a variable v ∈ var(F ′) realising the min-var-degree of F ′. If vdF ′(v) = 2
then we are done, so assume vdF ′(v) ≥ 3. Let i := max(ldF ′(v), ldF ′(v)); so
vdF ′(v) ≤ 2i. W.l.o.g. assume that i = ldF ′(v). By Lemma 8.1 we get 2 ≤ i ≤ k.
Applying the induction hypothesis and Lemma 8.1 we obtain a variable w ∈ var(G)
for G := 〈v → 1〉∗F with vdG(w) ≤ nM(k−i+1). By definition we have vdF ′(w) ≤
vdG(w) + ldF ′(v). Altogether µvd(F ) ≤ min(2i, nM(k − i+ 1) + i) ≤ nM(k). �
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The upper bound on the minimum variable degree of Theorem 8.3 is not sharp,
and will be further investigated from Section 12 on. However the bound is attained
for infinitely many deficiencies, and we demonstrate now that the jump positions
(the set J ; recall Definition 7.12) are such deficiencies. Moreover, to investigate the
remaining deficiencies, we show that they always have at least two variables realising
the bound (if the bound is attained at all); this will be used to prove Theorem 14.3.
So we consider “extremal” F ∈ MUδ=k with µvd(F ) = µnM(k), and we show that
such extremal clause-sets have at least two different variables of minimal degree,
if k /∈ J . First, it is useful to have a notation for the set of variables of minimal
degree:

Definition 8.4 For F ∈ CLS let varµvd(F ) ⊆ var(F ) be the set of variables of
minimal degree, that is, varµvd(F ) := {v ∈ var(F ) : vdF (v) = µvd(F )}.

Obviously varµvd(F ) 6= ∅ iff n(F ) > 0, and varµvd(F ) = var(F ) holds iff F is
variable-regular.

Lemma 8.5 Consider k ∈ N.

1. For k /∈ J and F ∈ MUδ=k with µvd(F ) = nM(k) we have |varµvd(F )| ≥ 2.

2. For k ∈ J there is F ∈ UHITδ=k with µvd(F ) = nM(k) and |varµvd(F )| = 1.

Proof: First assume k /∈ J ; we have to show the existence of different v, w ∈
varµvd(F ). W.l.o.g. F is saturated. Consider v ∈ µvd(F ). By Corollary 7.26 we
have nM(k) ≥ 2 · inM(k) − 1. Because of ldF (v) + ldF (v) = nM(k) thus w.l.o.g.
e1 := ldF (v) ≥ inM(k). Let F ′ := 〈v → 1〉 ∗ F . So δ(F ′) = k − e1 + 1. Recall
nM(k) = nM(k − inM(k) + 1) + inM(k) (Lemma 7.10, Part 3), and thus nM(k) ≥
nM(k − e1 + 1) + e1. Since n(F ) ≥ 2, we can consider w ∈ varµvd(F

′). We have
vdF ′(w) ≤ nM(k − e1 + 1) and vdF (w) = vdF ′(w) + e1. Thus w ∈ varµvd(F ).

Now assume k ∈ J , that is, k = 2m+1 − m − 2 for m ≥ 1. For k = 1 we
have the example {1,−1}, so assume k ≥ 2. Then we have nM(k) = 2m+1 − 2.
Now we obtain an example from Am+1 by performing one strict full subsumption
resolution: The resolution variable occurs 2m+1−2 times, the other m−1 variables
occur 2m+1 − 1 times. �

In Lemma 12.11 we formulate the sharpness of the upper bound of Theorem 8.3
for these cases.

9 The min-var-degree upper bound for LEAN

In this section we prove Theorem 9.8, the upper bound nM(k) on the min-var-
degree for lean clause-sets of deficiency k, and the sharpness of this upper bound
for any class between VMU and LEAN in Theorem 9.12. The proof consists in
lifting Theorem 8.3 to the general case in Subsection 9.2, while in Subsection 9.1
we introduce the auxiliary class SED of clause-sets, where deficiency and surplus
coincide; Lemma 9.5 there shows that unsatisfiable elements of SED are variable-
minimally unsatisfiable. Sharpness of the upper bound in considered in Subsection
9.3.

9.1 Clause-sets with extremal surplus

We consider the task of generalising Theorem 8.3 to F ∈ LEAN . Consider an
arbitrary (multi-)clause-set F . Consider a set of variables ∅ 6= V ⊆ var(F ) realising
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the surplus of F , i.e., such that δ(F [V ]) is minimal (recall Definition 2.19). If F [V ]
would be satisfiable, then a satisfying assignment would give a non-trivial autarky
for F . Assuming that F is lean thus yields that F [V ] must be unsatisfiable. So there
exists a minimally unsatisfiable F ′ ⊆ F [V ]. If now var(F ′) 6= var(F [V ]) = V would
be the case, then we would loose control over the deficiency of F ′. Fortunately
this can not happen, as we will show in Lemma 9.5. To understand this result,
the following class of clause-sets with maximal surplus (relative to the deficiency)
is important.

Definition 9.1 Let the class SED ⊂ CLS (“surplus equal deficiency”) consist of
those clause-sets F ∈ CLS with σ(F ) = δ(F ).

It seems the class SED crosses the classes considered in this report in interesting
extremal cases.

Example 9.2 Some basic examples:

1. We have ⊤ ∈ SED and {⊥} /∈ SED, and more generally, for every F ∈ SED
we have ⊥ /∈ F .

2. For a clause C ∈ CL we have δ({C}) = 1 − |C| and σ({C}) = 0, and thus
{C} ∈ SED ⇔ |C| = 1.

3. For F := {{1}, {2}} we have σ(F ) = δ(F ) = 0, and thus F ∈ SED. However
for the multi-clause-set F ′ := {2 ∗ {1}, {2}} we have δ(F ′) = 1, while still
σ(F ′) = 0, and thus F ′ /∈ SED.

4. Another example for F ∈ SED with δ(F ) = 0 is F := {{1, 2}, {−1, 2}}.

5. An ∈ SED for n ≥ 1 (Example 2.20).

6. MUδ=1 \ {{⊥}} ⊂ SED (since for F ∈ MU \ {{⊥}} holds σ(F ) ≥ 1).

7. Fn ∈ SED for n ≥ 2 (Example 3.3).

8. For F := {{1, 2, 3}, {1, 2,−3}, {1,−2}, {−1, 2}, {−1,−2}} we have F ∈ MU
with δ(F ) = 2, but σ(F ) = 1, and thus F /∈ SED.

9. In Definition 10.5 we introduce the subclass MLCR ⊂ SED ∩ SAT , and
Example 10.7 shows elements of this class.

10. See also Example 10.11 and Question 10.12.

Finally we note that F ∈ SED if F ′ ∈ SED, where F ′ is the multi-clause-set
obtained from F by forgetting all signs of the literals, i.e., replacing clauses C ∈ F
by var(C) (since δ(F ′) = δ(F ) and σ(F ′) = σ(F )).

The corresponding class SED of multi-clause-sets is not invariant under multi-
plicities; consider a multi-clause-set F and the underlying clause-set F ′:

1. If F ′ ∈ SED, then in general we do not have F ∈ SED (Example 9.2).

2. However in general holds F ∈ SED ⇒ F ′ ∈ SED, since if we would have
F ′ /∈ SED, then σ(F ′) < δ(F ′), and adding a duplicated clause to a multi-
clause-set increases δ by +1, while σ is at most increased by +1 (it may also
stay unchanged).

A simple but instructive equivalent formulation of SED is as follows, which also
yields a stronger corollary than the above “F ∈ SED ⇒ F ′ ∈ SED”:
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Lemma 9.3 For a multi-clause-set F we have F ∈ SED if and only if for all
∅ ⊆ V ⊂ var(F ) and for the sub-multi-clause-set FV ≤ F consisting of all C ∈ F
with var(C) ⊆ V (with the same multiplicities) we have c(FV ) ≤ |V |.

Proof: For arbitrary F ∈ CLS and every ∅ ⊂ V ⊆ var(F ) we have

c(F [V ]) + c(F var(F )\V ) = c(F ),

and thus we get, using V ′ := var(F ) \ V :

δ(F [V ]) ≥ δ(F ) ⇔ c(F [V ])− |V | ≥ c(F )− n(F ) ⇔

c(F )− c(F var(F )\V )− |V | ≥ c(F )− n(F ) ⇔ c(FV ′

) ≤ |V ′|.

These V ′ run through all ∅ ⊆ V ′ ⊂ var(F ). �

We remark that c(F ∅) ≤ 0 ⇔ ⊥ /∈ F . We obtain as an immediate corollary,
that decreasing multiplicities in F ∈ SED does not leave this classes (even if the
multiplicity drops to zero):

Corollary 9.4 For F ∈ SED and F ′ ≤ F we have F ′ ∈ SED.

Unsatisfiable elements of SED have a strong structure:

Lemma 9.5 SED ∩ USAT ⊂ VMU (and thus SED ∩ USAT ⊂ VMU).

Proof: Consider F ∈ SED ∩ USAT , and assume there is an unsatisfiable F ′ ⊆ F
with var(F ′) ⊂ var(F ); consider a minimally unsatisfiable sub-clause-set F ′′ ⊆ F ′.
By definition we have for V := var(F ) \ var(F ′′) 6= ∅:

δ(F ′′) = c(F ′′)− n(F ′′) = c(F ′′)− (n(F )− n(F [V ]) ≤

(c(F )− c(F [V ]))− (n(F )− n(F [V ]) = δ(F )− δ(F [V ]) ≤ σ(F )− σ(F ) = 0

contradicting δ(F ′′) ≥ 1 (since F ′′ ∈ MU). Thus we have SED ∩ USAT ⊆ VMU .
An example of F ∈ MU \ SED is given in (Example 9.2. Finally consider F ∈
SED ∩ USAT : thus for the underlying clause-set F ′ holds F ′ ∈ SED ∩ USAT ,
whence F ′ ∈ VMU , and thus F ∈ VMU . �

We conclude this subsection by considering the complexity of SAT decision for
F ∈ SEDδ=k for parameter k ∈ N. By Lemma 9.5 we could use Theorem 4.7, how-
ever we have SEDδ=k ⊂ MLEAN , and thus we can apply the fpt-result discussed
in Example 2.18, and thus SAT decision for inputs in SEDδ=k is fpt in k.

Question 9.6 Can SAT decision for SED be done in polynomial time? If so, can
we also find a satisfying assignment quickly?

9.2 The generalised upper bound

Back to the main task, the central lemma utilises Lemma 9.5 to show that from
extremal F [V ] we obtain variables of low degree for F itself:

Lemma 9.7 Consider a multi-clause-set F and ∅ ⊂ V ⊆ var(F ) such that F [V ] is
unsatisfiable and σ(F [V ]) = δ(F [V ]) ≥ 1 (whence F [V ] ∈ SED ∩MLEAN ). Then
there exists v ∈ V with vdF (v) ≤ nM(δ(F [V ])) and ldF (v), ldF (v) ≤ δ(F [V ]).
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Proof: Let F ′ := F [V ] and consider some minimally unsatisfiable F ′′ ⊆ F ′. By
Lemma 9.5 we have var(F ′′) = var(F ′). So we get δ(F ′′) = δ(F ′)− (c(F ′)− c(F ′′)).
By Theorem 8.3 there is v ∈ var(F ′′) with

vdF ′′(v) ≤ nM(δ(F ′′)) = nM(δ(F ′)− (c(F ′)− c(F ′′))) ≤

nM(δ(F ′))− (c(F ′)− c(F ′′))

and ldF ′′(v), ldF ′′(v) ≤ δ(F ′′) = δ(F ′)− (c(F ′)− c(F ′′)). Finally we have vdF (v) ≤
vdF ′′(v) + (c(F ′)− c(F ′′)) (note that all occurrences of v in F are also in F ′), and
similarly for the literal degrees. �

We are ready to show the generalisation and strengthening of Theorem 8.3:

Theorem 9.8 We have µvd(F ) ≤ nM(σ(F )) for a lean multi-clause-set F with
n(F ) > 0. More precisely, there exists a variable v ∈ var(F ) with vdF (v) ≤
nM(σ(F )) and ldF (v), ldF (v) ≤ σ(F ).

