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Abstract 

Muon fusion is a known process based on the high muon / electron mass ratio 
enabling a muon of a Deuterium atom to screen the positive charge of its Deuterium 
nucleus and allow two Deuterium nuclei to approach one another close enough 
for fusion D + D -> 4He + 23.8 MeV to take place.

Julian Schwinger, who said 
“... in the very low energy cold fusion,  one deals essentially with a single state,

described by a single wave function, all parts of which are coherent ...”, 
encouraged Simons and Walling to propose that 
Deuterium nuclei and electrons in Palladium could get increased effective mass  
through Palladium structure quantum processes to screen Deuterium nuclei enough 
for fusion D + D -> 4He + 23.8 MeV to take place 
and for the “heavy electrons” to carry away most of the 23.8 MeV fusion energy 
into Palladium structure electron system 
and for the entire process to be “... enhanced ... by high electron density contributed 
by ... Pd centers” located near the point of fusion. 

Akito Takahashi proposed that the structure of Palladium would encourage a 
tetrahedral configuration of 4 Deuterium nuclei and 4 Deuterium electrons 
as a coherent quantum Tetrahedral Symmetric Condensate (TSC) that 
would collapse ( with the 4 electrons screening the 4 D nuclei ) and fuse 
D + D + D + D -> 8Be + 47.6 MeV -> 4He + 4He + 47.6 MeV. 

Palladium clusters of 147 atoms ( about 1.5 nanometers ) have 
a ground state icosahedral configuration that encourages TSC fusion 
and a metastable cuboctahedral configuration that allows reloading 
of ambient Deuterium into the Palladium cluster by a Jitterbug transformation 
with, for each TSC configuration, a central Palladium atom to enhance the process. 

If each 147-atom Palladium cluster is embedded into a Zeolite cage 
then the fusion energy can be carried from the Deuterium electrons 
to the Palladium electrons to the Zeolite electrons, thus heating the Zeolite,  
which heat can be released as needed by reacting with D20 to form steam.  



“... Muon-catalyzed fusion ... is a process allowing nuclear fusion to take place at 
temperatures significantly lower than the temperatures required for thermonuclear 
fusion, even at room temperature or lower. It is one of the few known ways of catalyzing 
nuclear fusion reactions ... 
The muon, 207 times more massive than the electron ... form[s] an electrically neutral 
muonic deuterium atom ... that acts somewhat like a "fat, heavy neutron" due both to its 
relatively small size ... about 207 times smaller than an electrically neutral electronic 
deuterium atom ... and to the very effective "shielding" by the muon of the positive 
charge of the proton in the deuteron ... reduc[ing] the electromagnetic repulsion 
between two nuclei and draw[ing] them much closer into a covalent bond than an 
electron can. 
Because the nuclei are so close, the strong nuclear force is able to kick in and bind both 
nuclei together. They fuse ...” ( Wikipedia - Muon-catalyzed fusion )

“... In muon-catalyzed fusion ... the internuclear distances are shortened, potential well 
depths increased, and turning points moved inward in much the same way as 
suggested here; the screening caused by the lattice electrons acts much as the muon 
does, although the fact that only one muon is present per 2H+ pair whereas the 2H+ are
surrounded by many electrons may cause the "heavy electrons" and muons to behave 
differently as far as radiationless relaxation is concerned ...
in the Pd lattice ... enhanced rate of 2H +  2H fusion ... involves a tunneling 
phenomenon aided by screening of the Coulombic repulsion between the  2H+ ions ... 
by neighboring 'heavy electrons" with mass m* = 10 electron masses ...  
:... two D+ nuclei in the presence of ... Pd lattice ... electrons experience an attractive 
interaction at long range analogous to chemical binding;
this attraction is balanced and eventually exceeded by the screened Coulombic
repulsion at smaller bond lengths. 
... screening moves the E = 0 turning point inward ( this turning point occurs at 
approximately 0.5 A in D2+ ) but does not persist much beyond approximately 0.1 A; 
from this point inward, 
the bare Coulombic barrier (plus any centrifugal barrier) pushes the D+ nuclei apart. 
The E = 0 turning point shifts inward to approximately 0.5 A / m* in a model which 
attributes screening to "heavy electrons" of mass m* times the true electron mass. 
Thus, the primary effect of the screening is the reduction of the width of the barrier 
through which tunneling must occur rather than the height of the barrier. ...

