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Abstract 
 

The Dirac operator is the general relativistic generalization of Minkowski’s Lorentz 

operator and describes the geometric derivative in general relativity. But while the Dirac 

operator is discussed in length in books about Geometric Algebra, the discussion of the 

Lorentz operator usually is avoided. This leads to a huge didactical gap, as a discussion of 

the geometric derivative in special relativity becomes impossible without reciprocal 

frames. 

These didactical problems are a consequence of three shocks special relativity suffered in 

its youth. 
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1  The tragic death of Hermann Minkowski 
 

Hermann Minkowski untimely died on January 12, 1909, only 44 years of age [12]. His death was a 

tragedy for his family and colleagues. And it was a tragedy for mankind, for he died in the middle of a 

scientific revolution – the revolution of relativity. 

 

Einstein had discovered special relativity in 1905. But he and his colleagues – although trying hard to 

understand its implications and its philosophy – never fully succeeded [20]. They needed the help of a 

mathematical genius like Minkowski with a convincing philosophical background and the ability to 

transform this background into a profound mathematical formulation. Nearly immediately after having 

heard about special relativity Minkowski grasped the philosophical consequences of this new way of 

thinking and started to re-formulate the basic equations of special relativity in a unifying, four-dimen-

sional spacetime picture. But in the middle of this process, Minkowski’s deadly appendicitis hit. 

 

As Einstein shaped the infancy of relativity – he had invented it, – Minkowski shaped the adolescence 

[20, chap. 9] of relativity. Einstein’s baby had become a young and still unsure boy in puberty with 

adolescent disorders, but firmly led by Minkowski into the right direction. And in the midst of this 

crucial age of puberty, Minkowski had to leave the scene. Relativity lost one of its most important 

guiding hands which was a first shock. 

 

The second shock soon followed: Einstein invented general relativity in 1915. Within a blink of an 

eye, within an unbelievable short moment of scientific history, the pubescent relativity had become an 

adult. Relativity was now expected to be a serious, well-behaving grown-up. But it wasn’t. It still was 

an unsure physical programme in an adolescent status looking only from far like a fully developed 

theory. 

 

And soon again a third shock followed: Heisenberg & Pauli, Schrödinger & DeBroglie, Dirac and 

many others invented quantum mechanics. In the eyes of a psychologist, quantum mechanics was the 

younger, but more successful brother of relativity which soon outdid and surpassed relativity. Of 

course all this caused mental disorder and psychological fractions in the development of relativity. We 

still today see and feel these severe frictions in our textbooks of physics. 

 

If relativity had been a human being we would have sent it to a psychiatrist to analyze its unhappy 

youth. The untimely death of Hermann Minkowski was followed by an untimely quick ageing of 

relativity. 

 
2  Teaching general relativity before teaching calculus? 
 

When we teach mathematics at school and high-school, calculus is an elementary and very central part 

of the mathematics curriculum. Usually the elementary rules of differentiating standard functions are 

taught at upper secondary level at schools in Berlin [21] and other states of Germany. And of course 

these lessons are taught before teaching the mathematical structures of curved space and general 

relativity. This makes sense: we are able to discuss derivatives in rectangular coordinates without 

problems. 

 

Unfortunately textbooks about Geometric Algebra reflect the adolescent problems of special relativity 

in a very direct manner: Standard books like [6] – and many others – first introduce reciprocal frames 

with covariant and contravariant coordinates – e.g. section 4.3 at pages 100-103 of [6] – in much the 

same way as it is done in general relativity – e.g. page 65 of [7] or chapters 2 & 3 of [5] – with 

covariant and contravariant vectors. 

 

They only later go on with introducing geometric derivatives. The reason for this order is simple: 

These standard textbooks need to explain reciprocal frames first because the ability to deal with them 
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correctly is a necessary precondition for dealing with spacetime derivatives in the way they are pre-

sented in these textbooks – they all apply the Dirac operator. 

 

But should we really follow a curriculum which necessarily first introduces the mathematics of 

oblique axes or curvilinear coordinates before introducing calculus? The didactical costs of this order 

are high: We would expect too much from many of our students. Therefore it makes sense to look for 

another route to general relativistic calculus by first discussing special relativistic calculus without the 

notion of reciprocal frames. 