Proof: Recall that F is a lean multi-clause-set with n(F ) > 0, and we have to show
the existence of a variable v with vdF (v) ≤ nM(σ(F )) and ldF (v), ldF (v) ≤ σ(F ).

Consider ∅ 6= V ⊆ var(F ) with δ(F [V ]) = σ(F ), and let F ′ := F [V ]. F ′ is
unsatisfiable, since F is lean. Because of δ(F ′) = σ(F ) we have δ(F ′) = σ(F ′). So
we can apply Lemma 9.7. �

Since for a variable v ∈ var(F ) for any F ∈ CLS holds

δ(F [{v}]) = vdF (v)− 1 ≥ µvd(F )− 1 ≥ σ(F ),

and the surplus is a lower bound for the deficiency, we get:

Corollary 9.9 For a lean multi-clause-set F , n(F ) > 0, we have

σ(F ) + 1 ≤ µvd(F ) ≤ nM(σ(F )) ≤ σ(F ) + 1 + fld(σ(F ))

µvd(F ) ≤ nM(δ(F )) ≤ δ(F ) + 1 + fld(δ(F )).

That the bounds from Corollary 9.9 are sharp in general, is shown by the fol-
lowing examples.

Example 9.10 First we consider any lean clause-set F 6= ⊤, and perform a non-
strict full subsumption extension F ❀ F ′. Obviously F ′ is lean as well (with δ(F ′) =
δ(F )). Then we have µvd(F ′) = 2 and σ(F ′) = 1, and thus

2 = σ(F ′) + 1 = µvd(F ′) = nM(σ(F ′)) = σ(F ) + 1 + fld(σ(F )),

while δ(F ′) is unbounded. This construction will be taken up again in Lemma 10.13
Now we turn to the δ-upper bounds. For n ≥ 2 consider An. We have σ(An) =

δ(An) = 2n − n by Example 2.20. Thus here the inequalities of Corollary 9.9 are

2n − n+ 1 = σ(An) + 1 <

2n = µvd(An) = nM(δ(An)) = δ(An) + 1 + fld(δ(An))

(using Corollary 7.23).
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9.3 Sharpness of the bound for VMU

We now show that for every deficiency k there are variable-minimally unsatisfiable
clause-sets where the min-var degree is nM(k) (strengthening Example 9.10). The
examples are obtained as follows:

Lemma 9.11 For a clause-set F ∈ CLS, ⊥ /∈ F and n(F ) > 0, with at least one
full clause, consider the following construction of F ′ ∈ CLS:

1. Let C be a full clause of F .

2. Let F ′′ be a full singular unit-extension of F (recall Definition 5.15).

3. Let F ′ := F ′′ ·∪{C}.

We have the following properties:

1. σ(F ′) = σ(F ) + 1, δ(F ′) = δ(F ) + 1, µvd(F ′) = µvd(F ) + 1.

2. F ∈ SED ⇒ F ′ ∈ SED.

3. F ∈ USAT ⇒ F ′ ∈ USAT .

Proof: With Lemma 5.17 we get σ(F ′′) = σ(F ), δ(F ′′) = δ(F ), µvd(F ′′) =
µvd(F ). Obviously δ(F ′) = δ(F ′′) + 1. Let var(F ′′) \ var(F ) = {v}. To see
µvd(F ′) = µvd(F ′′)+1, we note that for w ∈ var(F ) we have vdF ′(w) = vdF ′′(w)+
1, while vdF ′(v) = c(F ′)− 1 = c(F ′′) ≥ vdF ′′(w) + 1.

To prove σ(F ′) = σ(F ′′) + 1, we consider ∅ ⊂ V ⊆ var(F ′) = var(F ′′). If
v /∈ V , then δ(F ′[V ]) = δ(F ′′[V ]) + 1, since C is full for F . If V = {v}, then
δ(F ′[V ]) = δ(F ′′[V ]) = c(F ′′) ≥ σ(F ′′) + 1. Finally, if V ⊃ {v}, then δ(F ′[V ]) =
c(F ′)− |V | ≥ δ(F ′) = δ(F ′′) + 1 ≥ σ(F ′′) + 1.

The implication F ∈ SED ⇒ F ′ ∈ SED follows now by definition of SED, and
F ∈ USAT ⇒ F ′ ∈ USAT is trivial. �

With the construction of Lemma 9.11 we now show that the general upper bound
on the min-var degree of lean clause-sets is tight for variable-minimally unsatisfiable
clause-sets:

Theorem 9.12 For a class VMU ∩ SED ⊆ C ⊆ LEAN and k ∈ N we have
µvd(Cδ=k) = nM(k).

Proof: By Theorem 9.8 it remains to show the lower bound µvd(VMUδ=k ∩
SED) ≥ nM(k). For deficiencies k = 2n − n, n ∈ N we have nM(k) = 2n, and
thus An serves as lower bound example (as shown in Example 9.10), while until the
next jump position we can use Lemma 9.11 together with Lemma 9.5, where due
to Corollary 7.23 in this range also nM increases only by 1 for k ❀ k + 1. �

Using Lemma 4.3, we can now determine the min-var degrees for the classes
LEAN and VMU , separated into layers via deficiency or surplus:

Corollary 9.13 For k ∈ N holds nM(k) = µvd(LEANδ=k) = µvd(LEANσ=k) =
µvd(VMUδ=k) = µvd(VMUσ=k).
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10 Algorithmic implications

In Subsections 10.1, 10.2 we consider the algorithmic implications of Theorem 9.8.
First in Theorem 10.2 we show that via an autarky-reduction every clause-set F ∈
CLS can be reduced to some F ′ ⊆ F , where F ′ fulfils the min-var-degree upper
bound of Theorem 9.8 (although F ′ might not be lean). For this autarky-reduction
we do not know whether we can efficiently compute a certificate, the autarky, and
we discuss the Conjecture 10.3, that efficient computation is possible, in Subsection
10.2. We conclude with some remarks on the surplus in Subsection 10.3.

10.1 Autarky reduction

By Theorem 9.8 lean clause-sets fulfil a condition on the minimum variable-degree—
if that condition is not fulfilled, then there exists an autarky. In this section we try
to pinpoint these autarkies. We consider a vast generalisation of lean clause-sets,
namely matching-lean clause-sets (recall Subsection 2.6, especially that a multi-
clause-set F with n(F ) > 0 is matching-lean iff σ(F ) ≥ 1). It is also useful to note
here the observation that a (multi-)clause-set F has a non-trivial autarky (is not
lean) iff there is ∅ ⊂ V ⊆ var(F ) such that F [V ] is satisfiable, and the corresponding
autarky reduction of F removes all clauses containing some variable of V ; note that
to perform this autarky reduction the autarky itself (the satisfying assignment for
F [V ]) is not needed, only its set V of variables.

We obtain a sufficient criterion for the existence of a non-trivial autarky by
considering the converse of Theorem 9.8:

Lemma 10.1 Consider a matching-lean multi-clause-set F with n(F ) > 0. If we
have µvd(F ) > nM(σ(F )), then for all F ′ := F [V ] with ∅ ⊂ V ⊆ var(F ) and
δ(F [V ]) = σ(F ) we have:

1. δ(F ′) = σ(F ′) = σ(F ) (so F ′ ∈ SED ∩MLEAN ).

2. µvd(F ′) > nM(σ(F ′)).

3. F ′ ∈ SAT (thus there is ϕ ∈ PASS with var(ϕ) = V and ϕ ∗ F ′ = ⊤; this ϕ
is a non-trivial autarky for F ).

Proof: Part 1 follows by definitions. For Part 2 note that µvd(F ′) ≤ nM(σ(F ′))
implies µvd(F ) ≤ µvd(F ′) ≤ nM(σ(F )) contradicting the assumption. And Part 3
follows now by Lemma 9.7. �

To better understand the background, we recall two fundamental facts regarding
the surplus σ(F ) for multi-clause-set F with n(F ) > 0:

1. σ(F ) together with some ∅ ⊂ V ⊆ var(F ) with σ(F ) = δ(F [V ]) can be
computed in polynomial time (see Subsection 11.1 in [57]).

2. If σ(F ) ≤ 0, then one can compute a non-trivial matching autarky for F in
polynomial time (see Section 7 in [51] or Section 9 in [57]).

We see now that we can reach the conclusion of Theorem 9.8 for arbitrary
inputs F in polynomial time, via some autarky reduction (maintaining satisfiability-
equivalence):

Theorem 10.2 Consider a multi-clause-set F . We can find in polynomial time a
sub-clause-set F ′ ⊆ F such that:

1. There exists an autarky ϕ for F with F ′ = ϕ ∗ F .
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2. If n(F ′) > 0, then σ(F ′) ≥ 1 and µvd(F ′) ≤ nM(σ(F ′)).

Proof: First F is reduced to the underlying clause-set (and all further compu-
tations only handle clause-sets), and if ⊥ ∈ F , then we reduce F to {⊥} and
are finished. Otherwise, the reduction process of F yielding the final F ′ consists
now of a loop of two steps: First eliminate matching-autarkies (i.e., compute the
matching-lean kernel), such that we reach σ(F ) ≥ 1. Then apply the autarky-
reduction according to Part 3 of Lemma 10.1 (removing all clauses containing a
variable of V ) in case of µvd(F ) > nM(σ(F )). This loop is aborted if ⊤ is reached
or the criterions no longer applied. All autarkies are composed together (as shown
in [50], also in general the composition of autarkies is again an autarky), yielding
the final ϕ. �

In Theorem 10.2 we can only show the existence of an autarky ϕ for F with
F ′ = ϕ ∗ F , however we currently do not know how to compute it efficiently. We
conjecture that it can be found in polynomial time:

Conjecture 10.3 For F ∈ CLSσ≥1 there is a poly-time algorithm for computing a
non-trivial autarky ϕ for F in case of µvd(F ) > nM(σ(F )).

Note that we ask only to find some autarky ϕ, not necessarily one given by Lemma
10.1 (i.e., with var(ϕ) = V as in Part 3 of Lemma 10.1). That this is enough follows
by the fact that the number of variables is reduced by such a reduction, and this
by some autarky:

Lemma 10.4 If Conjecture 10.3 is true, then for the algorithm from Theorem 10.2,
which reduces a multi-clause-set F to some (satisfiability-equivalent) F ′ ⊆ F , we
can also compute an autarky ϕ for F with F ′ = ϕ ∗ F in polynomial time.

Proof: In the loop as given in the proof of Theorem 10.2, we can replace the
autarky-reduction according to Part 3 of Lemma 10.1 by the reduction F ❀ ϕ ∗ F
according to a (non-trivial) autarky as given by Conjecture 10.3. �

In the subsequent Subsection 10.2 we discuss what we know about Conjecture
10.3.

10.2 On finding the autarky

Consider a matching-lean multi-clause-set F with n(F ) > 0, where Lemma 10.1 is
applicable (recall that we have σ(F ) ≥ 1), that is, we have µvd(F ) > nM(σ(F )).
So we know that F has a non-trivial autarky. Conjecture 10.3 states that finding
such a non-trivial autarky in this case can be done in polynomial time (recall that
finding a non-trivial autarky in general is NP-complete, which was shown in [51]).