[[ ( 0.5 A = 0.05 nm ) / ( m* = 10 me ) = 0.005 nm = 5,000 fm ]]
... 
a radiationless relaxation (RR) path ... 

22H * 4He* ... 4He* => 4He + heat ( < 24 MeV )
... in which energy is transferred to the PdD... lattice, perhaps mediated through the 
lattice electrons, ... predicts that each fusion event could produce up to 24 MeV of heat,
unaccompanied by a large, troublesome neutron flux or by 3H formation ...
For muon-catalyzed fusion, tunneling through the Coulombic-plus-centrifugal barrier is 
possible even at low temperature because binding by the muon (m* = 207) moves the 
turning point inward to approximately 2.5 x 10^(-11) cm [ = 2.5 x 10^(-13) m = 250 fm ] 
...



Once the 4He* is formed ... it must ... undergo relaxation to produce ground-state 4He  
...[ such as by ]... internal conversion (IC) in which energy is transferred from the excited 
4He* nucleus by coupling to neighboring electrons ... IC rates scale as the electron 
density near the nucleus from which they receive energy as do rates of most 
radiationless transitions that occur via energy transfer from the excited nucleus through 
the electrons to the lattice ... this density could be greatly enhanced by the proximity of 
either Pd electrons or lattice electrons having large ”effective masses” 
( perhaps m* = 10-12.5 ) 
... we estimate the rate of IC for a process in which 
a single electron carries away all 24 MeV of energy ...[ of ]... 4He* => 4He + heat 
... It is known that  IC can eject K-shell, L-shell, and other electrons ... 
and that more than one electron may be ejected .. 
It may therefore be possible for the excited nucleus to transfer its energy to several 
electrons, each of which subsequently undergoes thermalizing collisions ... 
In the absence of a method for estimating the rate of such many-electron events, 
we present here the lower bound estimate described above 
...
it may be that RR is enhanced ...[also]... by high electron density contributed by the 
neighboring Pd centers ( where the density of conventional electrons is even higher 
than that computed for heavy electrons near 4He* nuclei 
and where the inner-shell electrons have bohr frequencies of the order of 10^19 s-1 ) . 
It should be noted that these RR energy-transfer rates are in line with isomer shifts in
Mossbauer spectroscopy ( e.g., an isomer shift of 1 mm s-1 corresponds to a frequency 
shift of 4.8 x 10^11 s-1 for a 24-MeV photon ). 
Isomer shifts reflect the differential effects on the energies of the ground and excited 
nuclear states caused by the electron density near the nucleus 
... 
It should be stressed that RR rates need only be considerably faster than the rates of 
fragmentation to either 3He + n  or 3H + 1H for this model to be consistent with the 
observations. We argue that formation of the odd-parity states of 4He* that fragment
quickly is suppressed at low energies. Moreover, the even-parity (0+,0) state can not 
fragment to the odd-parity 3He + n  or 3H + 1H products unless the fragments exit with 
one (or more) unit of collisional angular momentum. Doing so would require these
fragments to tunnel outward through their repulsive centrifugal barriers which is certain 
to slow fragmentation. Clearly, if the 4He* fragmentation rates are much less than the 
RR rate, little neutron  or tritium signal will be detected. The model put forth here, which 
attributes qualitative differences between low- and high-energy fusion to parity, 
is consistent with ... observations 
... 
J.S. thanks Prof. Julian Schwinger for very stimulating and encouraging 
conversations. ...”. ( Cheves Walling and Jack Simons,  J. Physical Chem. 93 (1989) 4693-4696 )



Akito Takahashi proposed that the structure of Palladium would encourage a 
tetrahedral configuration of 4 Deuterium nuclei and 4 Deuterium electrons 
as a coherent quantum Tetrahedral Symmetric Condensate (TSC) 
that would collapse ( with the 4 electrons screening the 4 D nuclei ) 
and fuse 

D + D + D + D -> 8Be + 47.6 MeV -> 4He + 4He + 47.6 MeV. 