 
3  The mathematics of special relativity 
 

With respect to physics, special relativity deals with and cares about the structure of space and time. 

With respect to mathematics, special relativity deals with and cares about signs – and how to hide 

them. Looking from a broader, more open perspective we of course recognize that both perspectives 

are more or less identical: Spatial or spacelike coordinates can be identified by their negative signs, 

timelike coordinates by their positive signs at the square of the special relativistic position vector 
 

  r
2
 = c

2
t
2
 – x

2
 – y

2
 – z

2
             (1) 

 

or of its cosmological equivalent [3] 
 

  r’
2
 = c

2
 t

2
 – x

2
 – y

2
 – z

2
 + 

2
 v

2
            (2) 

 

But special relativity promised us the spirit of unification: “Henceforth space by itself, and time by 

itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve 

an independent reality” [18, p. 75]. Therefore Minkowski called for an “identical treatment of the four 

co-ordinates x, y, z, t” [18, p. 83]. 

 

Obviously this promise of an unequivocally identical treatment was broken: There are different signs 

in front of spacelike and timelike coordinate squares in eqs. (1) & (2). This is a huge mathematical 

disappointment. And as we cannot get rid of these different signs, the only other practical possibility is 

to hide them. 

 

A very elegant strategy for hiding the signs of the special relativistic spacetime signatures (+, –, –, –) 

and  (+, –, –, –, +) of eqs. (1) & (2) can be found in Clifford Algebra (or Spacetime Algebra): We hide 

all signs in spacetime base vectors t, x, y, z 
 

  r
2
 = (c t t)

2
 + (x x)

2
 + (y y)

2
 + (z z)

2
          (3)

 

 

or in cosmological base vectors t, x, y, z, v [13] 
 

  r’
2
 = (c t t)

2
 + (x x)

2
 + (y y)

2
 + (z z)

2
 + ( v v)

2
         (4) 

 

with spacelike and timelike base vector squares 
 

  x
2
 = y

2
 = z

2
 = – 1               t

2
 = v

2
 = 1          (5) 

 

As all base vectors anticommute, the spacetime vector r and its cosmological counterpart r’ can be 

written as linear combination of these base vectors: 
 

  r = c t t + x x + y y + z z            (6) 
 

  r’ = c t t + x x + y y + z z +  v v           (7) 
 

By the way: As Cartan already noticed, all these base vectors can be identified with the Dirac ma-

trices i [4, p. 133]. 
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Unfortunately most books about Geometric Algebra or Clifford Algebra avoid a deep and profound 

mathematical discussion of eqs. (6) & (7) with respect to special relativistic calculus. They only 

present simple consequences of some algebraic properties, which surely are important: Special rela-

tivistic length contraction, time dilation, or spacetime rotations & Lorentz transformations offer a first 

glimpse about the extraordinary mathematical and physical concepts described by such a spacetime or 

cosmological picture given by the vectors of eqs. (6) & (7). 

 

But the full chances and opportunities of this mathematical instrument and the physical ideas behind   

it will only be seen if we discuss it using the power of calculus, which “next to the creation of 

Euclidean geometry … has proved to be the most original and most fruitful concept in all of mathe-

matics” [17, p. 363]. 

 

And at this central point there exists a huge and unbelievable gap in standard textbooks of Clifford Al-

gebra. Instead of analyzing the consequences spacetime vectors offer they directly jump to the mathe-

matics of general relativity using co- or contravariant spacetime vectors 
 

  r = 




ex = 




ex             (8) 

 

This unexpected jump is a direct consequence of the three adolescent shocks experienced by special 

relativity: the early death of Hermann Minkowski, the invention of general relativity, and the invention 

and quantum mechanical misinterpretation of the Dirac operator. 

 

And all this leads to a severe didactical problem: Should we really expect from our students first to 

learn the mathematics of general relativity before we teach them calculus? This is the strategy fol-

lowed usually in Clifford Algebra textbooks – and from a didactical perspective, this is a weird 

strategy. 