The task of actually finding the autarky can be considered as finding a satisfying
assignment for the following classMLCR ⊂ SAT ∩MLEAN of satisfiable(!) multi-
clause-sets F , obtained by considering all F [V ] for minimal sets of variables V with
δ(F [V ]) = σ(F ) (where “CR” stands for “critical”):

Definition 10.5 Let MLCR be the class of clause-sets F fulfilling the following
three conditions:

1. F ∈ MLEAN , ⊥ /∈ F , F 6= ⊤.

2. For all ∅ ⊂ V ⊂ var(F ) holds δ(F [V ]) > σ(F ).

3. µvd(F ) > nM(σ(F )).
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(The definition of MLCR just uses F ∈ MLEAN instead.)

The basic properties of this class are collected in the following lemma:

Lemma 10.6 For F ∈ MLCR holds:

1. δ(F ) = σ(F ) ≥ 1 (whence F ∈ SED).

2. F ∈ SAT .

Proof: Since F ∈ MLEAN and n(F ) > 0, we have σ(F ) ≥ 1. By ⊥ /∈ F we get
F = F [var(F )], and thus σ(F ) = δ(F [var(F )]) = δ(F ), while F ∈ SAT follows by
Lemma 10.1. �

The examples we know for elements of MLCR are as follows:

Example 10.7 A simple example for F ∈ MLCRδ=1 ∩HIT is given by

F := {{1, 2}, {−1, 2,−3}, {−2, 3}, {1,−2,−3}}.

We have δ(F ) = 4 − 3 = 1 and µvd(F ) = 3; for σ(F ) = 1 and Condition 2 of
Definition 10.5 notice, that any two variables cover all four clauses, and thus the
minimum of δ(F [V ]) is only attained for V = var(F ); finally by µvd(F ) = 3 >
nM(1) = 2 we get F ∈ MLCR, while F ∈ HIT by definition (any two clauses have
a clash).

This example also shows that MLCR is not invariant under multiplicities: Ob-
tain F ′ from F by duplicating the first clause. We still have F ′ ∈ MLEAN , but
δ(F ′) = 2, while δ(F ′[{3}]) = 2 as well, and thus F ′ /∈ MLCR. So duplicating a
clause can lead outside of MLCR. In the other direction, removing a duplication,
we have the following simple (counter-)example: Let F := {2 ∗ {1}}; trivially we
have F ∈ MLCR, but for the underlying clause-set we have {{1}} /∈ MLEAN ,
thus it is not in MLCR.

A more general class of example is obtained by full clause-sets. Let F be a full
clause-set and n := n(F ), m := c(F ). Then F ∈ MLCR iff n < m < 2n:

1. We have δ(F ) = m− n and thus δ(F ) ≥ 1 ⇔ m > n.

2. Furthermore F ∈ SAT ⇔ m < 2n.

3. For ∅ ⊂ V ⊂ var(F ) we have δ(F [V ]) = m − |V |. Thus σ(F ) = δ(F ), and
Condition 2 of Definition 10.5 is fulfilled.

4. It remains to show the condition on the min-var degree: We have µvd(F ) = m,
while nM(σ(F )) = nM(m − n). By Theorem 7.21 we obtain nM(m − n) =
m− n+ fld(m− n+ 1 + fld(m− n+ 1)). We obtain for n ≥ 1:

µvd(F ) > nM(σ(F )) ⇔ m > m− n+ fld(m− n+ 1 + fld(m− n+ 1)) ⇔

fld(m− n+ 1 + fld(m− n+ 1)) < n⇐=

fld(2n − 1− n+ 1 + fld(2n − 1− n+ 1)) < n⇔

fld(2n − n+ fld(2n − n)) = fld(2n − n+ (n− 1)) = fld(2n − 1) < n.

Finally we note that the class MLCR is invariant against changes of polarities
of literal occurrences (if clauses become equal in this way, then their multiplicities
have to be added), and thus for example replacing all clauses C ∈ F ∈ MLCR
by their positive forms, var(C), we obtain a positive (no complementations occur)
multi-clause-set F ′ ∈ MLCR (with c(F ′) = c(F ) and n(F ′) = n(F )).
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The importance of MCLS is, that it is sufficient to find a non-trivial autarky for
this class of satisfiable clause-sets. In order to show this, we need to strengthen the
polytime computation of σ(F ):

Lemma 10.8 For a multi-clause-set F with n(F ) > 0 we can compute in polyno-
mial time a minimal subset ∅ ⊂ V ⊆ var(F ) with δ(F [V ]) = σ(F ).

Proof: Let V := var(F ). Check whether there is v ∈ var(F ) with σ(F [V \ {v}]) =
σ(F ) — if yes, then V := V \ {v} and repeat, if not, then V is the desired result. �

We are ready to show that MCLS is really the “critical class” for the problem
of finding the witness-autarky underlying the reduction F ❀ F ′ of Theorem 10.2:

Theorem 10.9 Consider F ∈ CLS with σ(F ) ≥ 1 and µvd(F ) > nM(σ(F )).

1. For every minimal subset ∅ ⊂ V ⊆ var(F ) with δ(F [V ]) = σ(F ) we have
F [V ] ∈ MLCR.

2. Thus we can compute in polytime some ∅ ⊂ V ⊆ var(F ) with F [V ] ∈ MLCR.

3. So Conjecture 10.3 is equivalent to the statement, that finding a non-trivial
autarky for clause-sets in MLCR can be achieved in polynomial time.

Proof: Part 1 follows with Lemma 10.1. Part 2 follows from Part 1 with Lemma
10.8. Part 3 follows with Part 2 (note that every autarky for some F [V ] yields an
autarky for F ). �

Since MLCR ⊂ SED, if both questions of Question 9.6 have a yes-answer, then
this would prove Conjecture 10.3.

10.3 Final remarks on the surplus

It is instructive to investigate the precise relationship between minimum variable-
degree and the surplus for lean clause-sets, which by Corollary 9.9 are indeed very
close. Small values behave as follows:

Lemma 10.10 Consider F ∈ LEAN \ {⊤} (so σ(F ) ≥ 1 and µvd(F ) ≥ 2).

1. σ(F ) = 1 holds if and only if µvd(F ) = 2 holds.

2. µvd(F ) = 3 implies σ(F ) = 2.

3. σ(F ) = 2 implies µvd(F ) ∈ {3, 4}.

4. µvd(F ) = 4 implies σ(F ) ∈ {2, 3}.

Proof: First consider Part 1. If σ(F ) = 1 (so n(F ) > 0), then by Theorem 9.8
we have µvd(F ) ≤ nM(1) = 2, while in case of µvd(F ) = 1 there would be a
matching autarky for F . If on the other hand µvd(F ) = 2 holds, then by definition
σ(F ) ≤ 2− 1 = 1, while σ(F ) ≥ 1 holds since F is matching lean. For Part 2 note
that due to σ(F ) + 1 ≤ µvd(F ) we have σ(F ) ≤ 2, and then the assertion follows
by Part 1; Part 4 follows in the same way. Finally Part 3 follows by Part 1 and
nM(2) = 4. �

For some examples we use F with δ(F ) = σ(F ):

Example 10.11 Examples for cases σ(F ) ∈ {2, 3} in Lemma 10.10:
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1. An example for µvd(F ) = 4 in Part 3 with F ∈ UHIT ∩SED is given by A2.

2. For
{

{a, b, c}, {a, b, c}, {a, b, c}, {a, b, c}, {a, c}, {a, c}
}

∈ UHIT ∩ SED we
have µvd(F ) = 4 and σ(F ) = 3 (Part 4).

Question 10.12 is there for every k ∈ N an F ∈ UHIT ∩ SED with σ(F ) = k
and µvd(F ) = k + 1?

As we have for MU the levels MUδ=k for k = 1, 2, . . . , we can consider for
LEAN the levels LEANσ=k for k = 1, 2, . . . . However, while the levels MUδ=k

as well as LEANδ=k all are decidable in polynomial time, already the first level
LEANσ=1 is NP-complete:

Lemma 10.13 Consider the map E : CLS → CLS, which has E(⊤) := ⊤, while
otherwise for F ∈ CLS \{⊤} it chooses (by some rule — it doesn’t matter) a clause
C ∈ F and a variable v ∈ VA \ var(F ), and replaces C by C ·∪{v}, C ·∪{v}; in
other words, an non-strict full subsumption extension F ❀ E(F ) is performed, as
in Example 9.10. Then we have for F ∈ CLS:

1. F ∈ LEAN iff E(F ) ∈ LEAN .

2. F ∈ MU iff E(F ) ∈ MU .

3. σ(F ) ≤ 1.

Thus LEANσ=1 is coNP-complete, while MUσ=1 is DP -complete.

Proof: The properties of the map E are trivial. The completeness-properties
follow with the coNP-completeness of LEAN ([51]) and the DP -completeness of
MU ([80]). �

With Lemma 10.13 we also get easy examples for minimally unsatisfiable clause-
sets of arbitrary deficiency and surplus 1.

11 Matching lean clause-sets

In this section, which concludes our considerations on generalisations (beyondMU),
we consider the question whether Theorem 9.8 can incorporate non-lean clause-sets.

We consider the large class MLEAN of matching lean clause-sets, which is
natural, since a basic property of F ∈ MU used in the proof of Theorem 9.8 is
δ(F ) ≥ 1 for F 6= ⊤, and this actually holds for all F ∈ MLEAN . We will construct
for arbitrary deficiency k ∈ N and K ∈ N clause-sets F ∈ MLEAN of deficiency
k, where every variable occurs positively at least K times. Thus neither the upper
bound max(ldF (v), ldF (v)) ≤ f(δ(F )) nor ldF (v) + ldF (v) = vdF (v) ≤ f(δ(F )) for
some chosen variable v and for any function f does hold for MLEAN .

An example for F ∈ MLEANδ=1 with µld(F ) ≥ 2 (the minimal literal degree;
and thus µvd(F ) ≥ 4) is given in Section 5 in [52], displaying a “star-free” (thus
satisfiable) clause-set F with deficiency 1. In Subsection 9.3 in [57] it is shown that
this clause-set is matching lean. “Star-freeness” in our context means, that there
are no singular variables (occurring in one sign only once). Our simpler construction
pushes the number of positive occurrences arbitrary high, but there are variables
with only one negative occurrence (i.e., there are singular variables).

For a finite set V of variables let M(V ) ⊆ A(V ) be the full clause-set over
V containing all full clauses with at most one complementation; e.g. M({1, 2}) =
{{1, 2}, {−1, 2}, {1,−2}}:
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1. Obviously n(M(V )) = |V |, c(M(V )) = |V |+ 1 and δ(M(V )) = 1 holds.

2. We have already seen that M(V ) ∈ MLEAN (for ⊤ 6= F ′ ⊂ F ⊆ A(V ) we
have δ(F ′) < δ(F ), and thus a full clause-set F is matching lean iff δ(F ) ≥ 1).

3. By definition we have ldM(V )(v) = |V | and ldM(V )(v) = 1 for v ∈ V .

Lemma 11.1 For k ∈ N and K ∈ N there are F ∈ MLEANδ=k with F ∈ USAT
for k ≥ 2 such that for all variables v ∈ var(F ) we have ldF (v) ≥ K.

