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Abstract: The Dirac Quantization Condition (DQC) for magnetic charges and its elegant Dirac-
Wu-Yang (DWY) derivation based on U(1)em gauge theory predicts an electric / magnetic duality
which to the best of our knowledge simply has never been observed in nature, as well as a
charge quantization which is observed. The fact that this predicted duality has never been
observed to our knowledge means as a matter of elementary logic that this DWY derivation (and
the DQC itself) is either elegant but physically wrong, or elegant and correct but physically
incomplete. This paper pinpoints a flawed assumption deeply-hidden in the DWY derivation that
the south gauge field patch of the posited monopole charge differs from the north patch merely
by an unobservable gauge-transformation. By correcting this assumption by defining an
observable difference between the north and south patches, the DQC is made fully compatible
with the non-observation of magnetic charges and its correct prediction of electric charge
guantization is maintained, while the incomplete DWY derivation is made complete. Some
concurrences among the corrected DWY derivation and the FQHE and the electronic structure
of electrons in atoms are reported without present claim, and several experiments designed to
empirically arbitrate these concurrences are proposed.

PACS: 11.15.-q; 14.80.Hv;3.43.Cd; 65.
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1. Introduction: Wu and Y ang and the Dirac Monopole without Strings

In 1931 Dirac [1] discovered that the existencenaignetic monopoles would imply that
the electric charge must be quantized. While ahapgantization had been known for several
decades based on the experimental work of Thomp&prand Millikan [3], Dirac was
apparently the first to lay out a possible thecstimperative for this quantization. Using a
hypothesized solenoid of singularly-thin width knoas the Dirac string to shunt magnetic field
lines out to mathematical infinity, Dirac estabbshthat a magnetic charge strengtivould be
related to the electric charge strengtlaccording toey =27m, wheren is an integer. This

became known as the Dirac Quantization ConditioQ@) This electric charge strength is the
same one which, at low probe energies, is relatetthé¢ running “fine structure” coupling via

4mr =€ [hc 01/137.03¢, see, e.g., Witten’s [4], pages 27 and 28. Subesty, Wu and Yang
used gauge potentials, which are locally- but nobaly-exact, to obtain the exact same DQC
without strings [5], [6]. Their approach is coredissummarized by Zee on pages 220-221 of [7]
and will be briefly reviewed here. Throughout vl use the natural units éf=c=1.

Using the differential one formA:Aydx” for the electromagnetic gauge field a.k.a.
vector potential and the differential two-fornfr =5 F dx* Odx’ =dA=0 A dx” Odx", a
hypothetical magnetic chargemay bedefined as the total net magnetic flyx = <ﬂ> F passing

through a closed two-dimensional surf&avhich for convenience and symmetry we may take
to be a sphere. Differential exterior calculusspacetime geometry teaches that the exterior
derivative of an exterior derivative is zemg=0, which means that the three-form equation

dF =ddA=0. Thus, via Gauss / StokesJi”O:m'dF :<ﬂ> F=u. In classical

electrodynamics prior to Dirac, this was taken wamthat the magnetic change0. But a close
consideration of gauge symmetry, which is locally ot globally exact, tells a different story:

When a spin ¥z fermion wavefunction (which we slyherally regard as that of the
electron) undergoes a local gauge (really, phasesformationy/(x) — ¢'(x) =€"y(x), the
gauge field one-form transforms under Wlas

A - A=A+e"de” /ie. (1.1)
More generally for larger non-abelian gauge growfih gauge potential and chargey, this
transformation isG - G'=U"(G+d)U /ig whereU is a unitary matrixU'u =1. If we
represenk in polar coordinateér,qﬁ,@) in the three-dimensional space of physical spaeets

F=(ul/4m)dcosddg, then because F=dA and dd=0, we can deduce that

A=(ul4m)costdg . However,dg is indeterminate on the north and south poleschvis an

inherent feature of three-dimensional space. Twoke this indeterminacy and create a smooth
geometric interface, we may define north and souttauge field patches

A, =(u/4m)(cosf- 3d¢ and A, =(u/4m)(cosf+ }dg, respectively. But at places where
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these patches overlap, these gauge potentialsoatbersame, and specifically, their difference
is A;= A, =(u/2m)dg, or written slightly differently:

A~ A=A = A +H(ul2m)dg. (1.2)

To unite the two patches, using (1.1) written floe horth patch a®\, = A, +e"de” /ie, we
regard A; as a gauge-transformed state= A, of A,. Combined with (1.2) this means that:

L eingeh = H gg. (1.3)
ie 21T

We simply note for the moment th&, = A, which yields (1.3) from (1.1) for the north

patch combined with (1.2) is actually a commonlydmassumption that the north and south
gauge field patches differ from one another by rayarthan a gauge transformation and so are
not observably distinct, in order to yield a smoottbroken geometric relationship between the
north and south patched\hether the physics we observe in the natural world agrees with this
assumption is a separate question which we shall deeply explore starting in the readtion.

Defining a “reduced azimuth’¢ =¢/27=0,1,2,3.. which represents the quantized

number of rotations or “windings” over a comple2er circumference about the z axis, this
differential equation (1.3) foA and ¢ in relation toe andu is solved by:

exp(in) = exp{ie,u%

j = exfieus). (1.4)

This can be seen simply by pluggied from (1.4) into the left hand side of (1.3) andueing.
This relates the azimuth angk which is one of the three physical space coordsah

spherical coordinatex” :(t,r,¢,6’), to the local gauge (phase) andle and thereby connects

rotations about the z axis throughin physical space to rotations throughin the gauge space
in a manner that we shall now explore in detail.

