The Cosmological Constant from a Distant Boundary

Bernard Riley

The cosmological constant Λ is derived from the radius of the observable universe. The corresponding value of vacuum energy density is equal to the value derived from zero-point energy on the boundary, at the scale of the Bohr Radius, of a six-dimensional AdS spacetime. The two length scales are related.

The cosmological constant Λ has the dimensions $[L]^{-2}$ and defines a length scale l_{Λ} . Drawing on the Holographic Principle [1], which declares that the physics of a space is encoded on the boundary of that space, and since Λ is an intrinsic property of the vacuum, we will associate l_{Λ} with the radius of the observable universe, r_u =14,300 Mpc [2].

Now, $r_u = 2.73 \times 10^{61} l_p$, where l_p is the Planck Length, and $r_u^{-2} = 1.34 \times 10^{-123} l_p^{-2}$, which quantity agrees numerically with the value of vacuum energy density $\rho_A = 1.33 \pm 0.08 \times 10^{-123} E_p l_p^{-3}$ [3, 4] calculated from a fit to the base Λ CDM model using WMAP9 data [5]. Since $\rho_A = \Lambda c^4/8\pi G$, we can write $r_u^{-2} = \Lambda/8\pi$, or

$$\Lambda = \frac{8\pi}{r_u^2} \tag{1}$$

and

$$\rho_{\Lambda} = \frac{c^4}{r_u^2 G} \tag{2}$$

Equations (1) and (2) do not describe a universe with an expanding boundary. They are suggestive of a de Sitter universe, although a de Sitter universe with matter content.

On the basis of the AdS/CFT correspondence [6], we have shown that the vacuum energy density may derive from zero-point energy on the boundary of a six-dimensional AdS spacetime, at a length scale equal to the Bohr Radius a_0 [3, 4]. We found that, with $c = G = \hbar = 1$,

$$\rho_{\Lambda} = \frac{1}{2a_0^5} \tag{3}$$

which, at $1.33 \times 10^{-123} E_P l_P^{-3}$, equals the value from WMAP9/ACDM and from (2). From (2) and (3), with $c = G = \hbar = 1$,

$$r_u^2 = 2a_0^5 \tag{4}$$

The explanation of this relationship, (4), will probably involve both dS/CFT [7] and AdS/CFT.

In the Planck Model [8],

$$a_0 = \left(\frac{\pi}{2}\right)^{125} l_P \tag{5}$$

which is equal to 0.529×10^{-10} m. From (3) and (5),

$$\rho_{\Lambda} = \frac{1}{2} \left(\frac{\pi}{2}\right)^{-625} E_{P} l_{P}^{-3} \tag{6}$$

which equals $1.33 \times 10^{-123} E_P l_P^{-3}$. The cosmological constant is then given by

$$\Lambda = 4\pi \left(\frac{\pi}{2}\right)^{-625} l_p^{-2}$$
(7)

which equals $3.34 \times 10^{-122} l_P^{-2}$. From (4) and (5),

$$r_u = 2^{1/2} \left(\frac{\pi}{2}\right)^{625/2} l_P \tag{8}$$

which equals 14,400 Mpc.

References

- 1. G, 't Hooft, Dimensional Reduction in Quantum Gravity, arXiv: gr-qc/9310006
- J. R. Gott III et al, A Map of the Universe, arXiv: astro-ph/0310571; Astrophys. J. 624:463, 2005
- 3. B. F. Riley, *The Cosmological Constant from AdS*₅ x S⁵, viXra: 1307.0107
- 4. B. F. Riley, Another Look at the Cosmological Constant, viXra: 1312.0125
- 5. G. Hinshaw et al, *Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results*, arXiv: 1212.5226v3
- J. Maldacena, *The Large N Limit of Superconformal Field Theories and* Supergravity, arXiv: hep-th/9711200; Adv.Theor.Math.Phys.2:231-52, 1998
- 7. A. Strominger, *The dS/CFT Correspondence*, arXiv: hep-th/0106113; JHEP 0110:034, 2001
- 8. B. F. Riley, The Planck Model, viXra: 1311.0053