Proof: For k = 1 we can set F := M({v1, . . . , vK}); so assume k ≥ 2. Consider
any clause-set G ∈ MUδ=k−1 with n := n(G) ≥ K, and let V := var(G). Consider
a disjoint copy of V , that is a set V ′ of variables with V ′ ∩ V = ∅ and |V ′| = |V |,
and consider two enumerations of the clauses M(V ) = {C1, . . . , Cn+1}, M(V ′) =
{C′

1, . . . , C
′
n+1}. Now

F := G ·∪
{

Ci ·∪C′
i : i ∈ {1, . . . , n+ 1}

}

has no matching autarky: If ϕ is a matching autarky for F , then var(ϕ) ∩ V = ∅
since G is matching lean, whence var(ϕ)∩V ′ = ∅ sinceM(V ′) is matching lean, and
thus ϕ must be trivial. Furthermore we have n(F ) = 2n and c(F ) = c(G) + n+ 1,
and thus δ(F ) = c(G) + n+ 1 − 2n = δ(G) + 1 = k. By definition for all variables
v ∈ var(F ) we have ldF (v) ≥ n. �

For k = 1 the examples of Lemma 11.1 forK ≥ 3 are necessarily satisfiable, since
MLEANδ=1 ∩ USAT = MUδ=1. It remains the questions whether the singular
variables can be eliminated:

Question 11.2 Are there examples for deficiency k ∈ N of F ∈ MLEANδ=k with
µld(F ) ≥ k + 1 ?

1. The above mentioned star-free clause-sets shows that this is the case for k = 1.

2. What about the stronger condition µld(F ) ≥ K for arbitrary K ∈ N ?

12 Lower bounds for the min-var-degree of MU

We now return to (boolean) minimally unsatisfiable clause-sets. By Theorem 8.3
we have µvd(MUδ=k) ≤ nM(k) for all k ∈ N. The task of precisely determining
µvd(MUδ=k) for all k seems a deep question, and is the subject of the remainder
of this report. First we introduce a notation for the true bound on µvd(MUδ=k):

Definition 12.1 For k ∈ N let µnM(k) := µvd(MUδ=k) ∈ N (the “minimum
non-Mersenne number” for (deficiency) k).

So by Theorem 8.3 we have µnM ≤ nM. All our examples yielding lower bounds
on µnM(k) are actually (unsatisfiable) hitting clause-sets, and thus we believe

Conjecture 12.2 For all k ∈ N holds µnM(k) = µvd(UHITδ=k).

We will see in Theorem 14.3 that µnM 6= nM. We believe that µnM is a highly
complicated function, but the true values deviate only at most by one from nM:

Conjecture 12.3 For all k ∈ N we have µnM(k) ≥ nM(k)− 1.

By Corollary 7.22 we get:
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Lemma 12.4 If Conjecture 12.3 holds, then k − 1 + fld(k + 1) ≤ µnM(k) ≤ k +
1 + fld(k) holds for k ∈ N.

Later in Lemma 13.1 we will see that µnM : N → N is monotonically increasing.
While in Theorem 14.5 we will (implicitly) construct a correction function γ1 : N →
{0, 1} such that µnM ≤ nM−γ1, where we remark in the Conclusion (Section 15)
that also µnM 6= nM−γ1 holds. Note that Conjecture 12.3 says that there exists
γ : N → {0, 1} with µnM = nM−γ, while for every γ : N → {0, 1} the function
nM−γ is still monotonically increasing (by Lemma 7.5), and is thus a possible
candidate.

In Subsection 12.1 we provide a general method for obtaining lower bounds, via
considering full clauses (while in Section 13 we turn to improved upper bounds).
Namely we introduce νfc(MUδ=k) ∈ N for k ∈ N, the maximal number of full
clauses in F ∈ MUδ=k. According to our numerical investigations the number of
full clauses is very close to µnM, and indeed to nM(k):

Conjecture 12.5 For all k ∈ N we have νfc(MUδ=k) ≥ nM(k)− 1.

Conjecture 12.5 implies Conjecture 12.3; regarding νfc(UHITδ=k), there might be
unbounded gaps to νfc(MUδ=k). The smallest deficiency k with νfc(MUδ=k) =
nM(k) − 1 (and also νfc(MUδ=k) = µnM(k) − 1) is k = 3, as shown in Lemma
12.16 (together with Theorem 14.3). We show for two infinite classes of deficiencies
k that νfc(UHITδ=k) = µnM(k) = nM(k) holds (Lemmas 12.10, 12.11). Actually,
the main point here could be considered as (just) the equalities µnM(k) = nM(k),
for which in these two cases the proofs don’t need to consider full clauses, and so the
general method for computing lower bounds on νfc(MUδ=k), with the beginnings
developed in Subsection 12.2, is not applied here. However in future work we will
employ this method more fully (see Subsection 15.3), and, more important for the
report at hand, we need for the proof of Theorem 14.3 (that µnM(6) = nM(6)−1 =
8) the fact νfc(MUδ=3) ≤ 4, shown in Lemma 12.16.

12.1 Some precise values for the min-var-degree of MU

A general lower-bound method for µnM is provided by the number fc(F ) of full
clauses in a clause-set F . The supremum νfc(MUδ=k) of this number over all el-
ements of MUδ=k for fixed k is an interesting quantity in its own right, but in
this report we only touch on this subject, providing the bare minimum of informa-
tion needed in our context. See Subsection 15.3 for an outlook on the interesting
properties of this quantity.

Definition 12.6 For a clause-set F ∈ CLS let fc(F ) ∈ N0 be the number of full
clauses, that is fc(F ) := |{C ∈ F : var(C) = var(F )}|. And for a class C ⊆ CLS
of clause-sets we define fc(C) := {fc(F ) : F ∈ C} ⊆ N0 as the set of all possible
numbers of full clauses, while νfc(C) ∈ N0 ∪ {+∞} is the supremum of fc(C).

Some simple examples:

Example 12.7 fc(⊤) = 0, fc({⊥}) = 1, and fc({{1}, {−1, 2}}) = 1. While fc(∅) =
∅, thus νfc(∅) = 0, and fc(CLS) = N0, thus νfc(CLS) = +∞.

By definition we have:

Lemma 12.8 fc(F ) ≤ µvd(F ) holds for every F ∈ CLS (since every variable in F
has degree at least fc(F )), and thus νfc(C) ≤ µvd(C) for every C ⊆ CLS.
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We obtain that for lean clause-sets (especially minimally unsatisfiable clause-sets)
of fixed deficiency the number of full clauses is bounded:

Corollary 12.9 A lean clause-set of deficiency k can have at most nM(k) many
full clauses; i.e., for all k ∈ N we have νfc(LEANδ=k) ≤ nM(k).

Precise values for νfc(MUδ=k) = µnM(k) we show for two infinite classes of
deficiencies. The simplest class are the deficiencies directly after the jumps (recall
Lemma 7.20), the deficiencies of the An:

Lemma 12.10 For n ∈ N and k := 2n − n holds

νfc(UHITδ=k) = νfc(MUδ=k) = µvd(UHITδ=k) = µnM(k) = nM(k) = 2n.

Proof: We have νfc(An) = 2n (recall Lemma 2.13), and thus νfc(UHITδ=k) ≥ 2n,
while by Corollary 7.23 we have nM(k) = 2n. �

Also for the jumps themselves (recall Definition 7.12 and Lemma 7.20) the same
conclusions hold, namely by Lemma 8.5, Part 2 (and the proof) we have:

Lemma 12.11 For all k ∈ J holds

νfc(UHITδ=k) = νfc(MUδ=k) = µvd(UHITδ=k) = µnM(k) = nM(k).

Note that for k ∈ J there is n ∈ N, n ≥ 2, with k = 2n − n − 1 and nM(k) =
2n − 2. The underlying method of Lemmas 12.10, 12.11 is simple (as we already
have explained it in Subsection 1.3): start with An and apply strict full subsumption
resolution to full clauses. Zero steps have been used in Lemma 12.10, one step in
Lemma 12.11, and one example for two steps will be seen in the proof of Theorem
14.1. The further development of this method we have to leave for future work.

12.2 On the number of full clauses

We have a special interest in those F ∈ MU where the lower bound fc(F ) meets the
upper bound µvd(F ). In this case this number must be even, and we obtain another
F ′ ∈ MU by resolving on any variable realising the minimum variable degree:

Lemma 12.12 Consider F ∈ MU with fc(F ) = µvd(F ). Then fc(F ) is even.

Proof: Consider v ∈ var(F ) with vdF (v) = µvd(F ). The occurrences of v are now
exactly in the full clauses of F . Every full clause C must be resolvable on v with
another full clause D, yielding E := C ⋄D, and thus the full clauses of F can be

partitioned into pairs {v} ·∪E, {v} ·∪E (disjoint unions) for fc(F )
2 many clauses E

(of length n(F )− 1; note that because of fullness for a given E the clauses C,D are
uniquely determined up to order). �

Thus, if lower and upper bound match, they must be even numbers:

Corollary 12.13 If νfc(MUδ=k) = nM(k) or νfc(MUδ=k) = µvd(MUδ=k) for
some k ∈ N, then νfc(MUδ=k) is even.

Another property of fc(MUδ=k) related to evenness is that if m is a possible
number of full clauses, then 2m is a possible number for δ = k +m− 1:

Lemma 12.14 2m ∈ fc(MUδ=k+m−1) for k ∈ N and m ∈ {1, . . . , νfc(MUδ=k)}.
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Proof: Consider F ∈ MUδ=k with fc(F ) = νfc(MUδ=k). Choose m of the full
clauses of F , and choose a new variable v /∈ var(F ). Replace each of the chosen full
clauses C ∈ F by two clauses C ·∪{v}, C ·∪{v} (one non-strict and m − 1 strict full
subsumption extensions), obtaining F ′. We have F ′ ∈ MUδ=k+m−1 and fc(F ′) =
2m. �

As a special case we obtain that 2, 4 are always possible for the number of full
clauses (except for k = 1):

Corollary 12.15 For k ∈ N holds 2 ∈ fc(MUδ=k), and if k ≥ 2 then 4 ∈
fc(MUδ=k).

Proof: We show the assertion by induction over k, using Lemma 12.14, as follows:
We have {{1}, {−1}} ∈ MUδ=1, so consider k ≥ 2. We know 2 ∈ fc(MUδ=k−1),
thus 4 ∈ fc(MUδ=k−1+2−1=k). And once we have any F ∈ MUδ=k with a full clause,
we get F ′ ∈ MUδ=k with fc(F ′) = 2 by performing a non-strict full subsumption
extension on that full clause (i.e., F ′ = E(F ) as in Lemma 10.13, with C a full
clause). �

We now turn to the determination of νfc(MUδ=k) for k = 1, 2, 3.

Lemma 12.16 We have:

1. νfc(MUδ=1) = 2 = nM(1).

2. νfc(MUδ=2) = 4 = nM(2).

3. νfc(MUδ=3) = 4 = nM(3)− 1.

Proof: Part 1: Between two clauses of some F ∈ MUδ=1 there is at most one
conflict, and thus there are at most two full clauses in F . while by Corollary 12.15
we know νfc(MUδ=1) ≥ 2. Part 2: By Corollary 12.15 we have νfc(MUδ=2) ≥ 4,
by Corollary 12.9 we have νfc(MUδ=2) ≤ 4. Part 3: By Corollary 12.15 we have
νfc(MUδ=3) ≥ 4, by Corollary 12.13 we have νfc(MUδ=3) ≤ 4. �

13 A method for improving the mvd upper bound
for MU

We now present a framework for generalising the argumentation of Theorem 8.3
together with the analysis of the underlying recursion from Section 7. The idea is
as follows:

1. We start with upper bounds µnM(k) ≤ ak for k = 1, . . . , p, collected in a
“valid bounds-function” f .

2. For deficiency p + 1 and an envisaged min-var-degree m we consider the set
ppf (p + 1,m) of “possible” degree-pairs of variables (the degrees of the pos-
itive and negative literals) in an envisaged clause-set F ∈ SMUδ=p+1 with
µvd(F ) = m.

