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We show the existing solution of Poisson-Boltzmann equation (PBE) to violate charge conservation
principle, and then derive the correct formula for charge density distribution (ρe) in a fluid. We
replaced unphysical old boundary conditions with some conditions that have never been used. Our
result demonstrates that PBE cannot explain the formation of ‘Electric Double Layer’ (EDL); it
follows that the present physical interpretation of ‘Debye length’ (λD) is wrong, too.
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Presence of free electric charges in fluids and plasmas
controls many natural and man-made processes, ranging
from sub-nanometer to astronomical scales, e.g. nan-
otechnology and microfluidics with their various applica-
tions [1–8], interfacial chemistry, solutions, colloids and
electrokinetics [1, 5, 6, 9–16], laboratory/astrophysical
plasmas and many associated phenomena [17–23], etc.

The ubiquitous parameter λD [1–23] appeared almost
hundred years back [24] in order to solve PBE [6, 7, 11]
that gives us very simple analytical formula [7, 8] for
ρe. According to the old formula, the integral of ρe i.e.
the ‘net’ charge in fluid depends upon its temperature
T , through λD. This clearly violates charge conservation
principle, because change in T cannot alter the charge
content of a closed system [25]. Here we derive the cor-
rect formula for ρe, addressing the conservation issue.
We noticed that some works assigned values to electro-
static potential (ψ) at boundaries in an absolute sense
[7, 8]; but, the potential of a single point is meaning-
less unless we specify a reference point. Here we use the
potential difference between two points, which is mea-
surable [25, 26]. Also, we found that the derivatives of ψ
at different boundaries cannot be assigned independent
values unlike done before [15]. Our result demonstrates
a remarkable fact against the present understanding that
EDL phenomena [3, 5, 9–11, 14, 16], that we observe at
solid-fluid interfaces, cannot be described by PBE; λD
looses its interpretation as the ‘screening’ or ‘shielding’
length [1–6, 8, 12, 14, 17, 19, 22].

A simple 1-D analysis often gives us considerable in-
sights about the processes. Here we analyze a fluid do-
main of rectangular cross-section; its width ‘2a’ is very
small compared to length and height; ρe varies essentially
along the shortest side, the x-direction, say [7]. PBE, in
its linear form, can be solved to obtain ρe as a func-
tion of x. Now, ρe also involves a parameter κ (≡ λ−1

D )
that depends upon several quantities e.g. temperature:
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κ ∝ T−1/2. Consider some fluid whose temperature can
vary, but that does not exchange particles with surround-
ings. Variation of T redistributes charges and hence κ ap-
pears in ρe as a parameter. However, the total amount of
charges does not change with T , and hence the quantity

Q0 ≡
∫ +a

−a ρedx cannot contain κ. It can be checked using

old formula [7, 8] that Q0 contains κ and hence violates
charge conservation principle, please see Supplementary
Material (SM).

Our earlier ‘electric triple layer’ (ETL) theory [27, 28]
made Q0 independent of κ, but, we abandoned it, be-
cause it does not satisfy Poisson’s equation in electro-
statics. Here, we derive the correct formula below, see
SM for details. We need two conditions to solve PBE
(d2ψ/dx2 = κ2ψ). The first one assumes that we know
the potential difference V between walls:

ψ(+a)− ψ(−a) = V (1)

We must use it, as ρe must depend upon V , hence we
cannot use two independent conditions for dψ/dx [15].
The second condition comes from integrating Poisson’s
equation (d2ψ/dx2 = −ρe/ε; ε is permittivity),

dψ

dx

∣∣∣∣
x=+a

− dψ

dx

∣∣∣∣
x=−a

= −Q0

ε
(2)

We assign constant value to Q0 explicitly (free of κ), solve
PBE for ψ, hence obtain ρe,

ρe
ρ0

=
1

2 sinh(κ)

[
κ

(
Q0

ρ0

)
cosh

(κx
a

)
−
(
V

ζ

)
sinh

(κx
a

)]
(3)

Where ρ0 ≡ εκ2ζ/a2; ζ(> 0) is a suitable scale for ψ that
must not be confused with so called ‘zeta-potential’ [11];
we normalized λD by ‘a’ so that κ is dimensionless.