Using the simplest stategs=0 and¢ =27 a.k.a.¢ =0 and-¢ =1 in (1.4), we have:
exp(in) = exdieug) = exfien0d= £ exfpexO). (1.5)

Specifically, this means thaxp(ie,u) =1. Mathematically, the general solution for an emum
of this form is exp(i Zm) = 1for any integern=0,+1,+2+ 3.., which is infinitely degenerate
but quantized. As a result, the solution to (b&3ed on thgg =0 and ¢ = 277 states only, is:

N=eu=2m. (1.6)
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Defining a reduced gauge anghe= A/ 27 this solution may be recast as
AN =n=eul2m, 1.7)

where A =n is the number of gauge “windings,” and isopological quantum number naturally
arising from U(1), gauge theory.

This ¢ =27 a.k.a.¢ =1 result, which solveexp(ieug) = 1in (1.4), (1.5) forg =1, is

of course the Dirac Quantization Condition (DQQ).will be immediately apparent that this
equation has an electric / magnetic duality symynetidere ~ u interchange. Further, (1.6)

with simple rearrangement tells us that the electnarge is quantized according to:
e:nz—”=neU =Ae,, (1.8)
Y7,

where the “unit” (u) of electric charge, =277/ is defined as 277 times the inverse of the
magnetic charge. As already noted from [4], tifis=1 charge solution t@xp(iei) = 1is the
precise same running electric charge strength whjgbears ind/m =€° /hc and so is the
running electric charge strength of the electrd® when/ =1 in addition to¢ =1, (1.8)
becomese=¢, which describes the unit charge strength of aleiatgctron. Consequently, we
may think of this unit DWY electron as th& = ¢ =1 topological solution to (1.4), anel=ne,
generally as theg =1 solution for all A =n. In turn, (1.4) is the general solution to (1.3),
which in turn assumes tha# = A, differ by nothing more than a Ugk)gauge transformation.

Finally we may go back to the original definitign= <ﬁ> F and isolatex in (1.6), thus:

@F :’u:nz_ﬂ-:n’uu:ﬁ’uu, (19)
e

where we also define & =n=1 unit of magnetic charge/, = 27/e, similarly quantized. By
appropriate local gauge transformation, and spetdifi by choosingh=0 which is the same as
choosing the phase angle=0, this nonzero surface integral can be made toshatj:ijﬂ F=0.
But this does not invalidate (1.8) and (1.9) noesld prevent us from seeking to draw physical

conclusions from these. It simply means thfat=n=0 with no monopoles and no electric
charges is one of an infinite number of quantizadtgns to (1.3).

" It should be noted that when we implicitly used thcal anglesg(x) =g, =0 and ¢(x) =g, +2m in (1.4), the
choice ofg, =0 had no special physical significance. We couldehased any othep < g, < 2,7 or indeed anyg,
whatsoever and still ended up with the exact saQ€ (1.6);¢, =0 was merely the easiest mathematical choice.
This means the DQC (1.6) is invariant under lo@alge symmetry, as it must be to have possible galysieaning.

3
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The customary interpretation @ =ex =27m in (1.6) ande= n(277/,u) in (1.8), ever

since Dirac first found this relationship, is thenditionallogical statement thaf this magnetic
charge “exists,then there is a duality symmetry between electricitg amgnetism, and electric
charge is quantized in units & =277/ . We also see that the quantum number of electric

charges# =n is atopological quantum number naturally arising from the U(d) gauge theory
corresponding to the number @7 circumferential windinggy(x) — ¢'(x) =€"®y(x) of the

electron wavefunction through the complex gaugeepifined bye” = cosA +i sif\ =a+bi .
While anabsolute phase angle is not observabi&,=n is observable because it represents a
topologically-quantizedlifference between (reduced) electron phase angles whichaak the
same orientation (but not entanglement) in the gagce.

This is how Wu and Yang obtain Dirac monopoles tedDQC without strings.

It is extremely elegant theoretically that the Riraonopole [1] and its associated charge
guantization and electric / magnetic duality cardbeaved entirely from U(1), gauge theory as
taught by Wo and Yang [5], [6] as reviewed aboltas also very theoretically attractive that the
charge quantum numbear=-/ has atopological meaning as a gauge space winding number,
and that the unit electron charge=e, may be represented as th® =¢ =1 topological
winding state of a DWY monopole. And it is welkaslished that electric charge is indeed
quantized, albeit on the basis of the charge gémar® =Y /2+1° which emerge in Yang-Mills
gauge theory following the electroweak symmetryakieg of SU (2),, xU (1), down toU (1),
and not on the basis of DWY monopoles.

There is only one problem however, and that probieempirical: a century and a half of
experimental study since the time of James Clerkwédl informs us that these magnetic
charges dmot exist in nature, or, that if they do, they existyomnder some very specialized set
of physical conditions which have yet to be undsydt Bycontrapositive logic, if there isnot a
duality symmetry between electricity and magnetishen A =ey=2/m in (1.6) and the

consequene= n(27T/,u) in (1.8) arenot true, and consequently there are no DWY monopoles.

More precisely:for all natural circumstances under which there is no observed electric /
magnetic duality, there are also no observed DWYhapoles, and to the best of present
knowledge, there are no natural circumstances umdech electric / magnetic duality is
observed. So to the best of our present knowledgk even though they represent a deep
theoretical elegance, DWY monopoles do not exishénatural world.