Palladium clusters of 147 atoms ( about 1.5 nanometers ) have 
a ground state icosahedral configuration that encourages TSC fusion 
and a metastable cuboctahedral configuration that allows reloading 
of ambient Deuterium into the Palladium cluster by a Jitterbug transformation 
with, for each TSC configuration, a central Palladium atom to enhance the process. 



Exceptionality of the 147-atom Pd cluster size is supported by magnetic studies: 

“... Bulk palladium has a large susceptibility, but nevertheless it is a paramagnetic 
material ... 
Nevertheless, Pd is close to a ferromagnetic instability. 

The magnetic properties of Pd clusters and nanoparticles have been studied a lot in 
both theoretical and experimental investigations. It was revealed that the low dimension 
and lower coordination number of these clusters and nanoparticles results in 
enhancement of their magnetism. ... 

ferromagnetism existed in solid solutions of Co in Pd as dilute as 0.1% although the 
distance between Co atoms was about 10 A indicating a ferromagnetic interaction 
between the Co atoms at these long distances. The above mentioned experiments 
suggested that the solute atom polarizes the surrounding Pd atoms to form a 
‘giant’ magnetic moment. 

The total magnetic moment of a polarized cloud may be as much as 10 μB with average 
Pd moments of 0.05–0.4 μB . 

Such a polarization cloud may consist of 200 host atoms. 

The spatial extent of this cloud ranges from 10 to 50 A [ = 1 to 5 nanometers ]. ...”. 
( Stepanyuk, Ingnatiev, Negulyaev, Saletsky, and Hergert, J. Phys. Condens. Matter 24 (2012) 235301 )



Geometry of Palladium 147 atom cluster 

The 147 atom cluster of Palladium atoms has two geometric configurations:  

a metastable Cuboctahedral state and an Icosahedral ground state 
which can transform into each other by a Jitterbug transformation 

whereby the 6 cubo square faces correspond to 6 pairs = 12 icosa triangle faces 
and the 4 - 6 = 8 cubo triangle faces correspond to 20 - 12 = 8 icosa triangle faces

 
with vertices rotated from a mid-point of an edge of an enclosing Octahedron
to a Golden Ratio point on that edge. 



The 147-atom cluster is made up of a single central Palladium atom 
surrounded by 3 layers of Pd atoms: 

Layer 1 = central 1 (black) + 12 icosahedral (green) = 13 vertices 
and 20 tetrahedral cells
It is a single icosahedron configuration that allows TSC fusion 
of 4 Deuterium nuclei (red dots) screened by their 4 electrons (green dots) 
condensing along symmetrical paths (cyan lines) to fusion at the center

Layer 2 adds 42 vertices (blue) for total of 55  
and 60 tetrahedral + 20 cuboctahedral cells for total 80 tetra + 20 cubo = 100 

It is a configuration of 2 TSC fusion icosahedra sharing the central vertex 
with the remaining 55 - (26-1) = 30 vertices in 3 10-vertex bands 



Layer 3 adds 92 vertices (red) for total of 147
and 120 tetrahedral + 60 cuboctahedral cells for total 200 tetra + 80 cubo = 280 

It is a configuration of 12 TSC fusion icosahedra 

each of which shares a vertex with one of the 12 vertices of the Layer 1 icosahedron. 

so that the entire 3-layer 147-atom configuration has 13 TSC fusion icosahedra: 
12 outer icosahedra and 1 central icosahedron. 
The 13 TSC configurations have 13x13 = 169 vertices but 
24 vertices are shared between an outer and the central TSC 
and 5x12 = 60 vertices are shared between two outer TSC 
so 169 - 24/2 - 60/2 = 127 of the 147 vertices are in the 13 TSC  
The remaining 147 - 127 = 20 vertices outside the 13 TSC are 
at the centers of the triangle faces of the entire 147-atom icosahedron. 