Many interesting conclusions follow from eq. (3). If
the walls are at same potential (V = 0), and the fluid is
neutral as a whole (Q0 = 0), then the solution is neu-
tral everywhere. If we add some extra charges of a given
sign (say, +ve), they accumulate mostly near the walls
(Fig. 1(A)). Raising the potential of the right wall (V >
0) causes an additional electric field directed from higher
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Figure 1. Charge density distribution within a fluid,
bounded by walls. κ = 10; Q0/ρ0 = 0.1. (a) V/ζ = 0;
excess charges accumulate near walls. (b) V/ζ = 0.75; an ap-
plied voltage makes distribution asymmetrical. (c) V/ζ = 1.5;
strong voltage segregates negative charges even if Q0 > 0.

to lower potential; charges re-distribute (Fig. 1(B)) to
develop an opposing field. Even if Q0 > 0, it is possi-
ble to segregate negative charges if V is sufficiently high
(Fig. 1(C)). Non-trivial distributions exist even for neu-
tral fluids (if V 6= 0) that could not be captured before.

According to EDL theory, a charged wall, when ex-
posed to a fluid, attracts counter-ions (oppositely charged
ions) and eventually it gets ‘screened’ or ‘shielded’ by a
layer of counter-ions i.e. the presence of the wall-charges
cannot be felt beyond that layer; λD is interpreted as an

estimate for the thickness of that layer. However, eq. (3)
does not say anything about the sign of wall-charges. We
get the same V with various wall-charge configurations.
For example, let V > 0; firstly, the right and left wall
may contain positive and negative charges respectively;
secondly, both contains positive charges, but the right
has higher charge density; thirdly, both contains nega-
tive charges, but the right has less charge density, etc.
In all the cases we have same charge distribution in the
fluid for a given Q0. Hence, PBE cannot describe the for-
mation of EDL, which requires the wall and Q0 to be of
‘opposite’ signs. If wall is neutral or has charge of same
sign as Q0, there is no question of ‘screening’. Also, for a
given λD, the widths of ionic layers at two walls may be
quite different due to an applied voltage (see Fig. 1(B)
and Fig. 1(C)); obviously, the same λD cannot estimate
both. Finally, if the fluid is neutral everywhere, there is
no ionic layer at all, although we can get finite λD.

In summary, we found that the solution of Poisson-
Boltzmann equation violates charge conservation prin-
ciple; we consequently correct it using proper boundary
conditions. It necessitates reviewing two important phys-
ical concepts: ‘electric double layer’ and ‘Debye length’.
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my earlier formulation to violate Poisson’s equation,
which helped me correcting the formula. Soujanna Sarkar
helped me with writting. Sujata and Abhijit Sarkar, and,
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port.
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I. SUPPLEMENTARY MATERIAL

A. Old Qo depends upon κ

Some old works (S. Chakraborty and D. Paul, 2006)
used the same geometry that we use here and obtained
the expression for ρe given by,

ρe,old(x) = Cκ2
[

cosh(κx/a)

cosh(κ)

]
(S1)

Where, C is a constant, which depends upon several pa-
rameters excluding κ.

Q0 ≡
∫ +a

−a
ρe,old(x)dx

=
Cκ2

cosh(κ)

∫ +a

−a
cosh(κx/a)dx

=
Cκ2

cosh(κ)

∣∣∣∣ sinh(κx/a)

k/a

∣∣∣∣+a
−a

=
Cκ2

cosh(κ)

2 sinh(κ)

k/a

= C2aκ tanh(κ) (S2)

Therefore Q0 depends upon κ in old formulation.

B. Derivation of new formula

Here we solve PBE and obtain correct formula for ρe
in detail. For completeness, we first derive PBE, in its
non-dimensional form. Initial part of the derivation may
be found in old works. We make different quantities non-
dimensional right from the beginning.