3. If ppf (p + 1,m) = ∅, then m is “inconsistent”, that is, impossible to realise
(as shown in Theorem 13.10), whence µnM(p+ 1) < m.

4. While in case of ppf (p + 1,m) 6= ∅ there might exist such an F or not (the
formal reasoning underlying the definition of ppf (p+ 1,m) is not complete).
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So here we generalise the approach of Section 7 for describing the function nM to a
general recursion scheme, obtaining a general method for improved upper bounds.
The applications in this report are as follows:

• In Theorem 13.15 we obtain an alternative description of nM(k).

• In Section 14 we will first show that the smallest k, where we don’t have
equality, is k = 6, namely µvd(MUδ=6) = 8 = nM(6)− 1 (Theorem 14.3).

By the general recursion scheme then follows from this improvement of the
upper bound, that for all k = 2m −m+ 1 for m ≥ 3 we have µvd(MUδ=k) ≤
nM(k) − 1. This improved upper bound is denoted by by nM1 : N → N

(Theorem 14.5).

13.1 Analysing splitting-situations

“Valid bounds-functions” shall be monotonically increasing — we know that nM
is (strictly) monotonically increasing, and we show that µvd is also monotonically
increasing (not strictly, as we will later see in Theorem 14.3):

Lemma 13.1 The map µnM is monotonically increasing (µnM(k) ≤ µnM(k + 1)
for k ∈ N).

Proof: For F ∈ MUδ=k, n(F ) 6= 0, we can construct F ′ ∈ MUδ=k+1 with
µvd(F ) ≤ µvd(F ′) as follows:

1. If F is full, then obtain a non-full F ′′ ∈ MUδ=k with µvd(F ) = µvd(F ′′) by
a full singular unit-extension (Lemma 5.17), and replace F by F ′′.

2. If F is not full, then perform a strict full subsumption extension (Lemma 6.5),
obtaining the desired F ′. �

We define now “valid bounds-functions”, which are sensible as upper bounds on
µnM, and we also define how to obtain such a function from initial upper bounds
µnM(k) ≤ ak for k = 1, . . . , p:

Definition 13.2 A valid bounds-function is a function f : N → N ∪ {+∞}
fulfilling the following three conditions:

1. f(1) = 2.

2. f is monotonically increasing (i.e., ∀ k, k′ ∈ N : k ≤ k′ ⇒ f(k) ≤ f(k′)).

3. f(k) is an upper bound for the minimal-variable degree of minimally unsatis-
fiable clause-sets of deficiency k (i.e., ∀ k ∈ N : µnM(k) ≤ f(k)).

The set of all valid bounds-functions is denoted by VB ⊂ NN. And by VB∗ := {f ∈
VB : f ≤ nM} we denote the set of valid bounds-functions (pointwise) less-or-equal
than the non-Mersenne function.

For a1, . . . , ap ∈ N, p ∈ N. such that a1 = 2, ai ≤ aj for i ≤ j, and ai ≥ µnM(i),
we define [a1, . . . , ap] as that f ∈ VB with f(k) = ak for k ∈ {1, . . . , p}, while
f(k) = ∞ for k > p.

By Lemma 13.1, µnM is a valid bounds-function, namely the smallest possible one.
By Theorem 8.3 and Corollary 7.6 also nM is a valid bounds-function. In Corol-
lary 13.16 we will see, that the continuation of [a1, . . . , ap] by just ∞ is harmless,
since nM is automatically taken into account via the improvement of valid bounds-
functions through the use of potential degree-pairs defined below.
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Lemma 13.3 VB as well as VB∗, together with ≤, is a complete lattice, where
infima resp. suprema are given by pointwise minimum resp. pointwise supremum.
The smallest elements of both lattices is µnM, while the largest is [2] resp. nM.

The following definition reflects the main method to analyse and improve a given
upper bound f for µnM(k), namely it determines the numerical possibilities com-
patible with f :

Definition 13.4 Consider k,m ∈ N with k ≥ 2 and m ≥ 4, together with a valid
bounds-function f . The set of potential (variable-)degree-pairs w.r.t. f for
(deficiency) k and (minimum variable-degree) m, denoted by ppf(k,m), is the set
of pairs (e0, e1) ∈ N2 fulfilling the following conditions:

(i) e0, e1 ≥ 2

(ii) e0, e1 ≤ k

(iii) e0 + e1 = m

(iv) e0 ≤ e1

(v) ∀ ε ∈ {0, 1} : f(k − eε + 1) + eε ≥ m.

We set pp(k,m) := ppµnM(k,m).

The motivation for Definition 13.4 is to assume F ∈ SMUδ=k with µvd(F ) = m
and v ∈ varµvd(F ), and to determine the possible literal-degrees e0 = ldF (v),
e1 = ldF (v), “possible” in a formal sense. “e” stands for “eliminated clauses”,
namely eε is the number of clauses eliminated by 〈v → ε〉. The “high” values of m
(for fixed k) are of real interest; compare Lemma 13.7. The basic properties of ppf
are as follows:

1. For every valid f and k ≥ 2 we have ppf (k, 4) = {(2, 2)} and ppf (k,m) = ∅
for m > 2k.

2. Discussion of the five conditions (i) - (v) in Definition 13.4:

(i) Only non-singular variables are considered, since only in this way the
deficiency strictly decreases.

(ii) The deficiency of Fε := 〈v → ε〉 ∗ F is kε := k − eε + 1 (assuming we
split on a variable with minimal degree), and we must have kε ≥ 1.

(iii) e0, e1 are the literal-degrees of v, v, which sum up to the variable-degree
m of v.

(iv) W.l.o.g. we can restrict attention to such degree-pairs, since F plays a
role only up to isomorphism, and thus one can flip the sign of v in F .

(v) We have Fε ∈ MUδ=k−eε+1 (assuming F is saturated). And for w ∈
var(Fε) we have vdF (w) ≤ vdFε

(w)+eε. If for some ε ∈ {0, 1} we would
have µvd(MUδ=k−eε+1) + eε < m, then for w ∈ varµvd(Fε) we would
have vdF (w) ≤ vdFε

(w) + eε ≤ µvd(MUδ=k−eε+1) + eε < m, but by
assumption on w we have vdF (w) ≥ m.

3. An important special case of ppf (k,m) is ppnM(k,m); we have pp(k,m) ⊆
ppnM(k,m) (see Lemma 13.8 for a generalisation). The main point in using
functions f is that the precise values of µnM(k) might not be known.

4. To compute ppf (k,m) according to the definition, only the values f(k′) for
k′ ∈ {1, . . . , k − 1} are needed.

70



Example 13.5 Consider f := [nM(1), nM(2), nM(3)] = [2, 4, 5]. First we deter-
mine ppf (4, 7):

1. By Conditions (i) - (iv) only {(3, 4)} remains.

2. Now f(4− 3+ 1)+ 3 = f(2)+ 3 = 7, but f(4− 4+ 1)+ 4 = f(1)+ 4 = 6 < 7.

3. Thus ppf (4, 7) = ∅.

We will see in Theorem 13.10 that from this we can conclude µnM(4) ≤ 6 (there is
no “formal” possibility to reach the min-var degree of 7 for deficiency 4). Now we
determine ppf (4, 6):

1. By Conditions (i) - (iv), {(2, 4), (3, 3)} are the possibilities.

2. Checking Condition (v) for (2, 4): f(4− 2 + 1) + 2 = f(3) + 2 = 7, f(4− 4 +
1) + 4 = f(1) + 4 = 6.

3. Checking Condition (v) for (3, 3): f(4− 3 + 1) + 3 = f(2) + 3 = 7.

4. Thus ppf (4, 6) = {(2, 4), (3, 3)}.

The intuitive meaning of this is, that a min-var-degree of 6 can not be excluded by
this type of formal reasoning, and 6 is the first new value according to this reasoning
for [2, 4, 5].

We invite the reader to compute the following special case of what we show later
(in the proof of Theorem 14.6; it might also be useful to consider Table 2):

Example 13.6 ppnM(13, 17) = {(8, 9)}, while for any valid bounds-function f with
f(k) = nM(k) for k ∈ {1, . . . , 5} and f(6) = nM(6)− 1 = 8 holds ppf (13, 17) = ∅.

If we have a potential degree-pair for m, then also for m′ ≤ m:

Lemma 13.7 Consider k,m,m′ ∈ N with k ≥ 2 and 4 ≤ m′ ≤ m, and consider a
valid bounds-function f . If ppf (k,m) 6= ∅, then also ppf (k,m

′) 6= ∅.

Proof: Consider (e0, e1) ∈ ppf (k,m). Consider any 2 ≤ e′0 ≤ e0 and 2 ≤ e′1 ≤ e1
with e′0 ≤ e′1 and e′0 + e′1 = m′. Now f(k − e′ε + 1) + e′ε ≥ f(k − eε + 1) + e′ε =
f(k−eε+1)+eε−eε+e′ε ≥ m−eε+e′ε = m−(m−eε)+(m′−e′ε) = eε+m

′−e′ε ≥ m′

for ε ∈ {0, 1}, and thus (e′0, e
′
1) ∈ ppf (k,m

′) 6= ∅. �

Using a smaller bounds-function can not yield more potential degree-pairs, as is
obvious from Definition 13.4:

Lemma 13.8 Consider k,m ∈ N with k ≥ 2, m ≥ 4, and valid bounds-functions
f1, f2 with f1 ≤ f2 (pointwise). Then ppf1(k,m) ⊆ ppf2

(k,m). Especially for any
valid bounds-function f holds pp(k,m) ⊆ ppf (k,m).

Again directly by definition (using monotonicity of valid bounds functions) we
get that increasing k while keeping m can not remove potential degree-pairs:

Lemma 13.9 Consider k,m ∈ N with k ≥ 2, m ≥ 4, and a valid bounds-function
f . Then ppf (k,m) ⊆ ppf (k + 1,m).

The main use of potential degree-pairs is to provide upper bounds on µnM(k):

Theorem 13.10 Consider k,m ∈ N with k ≥ 2, m ≥ 4, and a valid bounds-
function f . If ppf (k,m) = ∅, then µnM(k) < m.
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Proof: Assume µvd(MUδ=k) ≥ m. Then there is F ∈ SMU ′
δ=k with µvd(F ) ≥ m

(using Corollary 5.5). Consider v ∈ varµvd(F ); if ldF (v) ≤ ldF (v) holds, then let
e := (ldF (v), ldF (v)), while otherwise flip the components of this pair. Now we have
e ∈ pp(k, µvd(F )) (using Remark 2 to Definition 13.4), and thus ppf (k,m) 6= ∅ by
Lemmas 13.7, 13.8, contradicting the assumption. �

13.2 Recursion on potential degree-pairs

Via potential degree-pairs and Theorem 13.10, we obtain a method for improving
valid bounds-functions:

Lemma 13.11 Consider f ∈ VB. We obtain f ′ ∈ VB recursively as follows:

1. f ′(1) := 2.

2. For k > 1 consider the largest 4 ≤ m ≤ 2k such that ppf ′(k,m) 6= ∅, using
Remark 4 to Definition 13.4 (that we only need f ′(k′) for k′ < k).

3. Now f ′(k) := min(m, f(k)).

Proof: f ′(k) is well-defined for k > p due to Remark 1 to Definition 13.4. That
f ′ is valid follows by induction as follows. We have to show f ′(k) ≤ f ′(k + 1) and
µnM(k) ≤ f ′(k) for all k ∈ N. For k = 1 both properties are true by definition.
And the induction step follows for monotonicity by Lemma 13.9, and for the upper-
bound-condition by Theorem 13.10. �

The mapping f ∈ VB 7→ f ′ ∈ VB we call the “non-Mersenne operator”:

Definition 13.12 For f ∈ VB let the f ′ ∈ VB according to Lemma 13.11 be de-
noted by NM(f) := f ′ (defined via “recursion on potential degree-pairs”); we call
NM : VB → VB the “non-Mersenne operator”.