 

Of course calculus should be discussed in the much easier framework of special relativity first before 

implementing the conceptually more advanced and more complicated framework of co- and contra-

variant coordinates connected with the reciprocal frames of general relativity. 

 
4  An early version of the Dirac operator 
 

But in addition to this didactical gap, there is a basic structural gap, too: early versions of the Dirac 

operator had been written in different ways. One way to write this operator simply was 
 

   t 
t c 


 + x 

x


 + y 

y


 + z 

z


      or      t 

t c 


 + x 

x


 + y 

y


 + z 

z


 + v 

v 


        (9) 

 

This version is only correct if we consider timelike coordinates as imaginary entities. Nevertheless this 

preliminary Dirac operator can be applied in the sense of a gradient operator to get a geometric deriva-

tive of the position vector squares r
2
 and r’

2
. Neglecting the imaginary nature of time (or cosmological 

velocity), this version of the Dirac operator results in a wrong expression: 
 

  




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


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


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
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


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zyxt c
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2
 = 2 c t t – 2 x x – 2 y y – 2 z z  2 r      (10) 
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
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





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
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2
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The geometric derivative of r
2
 or r’

2
 should be 2 r or 2 r’ respectively. 
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Here we failed, because we ignored Minkowski. This early preliminary versions of the Dirac operators 

(9) do not describe geometric derivatives or geometric gradients in Clifford Algebra correctly. If we 

do not want to use reciprocal frames, we will need an operator designed by Minkowski shortly before 

his death and years before general relativistic ideas became relevant. 

 
5  Minkowski’s invention – The Lorentz operator 
 

Dirac operators in modern versions, see e.g. [1, p. 112], are nothing else than an advanced version of 

the Lorentz operator, defined by Minkowski in 1910 and called lor [19, sec. 12, pp. 40 – 44]. The 

translation of this lor operator into Clifford Algebra can be written as: 
 

 lor =      = 
zyxt c zyxt 

















 = t 

t c 


 – x 

x


 – y 

y


 – z 

z


      (12) 

 

lor’ =      = 

v zyxt c vzyxt 






















 = t 

t c 


 – x 

x


 – y 

y


 – z 

z


 – v 

v 


 (13) 

 

It is extremely important to indicate the direction of the variables adequately, which of course are part 

of the denominator – and not of the numerator. Placing them into the numerator therefore necessitates 

an additional negative sign in case of spacelike coordinates. These Clifford Algebra equivalents of 

Minkowski’s Lorentz operator then transform the wrong results of eqs. (10) & (11) into the following 

correct ones: 
 

 lor r
2
 =      r

2
 = 2 (c t t + x x + y y + z z) = 2 r         (14) 

 

 lor’ r’
2
 =      r’

2
 = 2 (c t t + x x + y y + z z +  v v) = 2 r’        (15) 

 

This time, the signature signs are taken into account according to eq. (5). Thus the minus signs hidden 

in the base vectors again reach daylight and make geometric derivation possible. 

 
6  The geometric gradient of closed spacetime curves 
 

The geometric derivatives of eqs. (14) or (15) can be visualized in a two-dimensional coordinate 

system, if we only look at two variables. We will have a pure spacelike picture, if  z = t = v = 0.      

Then  r = r’ = x x + y y  and 
 

      r
2
 =       r’

2
 = 



















yx
yx  (– x

2
 – y

2
) = 2 x x + 2 y y = 2 r = 2 r’      (16) 

 

This is shown in figure 1a. 

 

For a pure timelike picture we need two timelike coordinates. In standard special relativity there only 

is one timelike coordinate: the time which is measured by our clocks. Therefore we should think  

about another version of special relativity to model such a situation. Cosmological special relativity – 

invented by Carmeli [3] as a physical artifact of spinor theory [2, sec. 3.1.5, pp. 41 – 44] – offers two 

timelike coordinates. Carmeli suggests that velocity should be considered as a fifth independent, time-

like coordinate. This is an intriguing and conceptually very interesting idea, explaining the Hubble 

expansion of the universe as a simple geometric consequence of a five-dimensional or even seven-

dimensional [3, sec. 3.2, p. 32] spacetimevelocity world. 

