The Prime Sequence Generating Algorithm

The Prime Sequence Generating Algorithm

October 2013, November 2013, February 2015.
Author: Ramesh Chandra Bagadi
Founder, Owner, Co-Director And Advising Scientist In Principal Ramesh Bagadi Consulting LLC, Madison, Wisconsin-53715, United States Of America. Email: rameshcbagadi@netscape.net

Abstract:

In this abstract, a scheme for finding The Prime Sequence is elaborated.
Theory:
Procedure Start:
First of all we consider a set
$S_{1}=\{1,2,3\}$

We now consider $S_{1} \times S_{1}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$
We now consider $\left\{S_{1} \times S_{1}(i, j)\right\} \rightarrow\left\{S_{1} \times S_{1}(i * j)\right\}$ where $*$ represents the multiplication operator.

We now consider another set $R_{1}=\left\{1,2,3, \ldots \ldots \ldots \ldots,\left[\text { Cardinalit } y\left(S_{1}\right)\right]^{2}\right\}$
We now consider another set $P_{1}=R_{1}-\left\{S_{1} \times S_{1}\left(i^{*} j\right)\right\}$
Procedure End:
We can note that in this set, we note some new primes consecutive to $1,2,3$.

However, we now consider only one among this newly found primes that is nearest consecutive to the set $S_{1}=\{1,2,3\}$ and update our set $S_{1}=\{1,2,3\} \rightarrow S_{2}=\left\{1,2,3,5\right.$ (the first nearest consec utive prime to Set $\left.\left.S_{1}\right)\right\}$

We repeat the above procedure again and find $P_{2}=R_{2}-\left\{S_{2} \times S_{2}\left(i^{*} j\right)\right\}$ again.
However, we again consider only one among this newly found primes that is nearest consecutive prime element to the set $S_{2}=\{1,2,3,5\}$ and update our set $S_{2}=\{1,2,3,5\} \rightarrow S_{3}=\left\{1,2,3,5,7\right.$ (the firstnearestconsecutive primetoSet S_{2}) $\}$

We again repeat the next consecutive prime finding scheme as mentioned above and can find as many primes as needed.

References:

1. Higher Algebra, H.S. Hall, S.R. Knight.
2. Modern Quantum Mechanics, J.J. Sakurai.