The basic properties of the non-Mersenne operator are that of a kernel operator,
which are order-theoretic properties as follows:

Lemma 13.13 The map NM : VB → VB is a kernel operator of the complete
lattice VB, that is, for all f, g ∈ VB holds:

1. NM(f) ≤ f (intensive)

2. NM(NM(f)) = NM(f) (idempotent)

3. f ≤ g ⇒ NM(f) ≤ NM(g) (monotonically increasing).

Proof: Intensitivity follows by definition of NM (note that in Lemma 13.11 we
have defined f ′(k) such that f ′(k) ≤ f(k) holds). Also idempotence follows directly
from the definition in Lemma 13.11, namely that f ′(k) for k > 1 already uses the
improved values f ′(k′) for k′ < k. Monotonicity follows by Lemma 13.8. �

By Lemma 13.13 we get that NM(f) for f ∈ VB is the supremum of the set of
f ′ ≤ f with NM(f ′) = f ′. By Theorem 13.10 we get NM(µnM) = µnM. In order
to show that the non-Mersenne operator at most reproduces nM, that is, for all
f ∈ VB holds NM(f) ≤ nM, we need to provide potential degree-pairs for nM:

Lemma 13.14 For k ≥ 2 we have (recall Definition 7.13):

1. (h(k), inM(k)) ∈ ppnM(k, nM(k)).
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2. ppnM(k, nM(k) + 1) = ∅.

Proof: Let m := nM(k). For Part 1 let e0 := h(k), e1 := inM(k); so we have to
show (e0, e1) ∈ ppnM(k,m). Consider the conditions (i) - (v) in Definition 13.4. We
have e0 ≥ 2, since nM ≥ 2 in general, and e1 ≥ 2 by Definition 7.8. As shown in
Corollary 7.11 we have e0 ≤ e1, where e1 ≤ k by definition. Furthermore we have
e0 + e1 = m by Lemma 7.10, Part 3. Altogether we have now shown conditions
(i) - (iv), and it remains to show that nM(k − eε + 1) + eε ≥ m holds for both
ε ∈ {0, 1}; for ε = 1 we have equality, as already remarked, and it remains to show
nM(k − e0 + 1) + e0 ≥ m, which is equivalent to

nM(k − e0 + 1) ≥ inM(k).

By Definition 7.8 of inM(k) (as the smallest i) this is implied by nM(k − e0 + 1) ≥
nM(k − nM(k − e0 + 1) + 1). By the monotonicity of nM this is implied by e0 ≤
nM(k− e0 +1), i.e., nM(k− inM(k) + 1) ≤ nM(k− e0 +1). Again by monotonicity,
this is implied by inM(k) ≥ e0, i.e., e1 ≥ e0, which we have already shown.

For Part 2 we have to show ppnM(k,m+1) = ∅. Assume that we have (e0, e1) ∈
ppnM(k,m+ 1) according to Definition 13.4. Thus we have nM(k − e1 + 1) + e1 ≥
m+1, where 2 ≤ e1 ≤ k. Because of e0+e1 = m+1 and e0 ≤ e1 we get e1 ≥ 1

2 (m+1),
whence min(2·e1, nM(k−e1+1)+e1) ≥ m+1, and thus nM(k) ≥ m+1 by Definition
7.1. �

We obtain an alternative recursion for nM(k) (recall Definition 7.1):

Theorem 13.15 NM([2]) = NM(nM) = nM.

Proof: By Definition 13.12 and Lemma 13.14 we get NM([2]) = nM. Since NM is
idempotent, we also get NM(nM) = nM. �

So the non-Mersenne operator yields nM in the worst-case:

Corollary 13.16 NM : VB → VB∗, that is, for every f ∈ VB holds NM(f) ≤ nM.

14 Strengthening of the mvd upper bound for MU

In this final section many techniques introduced in this report come together, and
we give some initial sharpness results (considering small deficiencies), and some
non-sharpness results in the form of improved bounds (improving nM for infinitely
many deficiencies). In Subsection 14.1 we determine µnM(k) for 1 ≤ k ≤ 6 as values
2, 4, 5, 6, 8, 8, where the main achievement is Theorem 14.3, showing µnM(6) = 8 =
nM(6) − 1. Applying the non-Mersenne operator, we obtain the improved upper
bound µnM(k) ≤ nM1(k) in Subsection 14.2, where nM1 is like nM, but with a
duplication after the jump positions, that is, ∆nM(k) = ∆nM1(k) = 2 is followed
by ∆nM1(k + 1) = ∆nM(k + 1)− 1 = 0.

14.1 Deficiencies 1, . . . , 6

We now show that the first deficiency k, for which the bound µnM(k) ≤ nM(k) is
not sharp, is k = 6. First we show sharpness for the first five values:

Theorem 14.1 For k ∈ {1, . . . , 5} we have µnM(k) = µvd(UHITδ=k) = nM(k).

Proof: We have to give examples showing that the upper bound nM(k) is attained
for examples in UHITδ=k). Lemma 12.10 covers deficiencies k = 1, 2, 5, namely
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1. A1 ∈ UHITδ=1 has fc(A1) = 2 = nM(1) (recall Example 3.2).

2. A2 ∈ UHITδ=2 has fc(A2) = 4 = nM(2) (recall Example 3.3).

3. A3 ∈ UHITδ=5 has fc(A3) = 8 = nM(5).

Deficiency k = 4 is a jump position, and thus covered by Lemma 12.11, where the
example is as follows:

4. For F4 := {{1, 2}, {−1, 2, 3}, {1,−2, 3}, {−1,−2, 3}, {−1, 2,−3}, {1,−2,−3},
{−1,−2,−3}} we have F4 ∈ UHITδ=4 with fc(F4) = 6 = nM(4).

The remaining case k = 3 we obtain via strict full subsumption resolution from F4:

5. For F3 := {{1, 2}, {−1, 3}, {1,−2, 3}, {−1, 2,−3}, {1,−2,−3}, {−1,−2,−3}}
we have F3 ∈ UHITδ=3 with µvd(F3) = 5 = nM(3). �

We note that example F3 in the proof of Theorem 14.1 shows νfc(UHITδ=3) =
νfc(MUδ=3) = 4 (together with Lemma 12.16, Part 3). In the sequel of this sub-
section we consider k = 6. A computation shows that there is only one potential
degree-pair for the min-var-degree as given by nM(6) = 9:

Lemma 14.2 ppnM(6, 9) = {(4, 5)}.

Proof: Conditions (i) - (iv) of Definition 13.4 yield ppnM(6, 9) ⊆ {(3, 6), (4, 5)}.
Condition (v) excludes (3, 6), since we have µvd(MUδ=6−6+1) + 6 = 8 6≥ 9, while
(4, 5) fulfils this condition due to nM(6−4+1)+4 = 5+4 ≥ 9 and nM(6−5+1)+5 =
4 + 5 ≥ 9. �

However, the potential degree-pair of Lemma 14.2 actually can not be realised,
and thus µnM(6) < nM(6):

Theorem 14.3 νfc(UHITδ=6) = νfc(MUδ=6) = µvd(UHITδ=6) = µnM(6) = 8 =
nM(6)− 1.

Proof: νfc(UHITδ=6) ≥ 8 is confirmed by the variable-clause matrix









+ + + − + − − − + −
+ + + + + + + + − −
+ + − + − + − − 0 0
+ − + + − − + − 0 0









(where unsatisfiability is given by 8 · 2−4 + 2 · 2−2 = 1).
Assume now that there exists F ∈ MUδ=6 with µvd(F ) = 9. By Lemmas

5.3, 5.4 w.l.o.g. we can assume that F is saturated and non-singular. By Theorem
6.13 we know n(F ) ≥ 4. Consider v ∈ var(F ) with vdF (v) = 9. W.l.o.g. we
assume ldF (v) ≥ ldF (v). By Lemma 14.2 we have ldF (v) = 5, ldF (v) = 4, and
δ(F0) = 6− 4 + 1 = 3, δ(F1) = 6− 5 + 1 = 2.

Let the 5 occurrences of v in F be C1, . . . , C5 ∈ F , and let C′
i := Ci \ {v}. And

let the 4 occurrences of v in F be D1, . . . , D4 ∈ F , and let D′
i := Di \ {v}. Using

G := {C ∈ F : v /∈ var(C)} = F \ {C1, . . . , C5, D1, . . . , D4} we get

F0 = {C′
1, . . . , C

′
5} ·∪G

F1 = {D′
1, . . . , D

′
4} ·∪G

where c(F0) = 5 + c(G) = c(F )− 4 and c(F1) = 4 + c(G) = c(F )− 5.
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Consider first F0 ∈ MUδ=3. We have µvd(F0) ≥ 9−4 = 5, and thus µvd(F0) = 5
(due to µvd(F0) ≤ nM(3) = 5). Every variable w ∈ var(F0) realising the min-var-
degree of F0 has at least 9 occurrences in F , from which at most 4 are eliminated,
and thus actually such variables have vdF (w) = 9, and furthermore w ∈ var(Di)
for all i ∈ {1, . . . , 4}. By Lemma 8.5, Part 1, there exist two different variables
u1, u2 ∈ var(F0) with vdF0

(ui) = 5 for i ∈ {1, 2}, and so we have |Di| ≥ 3 for all
i ∈ {1, . . . , 4}.

Now consider F1 ∈ MUδ=2. We have µvd(F1) ≥ 9 − 5 = 4, thus µvd(F1) = 4
(due to µvd(F1) ≤ nM(2) = 4), and thus by Lemma 5.13 F1 is non-singular iff F1

does not contain unit-clauses. If F1 would contain a unit-clause, then there would be
a binary clause {v, x} ∈ F , contradicting that all Di contain at least three literals.
So F1 is non-singular, and thus F1 is isomorphic to some Fm for some m ≥ 2. So
F1 is 4-variable-regular, where all the variables of F1 have at least 9 occurrences in
F , and thus we have var(F1) ⊆ var(C′

i) for all i ∈ {1, . . . , 5}, which implies that
actually var(C′

i) = var(F1) = var(F0) holds.
Coming back to the structure of F0, we now know that F0 has five full clauses

C′
1, . . . , C

′
5, which contradicts Lemma 12.16, Part 3. �

14.2 Sharpening the bound

Based on recursion on potential degree-pairs, we can improve the upper bound
nM(k) for µvd(MUδ=k) for k ≥ 6 (generalising Example 13.6):

Definition 14.4 Let nM1 : N → N be defined as nM1 := NM([2, 4, 5, 6, 8, 8]) (recall
Definition 13.12).

By Lemma 13.11 together with Theorem 14.3 we get:

Theorem 14.5 For all k ∈ N we have µnM(k) ≤ nM1(k).

It remains to determine nM1 numerically:

Theorem 14.6 In Table 3 we find the values of nM1(k) for k ≤ 30. We have
nM1(k) = nM(k) for k /∈ {2m −m+ 1 : m ∈ N,m ≥ 3}, while for k = 2m −m+ 1
we have nM1(k) = nM(k)− 1 = 2m.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nM1(k) 2 4 5 6 8 8 10 11 12 13 14 16 16 18 19

k 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

nM1(k) 20 21 22 23 24 25 26 27 28 29 30 32 32 34 35

Table 3: Values of nM1(k) for k ∈ {1, . . . , 30}, in bold the jump-values (i.e., k ∈ J),
and underlined the changed values compared to nM(k); we see that directly after
the jump we have stagnation, followed by a second jump.