 

At present observational data does not support Carmeli’s idea. For this reason cosmological relativity 

very probably will not represent physics correctly. Nevertheless it can be used as a toy model to dis- 



Bridging the Gap between School Mathematics and the Mathematics of General Relativity                               6 

 

cuss and to analyze consequences of an additional timelike dimension. We will get a pure timelike 

picture, if  x = y = z = 0  and therefore  r’ = c t t +  v v  with 
 

      r’
2
 = 



















v t c
vt  (c

2
 t

2
 + 

2
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2
) = 2 c t t + 2  v v = 2 r’       (17) 

 

This is shown in figure 1c. 

 

An even more interesting case – which indeed is highly relevant for the physics of special rela-     

tivity – is a mixed spacetime picture, now modeled in two dimensions with  y = z = v = 0  and               

r = r’ = c t t + x x  as 
 

      r
2
 =       r’

2
 = 



















xt c
xt  (c

2
 t

2
 – x

2
) = 2 c t t + 2 x x = 2 r = 2 r’      (18) 

 

This hyperbolic, pseudo-Euclidean picture is shown in figure 1b. 
 

 

 
 

Fig. 1: Geometric derivatives of  (a) pure spacelike,  (b) mixed spacetime, and  (c) pure timelike circles. 

 

 

Please note, that all diagrams of figure 1 show circles: The distances of all points to the origin of the 

diagrams are identical. And all arrows representing spacetime vectors have equal spacetime length. 

 

In string theory physicists deal with closed spacetime curves. Therefore, although somehow physically 

esoteric [6, p. 170], we should discuss simple manifestations of such curves with our students. A very 

simple closed spacetime curve s can be modeled by  s
2
 = s’

2
 = c

2
 t

2
 + x

2
  with  s = c t t + x xyz  or     

s’ = c t t – x tyzv.  Then  y = z = v = 0  and 
 

      s
2
 =       s’

2
 = 



















xt c
xt  (c

2
 t

2
 + x

2
) = 2 c t t – 2 x x       (19) 

 

This closed spacetime curve and its gradient vectors (which are shortened to increase visual clarity) 

are shown in figure 2. 
 

 

 

 

 

 

 

a) b) c) 
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It is an important feature of spacetime, that gradient vectors of closed spacetime curves deviate from 

radial directions due to the different signature signs of space- and timelike coordinates. At all points 

crossing the world line of light, the gradient vectors are perpendicular to the light cone and always 

point into the direction of the future light cone or the past light cone. 

 
7  Closing the gap 
 

After having discussed these geometric derivatives of different spacetime functions we are now in a 

position to look for a new mathematical perspective which describes these situations (e.g. spacetime 

circles and closed spacetime curves) using different mathematical tools. 

 

This is a didactically rather convenient position: Instead of trying to find a new mathematical tool 

when confronted with a new physical situation, we are now able to find a new mathematical tool de-

scribing well-known situations. This makes it much easier to grasp a new mathematical perspective. 

 

The central question of course again is: How can we hide the signs of the special relativistic spacetime 

signature (t
2
,x

2
,y

2
,z

2
) = (+, –, –, –) ? 

 
8  The philosophy of frames 
 

And there is another central question: Where do we live? Do we live in a world which is situated in a 

right-handed frame? Or do we live in a world which is situated in a left-handed frame? Obviously we 

do not know the answer. But the mathematics of general relativity hints to the strange fact, that we 

might live in a world which is situated in a right-handed and a left-handed frame at the same time. 

 

To distinguish between these frames, mathematicians and physicists use different base vectors. A 

right-handed frame is indicated by covariant base vectors e, using suffixes in a subscript position – or 

downstairs suffixes as Dirac calls them [5, chap. 1, pp. 1 – 3]: 
 

  e0 = t          e1 = x          e2 = y          e3 = z         (20) 

 

Using the summation rule of Einstein, a vector r in this right-handed coordinate system then is given 

by 
 

  r = c t t + x x + y y + z z = 





3

0

ex  = x

 e        (21) 

 

balancing upstairs and downstairs suffixes. The coordinates of a right-handed frame therefore are 

contravariant entities, using suffixes in a superscript or upstairs position with 

Fig. 2: Geometric derivative of the closed 

            spacetime curve  c
2

 t
2
 + x

2
. 
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  x
0
 = c t          x

1
 = x          x

2
 = y          x

3
 = z         (22) 

 

This is an absolute conceptual mess for beginners! Right-handed frames are sometimes indicated by 

physical entities with upstairs and sometimes with downstairs suffixes. 