But the very fact that magnetic monopoles and etentagnetic duality are not generally
physically observed in nature tells us that thexet be one or more deeply-hiddg@hysical
omissions or unrecognized assumptions in this DWhvdtion. This DWY derivation (and the
DQC itself) is either elegant but physically wrongy, elegant and correct but physically
incomplete. So we need to carefully diagnose EA8Y derivation to pinpoint what is being
routinely overlooked. To do this, we now examite tcontrapositive logic of the DWY
monopoles more closely.
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2. The Magnetic Monopole Residue: How to Make the Dirac-Wu-Yang
(DWY) Analysis and the Dirac Quantization Condition (DQC) Logically
Consistent with the Empirical non-Observation of Magnetic Monopoles

In the last section we made a linguistic logicaltementA - B (A implies B) and its
contrapositive logical statemenrtB - ~ A (not-B implies not-A) about the existence of DWY
monopoles which led us to conclude that becausenet@gmonopoles are not generally
observed, there must be some deep omission oragmized assumption in the DWY derivation
precisely because that derivation leads a reseletric/ magnetic duality — which is empirically
proven to be unobserved in general. Now let usi&tize this logic so we know where to look
for whatever is being overlooked in the DWY derigat

We start with equation (1.3 "de” /ie=(u/2m)d¢. If equation (1.3) is trughen its
solution (1.4) is true, and thus the solutidre ey =27m in (1.6) — namely the DQC based on
the simplest like-oriented statggs=0 and ¢ =27 — is also true. (We are at present continuing
to neglect all othey which differ from these by integer multiples &f7; we shall consider
these in the next section.) Putting this into ami@l logical statement using (1.3) and (1.6) we
may write [e““de‘“/ie:(,u/2n)d¢] ~ [AN=eu=2m| (from the azimuth winding states
¢ =0 and ¢ =257). But in the physical world, we do not obsere= ei/ = 27m, because this
expression is invariant undey - w4 electric / magnetic interchange, and we do noentes

electric / magnetic duality. Rather, what we gahgrobserve is~[/\:e,u: 27m] So the
formal contrapositive logic statement must-bp\ = ey = 27m| - ~| e™"dé" fie=(u / 27)dg |.
We must therefore conclude that because we do not geperadierve electric / magnetic duality,
e"de” lie=(u/2m)dg in (1.3) isnot generally true. So given that (1.3) igisproven by
empirical observations showing no duality at least in general, whatewermautinely being

overlooked in the DWY monopole derivation is alnedeing overlooked before we even get to
(2.3). Thus, we need to scour everything that get® (1.3) to find out what is being missed.

We know thatF =dA is a generally true relationship, because its eguences are
observed throughout electrodynamics. We know tdstO is a mathematical identity of
differential forms geometry which states that tiéegor derivative of an exterior derivative is

zero, and is also true in general. We know that A' = A+ede” /ie in (1.1) is a correct and
generally-true statement of how a Ul pauge field transforms, and we know that this gaug
symmetry is manifest throughout electrodynamics &hdt its non-abelian extensions

G - G'=U"(G+d)U /ig appear throughout nature generally such as irwereek and strong

interactions. We know that a magnetic chargg exists,then it will be defined byu E# F.

We know that usingF =(u/4m)dcosfdg in this surface integral properly reproduces
. m 2

,u:# F mathematically, becauseﬁ)(uMﬂ)d cosfdg = (u /417)_[0 d coﬁjo dg evaluates

upon definite integration td ./ 4r) cos@|g¢|2":u. Further, becaus& =dA anddd=0 we
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know that F =dA=(u/4m)d cosfdg =(u / 41)d( co®-K)dg will be correctly reproduced

for any constanK in A=(u/4m)(cosf-K)dg. Of course, these relationships containjag

presuppose a magnetic charge But the existence of a hypothesized magneticgehes the

hypothetical proposition being tested for its implications, not an oversight in logic. Finally,
because general coordinate invariance allows usclioyce of coordinates, we can choose

A, =(u14m)(cosf- Jdg and A, =(u/ 4m)(cosf+ 3dg (with K =1 respectively) to avoid
any indeterminacy at the north and south polesd we know that none of the foregoing is
limited to any special physical circumstances. réfare, we find thatA; — A, :(,LI/ZIT)d¢

obtained precedent to (1.2) is a proper and pédyfeneral relationship between these two
gauge field patches of the U{l)magnetic monopole were it to exist, in a generadiijd and
fully determinate system of coordinates. So wilhoh these ingredients being correct and
generally true, what are we missing?

Starting with A, = A, =(u/2m)d¢, we can easily rewrite this a& = A, +(u/2m)d¢
as in (1.2), and we are still darra firma. But now, when we take the next step and regard
A=A, as simply a gauge-transformed sta#®, of A,, and proceed to write
A=A, =A,+(ul2m)dg as in (1.2), the problem begins. For as soon as wite
A=A, +(u/2m)d¢ in the form of the gauge transformatia¥, = A, +(x/2m)dg, then the

combination with the generally-true gauge transfion A ~ A = A+e"de”" /ie in (1.1)
leads us to (1.3), and (1.3) in turn inexorablydkas to the electric / magnetic duality of (1.6)
that we do not generally observe. So what is witterg?