Proof: We show the formula for nM1(k) via induction on k. Due to 23− 3+1 = 6
it holds for k ≤ 6. So assume k ≥ 7. We show by induction on k ≥ 7 the following
two properties (which imply the assertions of the theorem):

1. For k = 2m −m+ 1, m ≥ 4, we have

(a) ppnM1
(k, nM(k)) = ∅ and

(b) and ppnM1
(k, nM(k)− 1) 6= ∅.
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2. Otherwise ppnM1
(k, nM(k)) 6= ∅.

By Lemma 13.13 we know nM1 ≤ nM.

Part 1. We consider k = 2m −m+ 1, m ≥ 4. We have nM(k) = 2m + 1.
Part (a). To show ppnM1

(2m − m + 1, 2m + 1) = ∅, we assume (e0, e1) ∈
ppnM1

(2m − m + 1, 2m + 1). Thus we know e0, e1 ≥ 2, e0, e1 ≤ 2m − m + 1,
e0 + e1 = 2m + 1, e0 ≤ e1, whence e0 ≤ 2m−1, and

nM1(2
m −m+ 1− eε + 1) + eε ≥ 2m + 1 (1)

for both ε ∈ {0, 1}.
Case (a.1). Assume e0 ≤ 2m−1 − 1, and thus e1 ≥ 2m−1 + 2.
From (1) we get nM(2m−m+1− e1+1)+ e1 ≥ 2m+1, where (using Corollary

7.6):

nM(2m −m+ 1− e1 + 1) + e1 ≥ 2m + 1 ⇒

nM(2m −m+ 1− (2m−1 + 2) + 1) + 2m−1 + 2 ≥ 2m + 1 ⇔

nM(2m−1 −m) ≥ 2m−1 − 1,

where by Corollary 7.24 we have nM(2m−1 − m) = nM(2m−1 − (m − 1) − 1) =
2m−1 − 2, and we obtained a contradiction, finishing Case (a.1).

Case (a.2). It remains e0 = 2m−1. From (1) we get nM1(2
m−m+1−e0+1)+

e0 ≥ 2m+1, where 2m−m+1−e0+1 = 2m−m+1−2m−1+1 = 2m−1−(m−1)+1, and
thus by induction hypothesis we get nM1(2

m−m+1−e0+1)+e0 = 2m−1+2m−1 =
2m, a contradiction. This concludes Part (a).

Part (b). We show (2m−1, 2m−1) ∈ ppnM1
(k, nM(k)−1).15) For this it remains

to show nM1(2
m −m + 1 − 2m−1 + 1) + 2m−1 ≥ 2m, and indeed nM1(2

m −m +
1 − 2m−1 + 1) = nM1(2

m−1 − (m− 1) + 1) = 2m−1 by induction hypothesis. This
concludes Part 1.

Part 2. k 6= 2m −m+ 1 for any m ≥ 4. We have to show ppnM1
(k, nM(k)) 6= ∅.

Part (a). k = 2m −m+ 2; thus nM(k) = 2m + 2.
We have (2m−1, 2m−1 + 2) ∈ ppnM1

(k, 2m + 2)16), due to nM1(2
m − m + 2 −

2m−1 + 1) + 2m−1 = nM1(2
m−1 − (m − 1) + 2) + 2m−1 = 2m−1 + 2 + 2m−1 and

nM1(2
m−m+2− (2m−1+2)+1)+2m−1+2 = nM1(2

m−1− (m− 1))+2m−1+2 =
2m−1 + 2m−1 + 2.

Part (b). k = 2m −m+ 3; thus nM(k) = 2m + 3.
We have (2m−1, 2m−1 + 3) ∈ ppnM1

(k, 2m + 3)17), due to nM1(2
m − m + 3 −

2m−1 + 1) + 2m−1 = nM1(2
m−1 − (m − 1) + 3) + 2m−1 = 2m−1 + 3 + 2m−1 and

nM1(2
m−m+3− (2m−1+3)+1)+2m−1+3 = nM1(2

m−1− (m− 1))+2m−1+3 =
2m−1 + 2m−1 + 3.

For all remaining cases

2m −m+ 4 ≤ k ≤ 2m+1 − (m+ 1)

we show (e0, e1) := (h(k), inM(k)) ∈ ppnM1
(k, nM(k)), as in Lemma 13.14, Part 1.

Recall Corollary 7.25 for the computation of inM(k).
For the critical condition “nM1(k−e1+1)+e1 ≥ nM(k)” we recall k−inM(k)+1 =

i′(k) (recall Definition 7.13), where i′(k) is monotonically increasing. We want to

15)We have (2m−1, 2m−1) = (h(k), inM(k)− 1), but we don’t need this here.
16)We have (2m−1, 2m−1 + 2) = (h(k)− 1, inM(k) + 1).
17)We have (2m−1, 2m−1 + 3) = (h(k)− 1, inM(k) + 1).
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show that i′(k) is never equal to some argument where nM1 6= nM, and thus we
need to check the upper and the lower bounds:

For k = 2m−m+4 holds inM(k) = 2m−1+2, thus i′(k) = 2m−m+4− (2m−1+
2) + 1 = 2m−1 −m+ 3 > 2m−1 − (m− 1) + 1.

For k = 2m+1−(m+1) holds inM(k) = 2m, thus i′(k) = 2m+1−(m+1)−2m+1 =
2m −m < 2m −m+ 1.

So all critical condition s for e1 are fulfilled, and it remains to check e0.
Part (c). 2m −m+ 4 ≤ k ≤ 2m+1 − (m+ 1)− 2.
Here for the critical conditions “nM1(k − e0 + 1) + e0 ≥ nM(k)” the values

k−e0+1 are never equal to some argument where nM1 6= nM, since ∆(k−h(k)+1) =
1−∆h(k) ≥ 0 for k ≤ 2m+1 − (m+ 1)− 2 by Theorem 7.15, and thus k− h(k) + 1
is monotonically increasing for the k-range we consider.

Checking for the lower bound k = 2m − m + 4: inM(k) = 2m−1 + 2, thus
h(k) = nM(k) − inM(k) = 2m + 4 − 2m−1 − 2 = 2m−1 + 2, which is the same as
inM(k), and doesn’t need to be checked again.

Checking for the upper bound k = 2m+1 − (m + 1) − 2: inM(k) = 2m − 1, and
thus h(k) = nM(k) − inM(k) = 2m+1 − 3 − 2m + 1 = 2m − 2, and so we check
2m+1 − (m+ 1)− 2− (2m − 2) + 1 = 2m −m < 2m −m+ 1.

Part (d). k = 2m+1 − (m+ 1)− 1; thus nM(k) = 2m+1 − 2.
Now inM(k) = 2m, and so h(k) = nM(k) − inM(k) = 2m − 2, and so the critical

argument is 2m+1 − (m+ 1)− 1− (2m − 2) + 1 = 2m −m+ 1. It remains to check
nM1(2

m −m+ 1) + 2m − 2 ≥ 2m+1 − 2, and indeed nM1(2
m −m+ 1) + 2m − 2 =

2m + 2m − 2.
Part (e). k = 2m+1 − (m+ 1); thus nM(k) = 2m+1.
Now h(k) = 2m = inM(k), and no check is needed. �

It is instructive to note the new ∆-values explicitly:

Corollary 14.7 For k ∈ N holds ∆nM1(k) ∈ {0, 1, 2}, with

1. ∆nM1(k) = 0 ⇐⇒ k = 2m −m for some m ∈ N, m ≥ 3.

2. ∆nM1(k) = 2 ⇐⇒ k = 2m −m± 1 for some m ∈ N, m ≥ 3.

15 Conclusion and open problems

The main subject of this report can be seen in the study of µvd(Cδ=k) for classes
UHIT ⊆ C ⊆ MLEAN and k ∈ N, that is, the study of the maximal minimum
variable-degree of classes of matching-lean clause-sets containing all minimally un-
satisfiable clause-sets, parameterised by the deficiency. If C ⊆ LEAN , then this
quantity is bounded, and indeed we have shown µvd(LEANδ=k) = nM(k) (more
generally this holds for every subclass of LEAN containing VMU). While for
C = MLEAN this quantity is unbounded. For MU we have shown the improved
bound µvd(MUδ=k) ≤ nM1(k), where indeed also this bound is not sharp (as will
be shown in [68]; see Subsection 15.2) — the question about the determination of
µnM(k) = µvd(MUδ=k) is a major open research question.

For lean clause-sets we have shown the strengthened upper bound µvd(F ) ≤
nM(σ(F )), and indeed for every clause-set F we can satisfiability-equivalently re-
move some clauses in polynomial time such that this upper bound holds.

15.1 Conjectures and questions

We made the following conjectures:
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1. Conjecture 10.3: If a clause-set violates the upper bound on the min-var-
degree for lean clause-sets, then it must have a non-trivial autarky. As we have
seen, we can determine the set of variables involved, but the determination
of the autarky itself is open — the conjecture states that there is a poly-
time algorithm for computing such an autarky. See Subsection 10.2 for more
information on this topic.

2. Conjecture 12.2: the maximum min-var-degree for unsatisfiable hitting clause-
sets is the same as for the larger class of minimally unsatisfiable clause-sets.
In Conjecture 15.5 we generalise this to non-boolean clause-sets.

3. Conjecture 12.3: nM is not far away from the µnM, more precisely, nM−1 ≤
µnM ≤ nM. The stronger Conjecture 12.5: the same holds even for the
maximal number of full clauses, that is, nM(k) − 1 ≤ νfc(MUδ=k) ≤ nM(k)
for all k ∈ N. In Lemma 15.3 we will state a weaker, but proven (in future
work) lower bound.

Five more conjectures will be presented in this final section. We asked also the
following questions:

1. Question 3.10 is about some complexity problems around the elimination of
literal occurrences in minimally unsatisfiable clause-sets.

2. Question 9.6 is about the complexity of SAT decision for SED. At first sight it
might seem easy to translate every F ∈ CLS into some sat-equivalent element
of SED, and in fact to manipulate deficiency and surplus alone is rather easy,
but we do not know how to handle them together.

3. Question 10.12 concerns the existence of unsatisfiable hitting clause-sets of
arbitrary surplus equal deficiency and a min-var-degree as low as possible.
An underlying question is to understand better the quantity “surplus”.

4. Question 11.2 is about strengthening the construction of Lemma 11.1, for find-
ing matching-lean clause-sets of high minimum literal-degree (perhaps com-
pletely different constructions are needed).

In the remainder we outline main research areas related to the topics of the
report.

15.2 Improved upper bounds for µnM

We know µnM ≤ nM1, and we know µnM(k) precisely for k ∈ {1, . . . , 6} and for
k ∈ J, J + 1. Also of high relevance here is to determine µvd(UHITδ=k), which by
Conjecture 12.2 is the same on µnM(k). Another major conjecture is Conjecture
12.3, which says that µnM deviates at most by 1 from nM. Beyond this article, we
know the following improvements of the upper bound nM1:

• Generalising the ideas of Theorem 14.3, which is based on the improved upper
bound for deficiency 23 − 3 + 1 = 6, we can show also for deficiency k =
24 − 4 + 2 = 14 that we have µvd(MUδ=k) = nM(k) − 1. Via the non-
Mersenne operator, this yields the improved upper bound nM2.

• Altogether we obtain a sequence of improved upper bounds nMm−2 form ∈ N,
m ≥ 3, improving the upper bound at deficiency k = 2m − 2 for nMm−3 and
applying the non-Mersenne operator.