 

A left-handed frame in four-dimensional spacetime has either a reversed time direction (which cannot 

be measured with the clocks mankind is able to produce till now) or reversed spatial directions (which 

our rulers will correctly show). Einstein once decided for coordinate systems with reversed time 

direction [7, eqs. 91 & 91a, p. 80], but today reversed spatial directions 
 

  e
0
 = t          e

1
 = – x          e

2
 = – y          e

3
 = – z        (23) 

 

usually are preferred by textbook authors. Thus the base vectors of a left-handed coordinate system are 

contravariant entities e

 with upstairs suffixes, while the corresponding coordinates are covariant 

entities x with downstairs suffixes. 
 

  x0 = c t          x1 = – x          x2 = – y          x3 = – z        (24) 

 

They again combine into the well-known special relativistic position vector r: 
 

  r = c t t – x (– x) – y (– y) – z (– z) = 






3

0

ex  = x e

       (25) 

 

And co- and contravariant entities are balanced again. Now let’s analyze the signs of the spacetime 

vector square 
 

  r
2
 = r r = r  r            as            r  r = 0         (26) 

 

with respect to the handedness of spacetime coordinate systems using the inner product of Geometric 

Algebra [10] and Spacetime Algebra [11]: 
 

  r
2
 = (x

0
 e0)  (x0 e

0
) + (x

1
 e1)  (x1 e

1
) + (x

2
 e2)  (x2 e

2
) + (x

3
 e3)  (x3 e

3
) 

 

      = (e0  e
0
) x

0
 x0 + (e1  e

1
) x

1
 x1 + (e2  e

2
) x

2
 x2 + (e3  e

3
) x

3
 x3 

 

      = 0

0  x
0

 x0 + 1

1  x
1

 x1 + 2

2  x
2

 x2 + 3

3  x
3

 x3         (27) 

 

In this situation the Kronecker delta 


  [8, p. 14] is called metric tensor 


g  by relativists. It encodes 

the structure of the co- and contravariant special relativistic base vectors: 
 

  

g  = 

  = e  e


  = e

  e           (28) 

 

In this case the metric tensor equals the Kronecker delta and the square of the position vector can be 

written without any base vectors, using co- and contravariant coordinates only: 
 

  r
2
 = 







3

0

g x


 x = 

g x


 x = 

  x


 x = x


 x = x x

        (29) 

 

And where are the signature signs? To reproduce them, eq. (29) has to be evaluated: 
 

  r
2
 = x0 x

0
 + x1 x

1
 + x2 x

2
 + x3 x

3
 = c t c t – x x – y y – z z = c

2
t
2
 – x

2
 – y

2
 – z

2
     (30) 

 

Eq. (30) clearly shows that the signs are now hidden behind our different coordinate systems. The 

spacetime vector square r
2
 is composed simultaneously by right-handed and left-handed coordinates at  
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the same time [15]. Thus special relativity written in the language of general relativity tells us that we 

do not live in a left-handed or in a right-handed coordinate system alone. We simultaneously live in a 

left-handed and right-handed coordinate system – and theses coordinate systems are inextricably 

linked together. Or expressed in more glorious words: Henceforth every left-handed coordinate system 

by itself, and every right-handed coordinate system by itself, is doomed to fade away into a mere 

shadow, and only a kind of union of left- and right-handed coordinate systems will preserve an 

independent reality. 