When we regardA; as a gauge-transformed|, i.e., when we assume thaf, = A;, at

least in general, we are assuming that the north and south gaedgk gatches differ from one
another by nothing more than a Ulyauge transformation. Because a gauge transfromiat

not observable, this assumption thd{ = A, is an assumption that the north and south gauge

field patches about a magnetic monopole — weret@egist — would not be observably distinct.
This is understandable in terms of wishing for ¢hter be a smooth transformation between the
two hemispheres, but that does not mean that natillraecessarily cooperate with us to make
our wishes so. In fact, the DWY derivation tells that if nature were to cooperate such that

A, = A, so that there were no observable distinctnessdegtwthe hemispheres, then nature

would also cooperate such th&at=eu =27/m (for the stategp =0 and ¢ = 277), and we would
therefore observe electric / magnetic duality. tTiearefining the logic, this would mean that
[A, =A] - [A=eu=2m]. Butwe donot observeA =eu =27m, at least in general. Rather,

~[A=eu=2/m| is the correct logical statement of what is enegiti observed in general.
Therefore, the correct contrapositive logic statenie ~[A =eu=2m| - ~[A, = A], which

means thatA, = A,, in general, isdisproven by nature, and particularly, by the very-well-
established generalized absence of L}{fagnetic monopoles.
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So if A, = A, as a general proposition is disproven by the rmseovation of duality,
this means that in generady, must differ from A, by something more than an ordinary gauge

transformation, such that there is a physically-observable distinctness between the north and
south patches. That is, therenust be somephysically-observable difference& formally defined
by A, = A +& between the south patch and the gauge-transfonortd patch. Because each

of these gauge patche% = A ,dx“ andA; = A, dx” is a differential one-form, this difference
£ must also be a differential one-foree £,dx”. Because the gauge potential four-vects

and A, are energy/momentum-dimensioned spacetime foupkgcso toog, must be an
energy/momentum-dimensioned four-vector.

But in contrast to the unobservable phase gradiehfA contained in
e"de" /lie=dA/e=0d,Adx" /e in (1.1), thise, must be observable. Why? Because i,
was not observable, then it could always be gawyealy so thatA, = A, +& could be turned

back into A, = A, which would once again imply the existence of tteic / magnetic duality

that is not observed in nature in generhlis the general non-observation of U(1)em magnetic
monopoles which requires £, to be observable. Consequently, this sets us on the path of

needing to study all that we can aboglf and its related differential one-formzeﬂdx”,
because it is only via this observalde that we can understand why U{)DWY magnetic

monopoles and electric magnetic duality — as thealéy elegant as they are — are not generally
observed. So let us commence this study.

First, let us rewrite thes definition Ay = A, +¢& as A, = A, —¢ and combine this with
the generally-valid expressiof = A, +(/2m)d¢ in (1.2) to obtain:

A=A —e=A+(ul2m)dg. (2.1)

This now replaces (1.2) and is synonymous with)(Ivden £=0. Then, we write the
generally-valid U(19n gauge transformation (1.1) for the north patchdgs= A, +e™"de” /ie,

and combine this with (2.1) to obtail = A, +e"de” /ie-e=A, +(u/2m)d¢. After
subtracting A, throughout this become#\ - A, =e"dé" /ie-e=(u/2m)dg, or, in two
forms that will be useful for development:

Leinger = H dpre 2.2)
ie 21T

and

S:A“—AS+%e“"de”\=AV—AS+d/\/e. (2.3)
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The above (2.2) is the generalization ef"de” /ie=(u/2m)d¢ in (1.3) to the

circumstance where there is an observable disesstrbetween the north and south gauge
patches which cannot be gauged away by a gauggdraration. Meanwhile, we can apply the
gauge transformatio - &' =&-dA/e to (2.3) together with the generally-valid express

A, = A =—(ul2m)d¢ based on (1.2), to obtain the result that:

g=A-A=—(ul2mdg. (2.4)

If we then rename’ back tog, we find thate can always be placed into a gawsgeh that it
specifies the observable differenee= A, — A, between the north and south gauge field patches

about the hypothesized magnetic cha@eF = . In this gauge, extracting vectors from the
differential forms, the covariant (lower-indexegd) = A, - A .

Because any gauge potenti# (x) four-vector is a function of the spacetime
coordinatesx” and so is a field in spacetime, this means #hax") = A ,(x*)— A, (x*) is
likewise a four-vector field in spacetime. But kreow that a gauge potentidl, (x“) by itself is
not observable. What is observable thiféerence between two potentials. Specifically, the time
component of A“ E(¢),A) represents a scalar potentig) and the differenc® = ¢g(x,) —@(X,)

in this scalar potential as betwewvo different points in space x;, x, at a given time in the

observer’s frame of reference represents an oldslervaltage drop. Often, one of these points
is arbitrarily chosen as an electrical ground, for exampl@gx,)=0. So because a gauge
potential A, (x*) is not observable, what must make= A, — A, observable is the fact that it

represents alifference of potential between the north and south gauge field patchetheof
hypothesized magnetic charge. Specifically, stated in the gauge (2.4), theetioomponent

V=el=¢g -@ of & E(V,s) would have to be thebservable energy of a voltage drop

between the north potential and the south potential of a magnetic monopole, were such a
monopole to exist.

Now, what makes this potential energy= ¢, —@ unusual aside from the fact that this
would only be observei one had a magnetic monopole which as far as is kriag never been
observed in the material world, is the fact thatcshese A, (x*) and A, (x*) and

£,(X)=A,(xX)-A,(x*) are all fields, this difference in potential, dimensioned as an
observable energy, is defined for the monomtleach and every point in spacetime. That is,
V(X)) =@ (X)) —@(x,) is an observably-defined energy at any singlecsadespatial coordinate
X, at a given time for an observer, and likewise at any and all o8pace coordinates at the
same time for the observer, without having to take a voltagéerence between twseparate
points in space. Whereas the potential enefgyx”) is not absolutely defined at each

8
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spacetime event but is only defined relative toadsitrary ground at a separate location, the
potential energye, (x“) does have an absolute, non-arbitrary, energy-ciioead definition at
each and every event in spacetimhout reference to any other event. However, this naturally-
defined ey(x”) potential uniquely arises as one of the gaugertheonsequences of positing a
magnetic monopole which so far as is known hasmesen observed. Now we return to (2.2).