Each of the 13 TSC fusion icosahedra is capable of TSC fusion 
if it has absorbed 4 Deuterium nuclei + electrons: 

The heated Palladium cluster expands by Jitterbug to Cubocta Metastable State 
The Fused Deuterium nuclei can be replaced by ambient Deuterium.
Replacement is easier for the 12 outer TSC configurations than for 

the 1 central TSC configuration which is not directly exposed to ambient D gas

The Cubocta Metastable state, loaded with the new Deuterium, 
collapses by Jitterbug back to the Icosa Ground State 

Then a new TSC Fusion occurs and the cycle repeats. 



147-atom Cuboctahedral Geometry

The 147-atom 3-layer icosa structure  goes to 
a 3-layer cuboctahedral structure by Jitterbug transformation of all 147 atoms. 

Like the icosa case, in the cubo case there is a central (black) vertex 
surrounded by 12 (green) cubo-configured vertices 
and a second layer (blue) forming an intermediate (distorted) cuboctahedron 
and a third layer (red) forming an outer (more regular) cuboctahedron. 

In the cubo case, there are also 12 outer TSC Jitterbug cuboctahedra  
plus a single central TSC Jitterbug cuboctahedron, so Jitterbug transformation of the 
entire 147-atom Pd cluster works consistently with individual JItterbug transformations 
of the 13 TSC icosahedra and TSC Jitterbug cuboctahedra. 



If each 147-atom Palladium cluster is embedded into a Zeolite cage 
then the fusion energy can be carried from the Deuterium electrons 

to the Palladium electrons to the Zeolite electrons, thus heating the Zeolite,  
which heat can be released as needed by reacting with D20 to form steam.  

Further details are in my papers at 

http://vixra.org/abs/1501.0234

http://vixra.org/abs/1502.0096 

http://vixra.org/abs/1502.0096
http://vixra.org/abs/1501.0234


Pd D Zeolite Y Fusion
1 - 15 ml of methanol ( MeOH ) in a scintillation vial

2 - Add 5 mg palladium acetate ( Pd(OAc)2 ) whose color is red-orange

3 - Reduce the Pd(OAc)2 by MeOH to Pd atoms 
by stirring for 5 minutes with unobstructed exposure to room lighting. 

4 - Add 10 mg of 30-40 nm Sodium Zeolite Y Crystals in colloidal suspension 
Each Zeolite Crystal will be Tetrahedral in shape 
At 30-40 nm size each will have about 12 to 16 large Cavities per edge 
About half of the Cavities will be on the Exterior Surface of the Tetrahedral Crystal 
where they will be easily accessible by Pd atom clusters in the colloidal suspension

( Microcrystalline synthetic faujasite )
( ? where can 30-40 nm Zeolite Y be purchased and how much does it cost ? )

5 - Place on elevated stir plate and allow to react undisturbed for 20 minutes. 

During 20 minutes the Pd atoms form clusters that grow to size 1.5 nm (147 atoms) 

Initially the Pd atom clusters are very small (only a few atoms) 
and will migrate into the large Cavities of the Zeolite Crystals and continue to grow 
to size 1.5 nm (147 atoms) at 20 minutes 
Color of colloidal suspension changes from pale yellow to dark green over the 20 min

6 - At 20 minutes Pd-loaded Zeolite (and any remnant Pd still in colloidal suspension) 
are removed and the Pd-loaded Zeolite is dried

7 - Pd-loaded Zeolite is placed in reaction chamber 
where it is exposed to Deuterium gas from tank 
and 
calorimeter measurements are taken to measure any heat 
that might be produced by TSC-Jitterbug fusion 

( analagous to heat produced by  Arata and Zhang (replicated by McKubre at SRI) 
with no external power input - only palladium powder + deuterium gas )

https://www.google.com/url?q=http://patentimages.storage.googleapis.com/pdfs/US4372931.pdf&sa=U&ei=-OtbVPL3CdDbsATY3IDQDw&ved=0CCQQFjAE&usg=AFQjCNH29dMdvq2LaoRbBS9nq4J41Q6i4A
https://www.google.com/url?q=http://patentimages.storage.googleapis.com/pdfs/US4372931.pdf&sa=U&ei=-OtbVPL3CdDbsATY3IDQDw&ved=0CCQQFjAE&usg=AFQjCNH29dMdvq2LaoRbBS9nq4J41Q6i4A