 

The intrinsically woven coexistence of both coordinate systems in the mathematics of general rela-

tivity might even be the place, where we should look for quantum mechanics. Obviously even nature 

does not know whether we live in a right-handed or in a left-handed coordinate system, only allowing 

for a probabilistic answer in some situations. Experiments might show that we live in a right-handed 

coordinate system with probability (1) and simultaneously in a left-handed coordinate system with 

probability  (–1) = 1 – (1),  resulting in a physical world governed by quantum mechanics [14,      

sec. 10]. The result of such a measurement then represents the mean value of “quantities made from 

spin” [16, sec. 10]: 
 

  U = (–1) (1) + (1) (1)  [16, p. 73]        (31) 

 
9  The mathematics of relativity 
 

Relativists are orderly people. They do not like to work with different coordinate systems of different 

handedness at the same time. Therefore they prefer to model the spacetime vector square r
2
 of eq. (1) 

by using a right-handed (or a left-handed) coordinate system only: 
 

          r
2
 = (x

0
 e0)  (x0 e

0
) + (x

1
 e1)  (x1 e

1
) + (x

2
 e2)  (x2 e

2
) + (x

3
 e3)  (x3 e

3
)   mixed coordinate systems 

 

   = (x
0

 e0)  (x
0

 e0) + (x
1

 e1)  (x
1

 e1) + (x
2

 e2)  (x
2

 e2) + (x
3

 e3)  (x
3

 e3)   unmixed coordinate system 
 

   = (e0  e0) x
0

 x
0
 + (e1  e1) x

1
 x

1
 + (e2  e2) x

2
 x

2
 + (e3  e3) x

3
 x

3
 

 

   = g00 x
0

 x
0
 + g11 x

1
 x

1
 + g22 x

2
 x

2
 + g33 x

3
 x

3
 

   = 




3

0,

g x


 x

 = g x


 x

            (32) 

 

with the special relativistic metric tensor 
 

          g =





























33231303

32221202

31211101

30201000

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeee

 = 



























1000

0100

0010

0001

       (33) 

 

But this is a rather artificial description. This time we force all physical laws into a left-handed coor-

dinate system. The signs, formerly hidden in the base vectors of different coordinate systems, are now 

buried in the metric tensor g. And it is a messy description, as the position vector r now is a com-

bination of right-handed coordinates x

 and left-handed base vectors e


. 

 

          r = g x


 e

 = c t t – x (– x) – y (– y ) – z (– z)          (34) 

 

But it is a description, which is useful for curvilinear coordinates and curved space of general rela-

tivity, as most textbooks avoid mixed metric tensors 


g  and predominantly work with pure covariant 

metric tensors g


 or pure contravariant metric tensors g


. 
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10  Geometric calculus 
 

The Dirac operator 
 

      = 
 




3

0 x
e  = e 


 = 








3

0 x
e  = e


           (35) 

 

is no quantum mechanical operator, but an operator which just delivers geometric derivatives [6, eq. 

6.2, p. 168]. Inserting eqs. (20), (22), (23), and (24) recovers the Lorentz operator of eq. (12). But the 

didactical aim should be to enable students to apply the Dirac operator in a more systematic way using 

the Einstein summation rule. One way to reach this aim is to let them translate the given examples into 

the mathematical language of general relativity presented above. 

 

For instance, the geometric derivative of the closed spacetime curve 
 

 s = g00 x
0

 e
0
 + g11 x

1
 e

1
 e

2
 e

3
 = x0 e

0
 + x1 e

1
 e

2
 e

3
               s

2
 = x0 x0 + x1 x1      (36) 

 

will then be evaluated by 
 

      s
2
 = e 


 (x0 x0) + e 


 (x1 x1) 

 

          = 2 e 





x

x 0
 x0 + 2 e 





x

x1
 x1

 

 

          = 2 e 
0  x0 + 2 e 

1  x1
 

          = 2 x0 e0 + 2 x1 e1 

 

          = 2 c t t – 2 x x             (37) 

 

And the geometric derivative of the position vector square (32) then reads 
 

      r
2
 = e


  (g x


 x

) 

 

          = e

 g 









x

x
 x

 + e


 g x


 









x

x
 

 

          = e

 g 



  x

 + e


 g x


 



  
 

          = g x

 e

 + g x


 e

 

 

          = x e

 + x e


 

 

          = 2 x e

 = 2 r             (38) 

 

In this way students are able to go their first, still unsure steps within the mathematics of general 

relativity, guided by results they already know from a special relativistic perspective. 