To solve (2.2), let us posit a zero-form dimensésslscalar field (x*) related in some
to-be-determined way to the one-for(ix*). In a spherical coordinate systexfi = (t,r,¢,6?) ,

the azimuthg is one of the coordinates of which this is a fiorct Using thisr in a posited test
expression we write:

exp(in) = exp{ie,uziﬂerj: ex;ﬁie,u%j exfier) = expeup) exper). (2.5)

T
If we insert this in (2.2) and reduce, we find ttias does indeed solve (2.#)and only if
e=dr=¢,dx" =9 rdx", (2.6)
that is, extracting the vectoi$,

£,=0,7. 2.7)

U U

It is clear from (2.7) that the vectar, (x*) is the spacetime gradient ofx“). So we will also
wish to study this dimensionless scafaralong with the energy-dimensioned vecty in the

one-forme = eﬂdx“ .

Becausedd=0 when applied to any differential form, one oé ttmmediate things we
know via (2.6) is that:

de =ddr =0. (2.8)

Therefore, if we apply applies the Gauss / Stoke=orem _[M dH :gSaM H whereH is a

generalizeg-form anddM is the closed exterior boundary op#al-dimensional manifold, the
integral form of the above is:

”dezﬂddr:S[)g:qurzo(:ﬂo). (2.9)

Next, as we did at (1.5), let us examine (2.5ngishe simplest states=0 and ¢ =277
a.k.a.¢ =0 and ¢ =1, still ignoring until the next section, the otleates differing from these
by integer multiples oR77. This azimuthg O t,r,¢,8 is one of the four spherical coordinates

9
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i.e., a subset of these coordinates, which meas (i) is some to-be-determined function of
the reducedg = ¢ / 277 plus the three other coordinates. Because muduinterest will be

focused on how (x*) behaves as a function g given that¢ =0,1,2,3,4.. is a topological
azimuth quantum winding number in physical spétajs generally suppress showing the other
three x“, and simply highlight the fact that thai(x“) =z(t,r,¢,6)07(¢)=1,. Then, in

contrast to (1.5), with thigs - 7, now defined, (2.5) yields:
exp(in) = exp(ieus.) ex;éieg)z exfieuD D exper,) = [ efier,)= efipul) 1 digr,).(2.10)

Now we multiply through byexp(-ier,) and also use the general expressienexp(i 2m).
This leads to:

exp(iN —ier,) = exfiey +ier, —ier,) = = exfi 2m). (2.11)
This is then solved by all states for which:
N-ery=e[p+r1,~1,]=2m. (2.12)

We see fromA —-er, =27m that the gauge angleA which solve the above are still
separated from one another by multiple2ah , but now we have an absolute offset phese

As noted in the last section, an absolute phaske amgot observable; only phadiéferences are
observable. Therefore, we may gauge this offseerto=0 without changing the observed

physics in any way, in effect establishieg, =er(¢ =0)=0 as a “ground.” Doing so, (2.12)
simplifies to:

N=e[p+1,]=2m. (2.13)

The above, which is again based on he 0 and ¢ =27 states only, should be contrasted to
the usual DQC of (1.6) and (1.7) to which it rectieehenr, =0. The reduced gauge angle
A =NA/2m=n is a topological quantum number as before, buttuhaew iser,. Let us see
what now changes.

Similarly to (1.8), we may write (2.13) above @rrs of the electric charge strength, as:

e=n 27 =ne, (2.14)

HtT

where the unit of electric charge, previously= 277/ 1, is now defined as:

10
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217

= , 2.15
ies (2.15)
Likewise, if we isolatey in (2.13), then as in (1.9) we may write:

@F :Iu:nz?n—rl:nluu—rl, (2.16)

which continues to use the same upjt=27/e of magnetic charge as before. Finally, the
scalar potentialr, = 7(¢- =1) in (2.13), which did not appear at all in (1.6)jsolated as such:

217 FA
e (2.17)

Let us now consider two reductions of (2.13). skim the circumstance whem=0,
this reduces to\ =eu = 27m, which is synonymous with the usual DQC (1.6). &fl (2.14)

through (2.17) then reduce to the section 1 resiiltee usual DWY formulation. This is to be
expected, because the only new objects we havainted ares and7 related bys =dr.

Second, because our main purpose is to reconeilprédiction of DWY monopoles with
A =eu=2rm as in (1.6) with the apparent absence of theseopweas in nature, let us now do

exactly that. For any natural circumstances umdech there are no magnetic charges — and to
the best of our knowledge this describes all olesivatural circumstances — the net magnetic

flux # F=x=0. So we can examine this widely-observed circuntgaby settingu =0 in
either (2.13) or (2.16), with the result that:

er,=2rm=AN. (2.18)

Now, in contrast to (1.8), withu =0, (2.14) for the electric charge strength reduoes t

e:nz—ﬂ:neU =Ae,, (2.19)

n

while the unit electric charge (2.15) reduces to:

e _2m (2.20)

Then (2.17) becomes:

r=nl=ny =1 (2.21)
e e

11
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Now — even withy =0 — the electric charge in (2.19) is quantized isasbserved — but

this quantization no longer depends upon the exgsteof DWY monopoles which are not
generally observed. That is, even when the DWY opotes are set taz=0 in accordance

with what is observed, Dirac’s original predictiohelectric charge quantization remains intact.
But the electric / magnetic duality is broken -isaalso observed — and we see from contrasting
(2.19) with (1.8) that the monopole charge is replaced byr, =7(¢ =1), that is, y=1,.
Becauser, replaces the magnetic chargewhen that charge is zeroed out i.e., becguse 7,

and becaus& acts as a dimensionless scalar potentiah equations (2.8) and (2.9), we shall
refer to 7 as the “magnetic monopole residue potential.” Titeoduction of this residue
potential and its one-form exact differential=d7r = A, — A; is what logically reconciles the

DWY analysis with the general non-observation ofgnetic monopoles in nature. Moreover,
this retains the Dirac prediction of electric creguantization even in the absence of monopoles
as is generally observed, now with a unit electhargee, =277/7, in lieu of e, =277/ 1.