• The infimum of nM1, nM2, . . . is nMω. This will be developed in [68].
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• However, this is not the end of it — also for deficiency k = 15 we have
µvd(MUδ=k) = nM(k)−1, obtaining nMω+1. This new improvement depends
on new ideas — will there be an infinite chain of ever-increasing complexity
of such improvements?

We believe that a closed “nice” formula for µnM(k) is impossible, but that
however computation is possible:

Conjecture 15.1 The function µnM : N → N is “complex”, and for no finite tuple
~a holds NM(~a) = µnM, however µnM is computable in doubly-exponential time.

See Lemma 15.9 for some conditions which imply the computability-part of Con-
jecture 15.1.

15.3 Determining νfc(MUδ=k)

While Subsection 15.2 was about improving the upper bound, here now we turn
to the lower bound. In Subsection 12.2 we provided only the minimum needed in
this report for the measure fc(F ) of full clauses. In the forthcoming [66] we show
the following lower bound, using S2 : N → N, the function for the “Smarandache
Primitive Numbers” introduced in [92, Unsolved Problem 47], which for k ∈ N is
defined as the minimal natural number s ∈ N such that 2k divides s!.

Lemma 15.2 ([66]) For all k ∈ N holds νfc(UHITδ=k) ≥ S2(k).

Lemma 15.2 yields the interesting inequality S2 ≤ µnM ≤ nM. This is relevant as
the upper bound nM on S2 as well as the lower bound S2 on µnM. From [97] we
get that k + 1 ≤ S2(k) and thus by Corollary 7.22 we get

Lemma 15.3 ([66]) k + 1 ≤ S2(k) ≤ nM(k) ≤ k + 1 + fld(k) for k ∈ N.

Recall that in Lemma 12.4 we obtained a much sharper lower bound for µnM(k)
from Conjecture 12.3. For sequences a, b : N → R let asymptotic equality be denoted
by a ∼ b :⇔ limn→∞

an

bn
= 1.

Corollary 15.4 ([66]) The six sequences S2(k), νfc(UHITδ=k), νfc(MUδ=k),
µvd(MUδ=k), µnM(k), nM(k) are asymptotically equal to (k)k∈N (these are known
facts for S2(k) and nM(k)).

In Figure 1 we show the six quantities from Corollary 15.4 and the relations
between them (we do not mention the dependencies on the deficiency k ∈ N there).
An arrow means a (proven) ≤-relation. If the arrow is labelled with “−1”, then we
conjecture the difference is at most −1 (while in all three cases we know cases where
the difference is equal to −1), the label “=” means that we conjecture equality, and
the label “∞” means that we conjecture that the difference is unbounded.

For a more precise asymptotic determination of these six quantities from Corol-
lary 15.4, calling them ak, we need to consider the six sequences ak − k. Currently
we only know nM(k)− k ∼ ld(k).

15.4 Generalisation to non-boolean clause-sets

It is interesting to generalise Theorem 8.3 for generalised clause-sets; see [57, 58]
for a systematic study, while the most general notion of generalised clause-sets,
“signed clause-sets” are discussed in [6]. Generalised clause-sets F have literals
(v, ε), meaning “v 6= ε”, for variables v with non-empty finite domains Dv and
values ε ∈ Dv. The deficiency is generalised by giving every variable a weight
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Figure 1: The four main combinatorial quantities, and the two numerical functions

|Dv|−1 ∈ N0 (which is 1 in the boolean case), i.e., δ(F ) = c(F )−
∑

v∈var(F )(|Dv|−

1) = c(F ) + n(F ) −
∑

v∈var(F )|Dv|; see [57, Subsection 7.2]. A partial assignment

is a map ϕ with some finite set of variables as domain dom(ϕ) =: var(ϕ), which
maps v ∈ var(ϕ) to ϕ(v) ∈ Dv. A partial assignment ϕ satisfies a clause-set F
iff for every C ∈ F there is (v, ε) ∈ C with v ∈ var(ϕ) and ϕ(v) 6= ε. Minimally
unsatisfiable (generalised) clause-sets are defined as usual (they are unsatisfiable,
while every strict subset is satisfiable). In [57, Corollary 9.9] it is shown that also
all minimally unsatisfiable generalised clause-sets F fulfil δ(F ) ≥ 1 (based, like in
the boolean case, on matching autarkies).

The degree vdF (v) of a variable v in a clause-set F is the sum of the degrees of
the literals (v, ε) for ε ∈ Dv, and thus vdF (v) = |C ∈ F : C∩ ({v}×Dv) 6= ∅|. For a
given deficiency k ∈ N, the basic question is to determine the supremum of µvd(F )
over all minimally unsatisfiable F with δ(F ) = k. The base case of deficiency k = 1
is handled in [58, Lemma 5.4], showing that for generalised minimally unsatisfiable
clause-sets of deficiency 1 we have µvd(F ) ≤ maxv∈var(F )|Dv|; actually all structural
knowledge from [3, 17, 49] has been completely generalised in [58, Subsection 5.2].

But k ≥ 2 requires more work, since here the basic method of saturation is not
available for generalised clause-sets, as discussed in Subsection 5.1 in [58]: saturated
generalised clause-sets (i.e., unsatisfiable clause-sets, where no literal occurrence
can be added without rendering the clause-set satisfiable) with deficiency at least
2 after splitting do not necessarily generate minimally unsatisfiable (generalised)
clause-sets. Thus the proofs for the boolean case seem not to be generalisable for
arbitrary minimally unsatisfiable (generalised) clause-sets.

In order to repair this, the “substitution stability parameter regarding irredun-
dancy” sir(F ) ∈ Z≥−1 ·∪{+∞} is introduced in [58, Subsection 5.3]), defined as
the supremum of k ∈ Z≥−1 such that for every partial assignment with n(ϕ) :=
|var(ϕ)| ≤ k the clause-set ϕ ∗ F , obtained as usual by application of ϕ to F ,
is minimally unsatisfiable. So sir(F ) ≥ 0 iff F is minimally unsatisfiable, and as
shown in [58, Corollary 4.8], sir(F ) = +∞ iff F is a hitting clause-set (i.e., for all
C,D ∈ F , C 6= D, there are x ∈ C, y ∈ D with x = (v, ε) and y = (v, ε′) for some
variable v and ε, ε′ ∈ Dv with ε 6= ε′). And sir(F ) ≥ 1 iff splitting on any variable
yields always a minimally unsatisfiable clause-set. So for a boolean clause-sets F
holds sir(F ) ≥ 1 iff F is saturated, but for generalised clause-sets we only have that
sir(F ) ≥ 1 implies saturatedness ([58, Corollary 5.3]).
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In Corollary 5.10 in [58] one finds a generalisation of the basic bound µvd(F ) ≤
2δ(F ) for the boolean case. Namely µvd(F ) ≤ maxv∈var(F )|Dv| · δ(F ) is shown for
F with sir(F ) ≥ 1. Since for (generalised) saturated F with δ(F ) = 1 we have
sir(F ) = ∞ ([58, Corollary 5.6]), this covers the above mentioned result µvd(F ) ≤
maxv∈var(F )|Dv| for (arbitrary) minimally unsatisfiable F with δ(F ) = 1 (note that
here saturation works as in the boolean case).

In [66] we concentrate on unsatisfiable hitting (generalised) clause-sets, and via
generalised non-Mersenne numbers nMd(k) we are able to generalise Theorem 8.3
to generalised clause-sets. We believe that in general the minimum variable degree
of minimally unsatisfiable clause-sets F with sir(F ) ≥ 1 for a given deficiency is
always obtained by unsatisfiable hitting clause-sets (generalising Conjecture 12.3):

Conjecture 15.5 Let UHIT d
δ=k denote the set of generalised unsatisfiable hitting

clause-sets of deficiency k ∈ N and with uniform domain-size d ∈ N, and let
MUd

δ=k,sir≥1 be defined in the same way. Then we have for all k, d ∈ N that

µvd(UHIT d
δ=k) = µvd(MUd

δ=k,sir≥1).

Furthermore, the “2” in S2(k) in Lemma 15.2 is related to the boolean domain,
and generalising the results of this report in [66] to the non-boolean domain sheds
light on Sd(k) (the minimal s ∈ N such that dk divides s!) for arbitrary prime
numbers d ∈ N, as introduced in [92, Unsolved Problem 49] (while for non-prime-
numbers d the definition of Sd has to be generalised). See Subsection III.1 in [39]
for basic properties of Sp(k).

15.5 Classification of MU

As mentioned in the introduction, a major motivation for us is the project of the
classification of minimally unsatisfiable clause-sets in the deficiency (recall Examples
3.2, 3.3), where the main conjecture is:

Conjecture 15.6 For every deficiency k ∈ N there are finitely many “patterns”
which determine the nonsingular elements of MUδ=k, as well as the saturated and
hitting cases amongst them. Especially for every k the isomorphism types of MU ′

δ=k

can be efficiently enumerated (without repetitions), and for any given F ∈ MU ′
δ=k

its isomorphism type can be determined in polynomial time.

Conjecture 15.6 has been shown for k ≤ 2 (recall Examples 3.2, 3.3). As we dis-
cussed in Subsection 1.6.1, the translation e : CLS → HYP has the property
F ∈ MUδ=k ⇔ e(F ) ∈ MNCδH=k−1 for k ∈ N, and so the classification of MUδ=k

can be seen as a subtask of the classification of MNCδH=k for k ∈ N0. The possibil-
ity of a characterisation of MNCδH=0 was already raised in [3] (where concentration
on the special case of saturated (“strong” there) minimally non-2-colourable hyper-
graphs was recommended), but is indeed still outstanding, which is understandable,
given that polytime decision of MUδ=1 is easy when compared with polytime deci-
sion of MNCδH=0. In the other direction, the consideration of MUδh=k ⊂ MUδ≤k

(recall Subsection 1.6.5) could be a stepping stone (recall MUδh=1 = UHITδ=1).
A major step towards Conjecture 15.6 should be the classification of unsatis-

fiable hitting clause-sets in dependency on the deficiency. We remark here that
unsatisfiable hitting clause-sets do not seem to have a close correspondence in hy-
pergraph colouring, due to the lack of complementation in hypergraphs. Here the
main conjecture (which should follow from Conjecture 15.6, once we found the pre-
cise formulation of “finitely many patterns”) is:
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Conjecture 15.7 For every deficiency k ∈ N there are only finitely many iso-
morphism types of non-singular unsatisfiable hitting clause-sets, or equivalently, the
number of variables of elements of UHIT ′

δ=k is bounded.

For k ≤ 2 finiteness has been established (Examples 3.2, 3.3), while recently we
were able to prove it for k = 3 ([67]). Assuming Conjecture 15.7, the question arises
about the computability of the function, which maps k ∈ N to the set of isomorphism
types. Equivalently one can consider the computability of any function, which maps
k ∈ N to an upper bound on the number of variables of elements of UHIT ′

δ=k. It is
conceivable that such functions must grow so quickly that they are not computable,
we however believe that actually a very small bound holds, and we conjecture the
following strengthened form of Conjecture 15.7:

Conjecture 15.8 For every k ∈ N and every F ∈ UHIT ′
δ=k holds n(F ) ≤ 4k − 5.

This conjecture together with the other conjectures implies computability of
µnM (using Corollary 5.5):

Lemma 15.9 Assume that Conjecture 15.8 holds.

1. Then the map k ∈ N 7→ µvd(UHITδ=k) is computable, by enumerating all
possible clause-sets F with at most 4k−5 variables, checking whether they are
in UHIT ′

δ=k, and if so, including µvd(F ) into the maximum-computation.

2. If also Conjecture 12.2 holds, then the function µnM is also computable.

Conjecture 15.1 says additionally, that although µnM is computable, it should be
“complex”.
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