 
11  Outlook 
 

We now have discussed how special relativistic spacetime can be described and discussed within the 

mathematical framework of Clifford Algebra, wandering from the mathematics of special relativity – 

Spacetime Algebra [11] – to the mathematical perspective of general relativity. Although having 

closed a great gap – the missing Lorentz operator Minkowski designed – we are still at the beginning 

of our discussion. Compared with Dirac’s influential GTR book, this paper just covers the content of 

the first, short chapter [5, chap. 1]. 
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The next natural steps might follow the didactical structure of this very dense book: a discussion of 

oblique axes [5, chap. 2] in the language of Geometric Algebra [6, sec. 4.3], and then the great step to 

curvilinear coordinates [5, chap. 3], again discussed by [6, sec. 6.2] from the geometric perspective of 

Clifford Algebra. 

 

Only after having done this, we could call the dream of Grassmann [9] to have become true. 
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13  SCED Reviews 
 

This paper was submitted to the Springer journal Science & Education: Contributions from History, 

Philosophy and Sociology of Science and Education in summer 2014. Half a year later the editors 

informed me that the manuscript cannot be accepted for publication. And they send me the following 

reviews, indicating that the review process at Springer journals is a rather absurd procedure. 

 

Reviewer #1: 
 

The paper "Bridging the Gap between School Mathematics and the Mathematics of General Relativity" 
is submitted for publication in the journal Science Education. As can be seen already from the title of 
this paper, the author addresses teaching of mathematics and general relativity at high school. My first 
remark is that the title of this paper is absolutely misleading. The paper has nothing to do with high 
school mathematics, and the mathematical structure of general relativity is completely out of the scope 
of high school curricula anyway. What the paper, interesting as it is, is about is even at the university 
level only accessible to those students with special interest in theoretical physics. 
 

My second point in general is that the motivation of the author for this paper seems to me rather week. 
It relays on the famous lecture by Hermann Minkowski at the meeting of the "Gesellschaft Deutscher 
Naturforscher und Ärzte" in Cologne 1908 where the unification of space and time to spacetime was 
introduced for the first time. Contrary to the author I never understood this lecture in such a way that 
Minkowski required the same sign in front of the spacial coordinates and the time coordinate. Instead, 
all aspects of spacetime can be seen in the formulation of the theory with an indefinite metric as well. 
 

Another point is that the article heavily relies on the book by Moshe Carmeli "Cosmological Special 
Relativity". This book is far away from the mainstream on related publications, which, of course, says 
nothing about its quality. But the reader should now about this at least. 
 

Nevertheless, the submitted paper is interesting and worth to be published. But I would recommend 
that the author explained a few notions like geometric derivative (page 1), Dirac operator (page 2) and 
its quantum mechanical misinterpretation (page 3) and cosmological velocity according to Carmeli 
(page 3). Furthermore, it would be helpful to explain to the reader how the spacetime vectors in for-
mulas (6), (7) (page 2) can be vectors when the basis vector are identified with the Dirac matrices. 

 

Reviewer #2: 
 

Typographical error in Section 5, second sentence. The manuscript says "We will have a pure space-
like picture, if x = t = v = 0," but it appears that the author's intention was to have z = 0, not x = 0. 

 

Reviewer #3: 
 

I read this article while I was in France (where I live part of the year) and I thought I sent in a report. 
Certainly my notes on the article are there and unaccessible now. Checking my laptop I do not have a 
typed report, so my handwritten draft is probably buried on my desk in France. I am truly sorry about 
the lapse. 
 

I do know that I found the paper to be a bit bizarre and I did recommend rejection. It was not clear who 
was the target audience for this very off beat paper. The writing of the paper is jerky and colloquial, 
and with a perspective that I found to be slightly outside of the norm in the physics world. The subject 
matter, in my opinion, does not fit in well with education and general relativity. 
 

For a blunt summary I would say that the subject matter is very much outside the realm of what your 
readers would find interesting. I think that the historical perspective on events does not reflect the 
present views of the relativity community (and the subset of those who worry about relativity education 
issues). The physics examples are abstract and of minor interest to most. I would advise rejecting this 
paper.” 