3. Charge Fractionalization in the Extended DWY Analysis

In the first two sections, we developed (1.4) 48db) using only the simplest like-
oriented stategp =0 and ¢ =27 a.k.a. ¢ =0 and ¢ =1, and ignored all other states in the

complete topologically-quantized set =0,+27,+47+67.. aka. ¢ =0,+1,+2+ 3+ 4., of
azimuth windings. Let us now remove this restoictand consider all these other states.

First, mindful that the scalar potential=r7(x") O7(¢) =1, is some to-be-determined
function of the reduced azimut$ =0,+1,+ 2+ 3+ 4., we rewrite (2.5) as shown in (2.11):

exp(iN) = exp(ieus) ex;ﬁieg). (3.1)
Then, we expand the above for the first severadéstg =m=0,1,2,3,4,5., wherem=¢ is a
topological quantum number specifying the numbergaimuth windings, which is a number

different from the topological quantum number /- specifying the number ajauge-space
windings. Now, with the top line effectively thamse as (2.10), (3.1) expands to:

exp(in) = exqieys) ex;éieg): exfieud D exper,) = efiguD) 1 efipr,)

(3.2)
=exp(ien @) exqdier,) = exfieuOP exper,) = efpe @) efipr,)= eipud) 5 ¢iar,)
Multiplying through byexp(-ier,), and withexp(iex[0) = 1= exgi 2m), this becomes:

exp(i -ier,) = exf(iey +ier, —ier,) = ex|f Bu+ier,~ier,)= expidu+ier,~ier ) 3:3)

=exp( deu +ier, —iery) = exq{ Seu+ierg—ier,) .= & exfp )

Then, consolidating using =m=0,1,2,3,4,5., we obtain a general expression fomall

12
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exp(iN —ier,) = ex{mieu +ier, —ier,) = exgfi 2m). (3.4)
Similarly to (2.12), this is solved by all states fvhich:
N-ery=e[mu+1, —1,]=2m. (3.5)

As before, see (2.12) and (2.13),—er, =27m contains an unobservable phase angle
offset er, which may be gauged away by settiegy =0 as a ground state phase without
impacting observable physics. Doing so, (3.5) thiemplifies to:

N=e[mu+r,|=2m. (3.6)
So the earlier (2.12) and (2.13) are simply the 1 reductions of (3.5) and (3.6) above.
As before, contrast (1.8) and (2.14), we writs thiterms of the electric charge strength:

27T
mu+r,

e=n

=ne, (3.7)
which continues to be quantized. Here, howeventrest ¢, =277/ and (2.15), the unit
electric charge is now:

2
mu+t,,

g = (3.8)

Likewise, if we isolatey in (3.6), then as in (1.9) and (2.16), for the wpole we may write:
= Smematy s Ty - (3.9)

in which the unit magnetic charge, = 277/e is unaltered. Finally, in contrast to (2.17), may
isolate the monopole residue scalar potential i@) By writing:

rm:r¢:n%—mu:nuu—mu:ﬁzf—wzﬁuu—w. (3.10)

Now let's consider the same two reductions whigh considered in the last section.
First, when we set the dimensionless scalar patenfi=0, (3.7) will become:

13
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g=——=—@g =——=—8¢ (3.11)

GH_e_H_N_7v (3.13)

We see from the ratim/m=+/¢ appearing in (3.11) through (3.13) that fQy =0, the

electric and magnetic charges are rtopologically quantized and fractionalized, wheren =#c
is the quantization numerator denoting an integenler of topological rotations in the complex
gauge space, anth=¢ is the fractionalization denominator denoting ateger number of

topological rotations about the z-axis through #mmuth ¢ in the real three-dimensional
physical space of spacetime.

Second, as we did starting at (2.18), let's carswdhat happens when the net magnetic
flux #F = =0, i.e., under the widely-observed empirical comai§ where there are no

magnetic monopoles observed. Now, (3.7) reduces to

e:ni—”:neu (3.14)

m

with the unit electric charge (3.8) reducing to:
e =—. (3.15)

The magnetic chargg =0 in (3.12) is zero by definition in this specialipa, and from (3.10)
with =0 we obtain:

I,=T, :nz—nznuu :ﬁz—”:ﬁuu. (3.16)
e e
Comparing (3.11) with (3.14), whea # 0 andr,, =0 the electric charge=(n/m)e, is
both quantized and fractionalized wit) =277/ i, while whenr, #0 and 4 =0 the electric
chargee=ne, is quantized only, with no fractionalization, agd=27/r,,. Further comparing

14



Jay R. Yablon

the 7, =0 specialization to thg/=0 specialization, in the former case we find fronl (3 that
2rm/m=eu and in the latter we find from (3.14) thatn/m=er,, /m. This means that when
going from wu#0, r,=0 to w=0, r,#0, the topologically-quantized fraction
2rm/m= 27 /¢ goes fromey to er, /m=er, /¢ . Thus, the magnetic charge goes from:

H=Ty !4 (3.17)

In the last section, when limited b =0, 1, we found the magnetic monopole residue potential
r(x") to ber, = r(t,r,4L = 1,6?), which again, is a dimensionless scalar. Now e that this
residue potential generalizes tg / ¢ = r(t,r,¢,¢9) /¢ for all integer ¢, and that the residue
obtained in section 2 was merely tihe=1 specialization of this residue.