η ≡ x/a; ψ∗ ≡ ψ/ζ (S3)

Note that η varies between −1 and +1 as x varies be-
tween −a and +a. We can derive a relationship be-
tween ρe and ψ as follows: the number density distri-
butions of ±ve ions separately follow Boltzmann distri-
bution: n± = n0 exp (∓ezψ/(kBT )). Where, n0 is mean
of number densities of ±ve ions; for a symmetric elec-
trolyte z = |z±|, where z± are valences of ±ve ions; e,
kB and T are elementary charge, Boltzmann constant
and absolute temperature respectively. Now, for a small
real number α, we can write exp(±α) ≈ 1±α. Similarly,
when ezψ/(kBT )� 1,

n± ≈ n0
[
1∓ ezψ

kBT

]
(S4)

Now, there are n± number of ±ve ions per unit volume;
a ±ve ion of valency z± carries a charge ez± i.e. ±ez,

hence we get the net charge per unit volume ρe as,

ρe = ez+n+ + ez−n−

= ez(n+ − n−)

= −
[

2n0e
2z2

kBT

]
ψ (Using eq. (S4))

= −ε
[

2n0e
2z2

εkBT

]
ψ

= −
[
ε

λ2D

]
ψ Where, λD ≡

[
2n0z

2e2

εkBT

]−1/2

(S5)

= −
[
ε

a2

(
a2

λ2D

)]
ζ

(
ψ

ζ

)
= −

[
εκ2ζ

a2

]
ψ∗ Where, κ ≡ a/λD (S6)

∴ ρ∗e = −ψ∗ (S7)

Where, ρ∗e ≡ ρe/ρ0 with ρ0 ≡
(
εκ2ζ/a2

)
(S8)

λD is called the Debye length scale. Now, ψ and ρe
are also related by Poisson’s equation (PE) in electro-
statics; using eq. (S3) and eq. (S8) we first make PE
non-dimensional (for 1-D):

d2ψ

dx2
= −ρe

ε
(S9)

d2ψ∗

dη2

(
ζ

a2

)
= −ρ0

ε
ρ∗e = −

(
εκ2ζ

a2ε

)
ρ∗e

⇒ d2ψ∗

dη2
= −κ2ρ∗e (S10)

If Q0 be the net charge present in fluid (in a cross-section,
per unit axial length),∫ +1

−1

ρ∗edη =
1

ρ0

∫ +1

−1

ρedη =
Q0

ρ0
≡ q0 (S11)

Integrating both sides of eq. (S10) w.r.t η and using
eq. (S11),

dψ∗

dη

∣∣∣∣
η=+1

− dψ∗

dη

∣∣∣∣
η=−1

= −q0κ2 (S12)

Now, eq. (S7) and eq. (S10) gives PBE:

d2ψ∗

dη2
= κ2ψ∗ (S13)

It’s general solution is (with arbitrary constants A, B),

ψ∗ = A exp(κη) +B exp(−κη) (S14)

⇒ dψ∗

dη
= κ[A exp(κη)−B exp(−κη)] (S15)

dψ∗

dη

∣∣∣∣
η=+1

= κ[A exp(κ)−B exp(−κ)] (S16)

dψ∗

dη

∣∣∣∣
η=−1

= κ[A exp(−κ)−B exp(κ)] (S17)
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Subtracting eq. (S17) from eq. (S16), and using eq. (S12)
we get,

A+B = −1

2

q0κ

sinh(κ)
(S18)

Let, V be the potential difference between walls at η =
+1 and η = −1; define δ ≡ V/ζ. From eq. (S14),

ψ∗|η=+1 = A exp(κ) +B exp(−κ) (S19)

ψ∗|η=−1 = A exp(−κ) +B exp(κ) (S20)

Subtracting eq. (S20) from eq. (S19) we get,

A−B =
δ

2 sinh(κ)
(S21)

From eq. (S18) and eq. (S21) we solve for A and B,

A =
1

4 sinh(κ)
[δ − q0κ] (S22)

B = − 1

4 sinh(κ)
[δ + q0κ] (S23)

Using eq. (S22), eq. (S23), eq. (S14), and rearranging
terms,

ψ∗ =
1

2 sinh(κ)
[δ sinh(κη)− q0κ cosh(κη)] (S24)

From eq. (S7) we get,

ρ∗e =
1

2 sinh(κ)
[q0κ cosh(κη)− δ sinh(κη)] (S25)

Finally, we return to the original variables,

ρe
ρ0

=
1

2 sinh(κ)

[
κ

(
Q0

ρ0

)
cosh

(κx
a

)
−
(
V

ζ

)
sinh

(κx
a

)]
(S26)