It is also of interest to examine the role of tbpological quantum numban=#A as
between ther,, =0 and =0 specializations. For,, =0, and with¢ =1, we havee=ne,

with e, =2/ i, so thatn specifies charge quantization as was first foupdbac. But for
4 =0, we can apply =dr found in (2.6) to (3.16) along with/mr = €*, see also (2.3), to find:

.sm:drm:n(—i—?dej:n(—%dej:ANm—ASn+d/\/e. (3.18)

Extracting the four-vector from the differentiakifios, and restoringg andc, we have:

hC 15
£m#zaﬂrm:n{—(z—c)raﬂeJ:Aumﬂ—Aanﬂ+6#/\/e. (3.19)

The expression—((hc)l'sl20)6#e has dimensions of energy. The fact tigf is an energy

vector equal to this expression times the topokdgicantum numbe#x = n means that after we
set =0 and so only have the monopole residgg, this quantum number goes from
representing quantization of charge, to represgrjuantization of energy. Specifically, going
back to natural units, the vector potential whistgj, = A, — A, in the gauged A =0, at a

given spacetime event coordinaté’, has an energy four-vector which is a topologycall
quantized integer multipléx =n of -0 e/2a at that same event, where =n continues to be

a winding number through the complex gauge spce  sA ¢d sinA =a+bi .
If we finally consider orientation and entanglemastreviewed by as Misner, Thorne and

Wheeler (MTW) in one of the most widely-regardedcdissions of this topic in [8] at section
41.5, and if we start with the electron state=¢ =1 for which e=ne,, see the discussion

following (1.8), then the only stateghich can be disentangled back to the originam=¢ =1
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electron state are those states witlr ¢ =1,3,5,7.. which are allodd integers. We may write
this set of states as=¢ =2l +1 with | =0,1,2,3... So, starting from (3.11) for,, =0, if we

now include only those fractionalized, quantizedcebon charges which can be disentangled
back to an unfractionalizeg- =1 electron withe = ng,, then this restricted set of charges is:

n 2mr_ n —ﬂe—ve' y n _  n _ n n
A+ly A+l m U YT RNT fiv) di+s) 3 (3.20)
Al

nN=A=0,+1+2+3+4.., m=¢= P+ ¥ 1357..1= 01234.5=5 j=l+s

Except for the even denominator=2, this fill factor v = n/(2| +1) precisely describes the set

of charge states observed in the FQHE, which welgineport without claim. And by naturally
eliminating m=0, this also avoids the solution with an infinge=c . Note too, that it was this
samem=0, e=o state which we earlier gauged away, first in (2.1f%en in (3.6).

We have used the quantum numbks0,1,2,3,4..ands=3 and j =1 +s in (3.20) to
be suggestive of the quantum numbers in the Casipierations L*|&)=1(+1)|¢),
S| &) =s(s+1)|¢) and J%|¢)=j(j+1)|¢) as applied to spinor eigenstatey whereby the
total angular momentund is observable because it commutes with the DiramiHlonian,
[J,H]=0 and therebyj which sits in the (3.20) denominator is observalihout at this
moment claiming a physical linkage. We simply n¢dbe fact that the use of these Casimir
guantum numbers from atomic theory does correalcdbe the DWY charge quantization and
fractionalization that emerges whep =0 and when one discards the azimuths which cannot be
topologically disentangled back # =1, and the fact that the fractions are all odd ieteg And
we also note without claim that the FQHE likewises lonly odd integers with the sole exception
of the even integer 2 which is not described i2@R. To describe thi| :2(I +s): 2

denominator, one would need br 1 state in addition to the=1 state, that is, one would need

apair of electron states each with a half unit of oibitspin angular momentumif (3.20) was
to describe an actual physical connection betw&20) and FQHE, then because (3.20) is

observed only ag,, — 0, and because the FQHE is observed only as theetatopeT — 0K,
this means that,, would have to approach zero as the temperatur@agipes absolute zero.

Finally, ever since (2.10), we have observed that r(¢) iIs a function of the
topologically-quantized number of azimuth windingsthree-dimensional physical space (as
well as the remaining spherical coordinatgsé). But we have not yet discerned exactly what
that function of ¢ might be. If the accurately-descriptive linkages with the Casopiantum
numbers reported in (3.20) do represent a genuigisigal connection and not mere coincidence,
and specifically ifm=¢t=2(| +s) =2j is real, then because (3.19) tells us thatA when
the magnetic chargg =0 is a topological gauge space winding numbeefar gy quantization,
and becausg | ands are all of the Casimir numbers used to describéalrangular momentum
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states in electron shells, and because all we haveyet discussed is the principal quantum
numbern>| which like n=# also specifies energy quantization, we are matvabd observe
that n=-A could be made to correspond to the principal guamumber, if, when the magnetic
charge =0 so all we have is the residug =7,;, we connectn>| to one another using the
more explicitn=n, +1 +1, wheren, is the radial quantum number equal to the numbaodes

in the radial wavefunction for the electron. Whrgithis vial = j-s=j—-4 asn=n +j+s, we
may replacen in (3.19) to explicitly show the requirgeiependency, together with teend n,
parameterization, namely:

: : . 0.8 . .
g,(n.j,s)=0,r.(n.j.s)=—(n +J+s)j:,bw(nr J.8)=A,(n js)+a,Ale,  (3.21)

where¢/2=j=1+s and /A =n=n, +| +1 serve to establish a topological quantizationafbr

of the Casimir numbers plus the principal quantwmbers needed to completely characterize
the exclusionary electronic structure of atoms g the Periodic Table of the Elements.

4, Proposed Experimental Validation

Although these possible concurrences are reporidtbut claim, there is an apparent
route for direct experimental confirmation or cadiction of these results. The odd FQHE
denominatorsre, objectively, equal to twice the total angular momentu®j,=1,3,5,7.., which
electrons in atomic shells are empirically pernditte have. The question is whether these
FQHE denominators are a direct physical consequearicéhis, or whether this is just a
coincidence in which two disconnected physical a@ffehappen to each have an odd-integer
spectrum. Now, for any given electropjadhe total number of observed spin states is etqual
4j. In other words, forj =3 correlating to denominator 1, there are two (2hsgtates of the

(“sharp”) orbital shell,s=+%. Forj=2 hence denominator 3 there are six (6) spin states,
namely the three states=0,+1 times the two states=+1 of thep (“principal”) orbital shell.

For j =3 hence denominator 5 there are ten (10) spin staéesely the five statesi=0,£1,+2
times the two states=++ of thed (“diffuse”) orbital shell. And so on for thfeg, h, etc. states.

This would means that a close inspection of spimetation in FQHE — if these reported but
unclaimed concurrences in (3.20) do represent aigerphysical connection — should reveal 2,
6, 10, 14... distinct spin states associated witthezfcthe FQHE denominators 1, 3, 5, 7...
respectively.

Further, non-prime multiples of prime number denwetors should display particularly
robust spins characteristics. The unit state 3=8/6=7/7... should be highly robust, exhibiting
all of s, p, d, f... and other shell characteristicAnd a state such as 1/3=3/9=9/27... should
display 6 spin states offashell plus 18 spin states ofjahell plus 54 spins states =2x27, etc.

Additionally, if the only even denominataj = 2(1 +s) = 2 in the FQHE does result
from apairing of electrons each with a half unit of angular mataoen, this composite spin state

17



Jay R. Yablon

should be observed as the four (4) spin statescofgosite2[1 2= 3[1 1 boson representation
of SU(2). The absence of higher-integer even demaiors beyond 2 can be understood based
the need for individual fermions to occupy exclusioy states witt2j =1,3,5,7.. whereas there

is no such need for bosons to do the same.

Finally, when the host metal used to observe FQHE d high atomic numbé&r, such
that there are many accessible outer-shell elesgoounded i (2 =5) orbitals with4j =10

spin states (transition metals), orfif2j = 7) orbitals with 4] =14 spin states (lanthanides or

actinides), it should be possible to correlativebserve the larger FQHE denominators 5, 7, 9,
11... with the application of smaller perpendiculaagnetic fields, because there are already
electrons naturally subsisting thor f states simply by Exclusion, before any field iplegd
whatsoever.

5. Conclusion

The DWY analysis can be made fully consistent wite apparent non-observation of
magnetic monopoles in nature, if we replace thealuassumption that the south gauge field

patch of the posited monopole charge <ﬁ> F differs from the north patch merely by a gauge-

transformation such tha#y, = A;, with the relationshipA, = A, +£& where £ defines an

observable difference between these north and south patches. Indettte DWY analysis is to
have any applicability to physics rather than besimgply an elegant but physically-wrong line
of development, then the widespread non-observaifoelectric / magnetic duality in nature
disproves the assumption that A, = A; andrequires that there be anbservable difference <.

Then, the DWY solution requires that=dr wherer is a monopole residug - 7, / ¢ which
remains behind after the magnetic charge is set+d, consistent with the non-observation of
monopoles. The electric charge remains quantizepredicted by DWY in the forne=ne,,
but now the unit charge is, =2 /7, rather than theg, =27/ obtained whenr =0 and
(%0 in the usual DWY analysis.

What is of particular interest for further studs/that whenu #0 and7 =0, the electric
charge states are quantized and fractionalizedrdioepto e = (7“r/~¢t)eu as found in (3.11), and
when we restrict consideration to only those statbich can be disentangled into the=1
azimuth winding of ane=ne, electron, this becomese:(n/Z(I +%))eu which happens to

correctly reproduce the odd-denominator FQHE chatgees. And what is also of interest is
that2j =2 + 2s=1,3,5,7..with s=3 happens to also describe the observable Casirairtgm

number for the total angular momentyiraf electrons in atomic shells. We leave as a tiues
for further study and review without present clawmether this fractionalization might provide a
microscopic, per-electron basis for understandivgyRractional Quantum Hall Effect, with the
conditions ##0 and r =0 prevailing for the two-dimensional FQHE electroonfigurations

near OK, and the opposite conditiops=0 and 7 #0 with x4 - 7, /¢ prevailing otherwise
where the temperature is higher and electrons mawee ample freedom in all three space

18



Jay R. Yablon

dimensions. And we also leave open for furthedgtand review without present claim, whether
2j=2+2=1,3,5,7.. represents a real physical linkage between oddyartfractionalization

and the electronic structure of atoms, and whetherA- which is the topological quantum
number of gauge space windings and does becomeneamgye quantum number when the
monopole charge =0 bears a real physical link to the principal quamtunumber

n=n +j+s. The experiments proposed in section 4, if cotetjacould perhaps shed further
light on these questions by objectively arbitratihgir empirical validity.
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