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Abstract

For convergence sums, by threading a continuous curve through a monotonic se-
quence, a series difference can be made a derivative. Series problems with differences
can be transformed and solved in the continuous domain. At infinity, a bridge between
the discrete and continuous domains is made. Stolz theorem at infinity is proved.
Alternating convergence theorem for convergence sums is proved.

1 Introduction

There have always been relationships between series with discrete change and integrals with
continuous change. In solving both problems and proofs we observe similarities and differ-
ences.

Series have no chain rule. However, for monotonic sequences satisfying the convergence
sums criteria we can construct a continuous function at infinity where the chain rule can be
applied. This can be combined with convergence sums integral test.

In topology, a coffee cup can be transformed by stretching into a donut. Similarly, we
can consider a monotonic sequence which by stretching deforms into a strictly monotonic
sequence.

Consider a positive monotonic continuous function and its integral at infinity. Provided
that the function’s plateaus do not sum to infinity, the integral has the same convergence or
divergence as the strictly deformed function’s integral.

Since convergence sums are monotonic, and can be deformed to be strictly monotonic, the
correlation between the series and integrals can be coupled in a way that results in a non-zero
derivative. The derivative of a sequence follows.

We believe the derivative of a sequence significantly changes convergence testing by allowing
an interchange between sums and integrals with the integral theorem via sequences and
functions in a fluid way.

At infinity with infinireals we provide a classical explanation of a geometric construction of
a curve threaded through a sequence of points (see Figure 1).
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This simplicity explains what can be highly technical arguments on integer sums and theo-
rems, which are not transferable between sums and integrals. The mirrored discrete formula
may use integer arguments in the proof specific to number theory whereas the continuous
formula may be proved again by altogether different means. Never shall they meet.

We again find that the acceptance of infinity, be it initially disturbing compared with classical
arguments, ends up augmenting, upgrading or replacing them.

The derivative of a sequence is a bridge between the continuous and discrete convergence
sums at infinity.

2 Derivative at infinity

When solving problems with sequences, there is no chain rule for sequences, as there is for
the continuous variable. However, forward and backward differences are used in numerical
analysis to calculate derivatives in the continuous domain.

In the discrete domain of integers, sequences, by contrast may use an equivalent theorem
such as Stolz theorem or Cauchy’s condensation test, as an effective chain rule.

If we consider a calculus of sequences, the change is an integer change, hence the goal is to
construct a derivative that has meaning there.

Consider the following example which motivates the possibility of having a derivative at
infinity, by constructing a derivative with powers at infinity.

Since a function can be represented by a power series, we now can convert between a difference
and a derivative at infinity. This uses non-reversible arithmetic.

Example 2.1. Let f(x) = x2. f(x+1)−f(x)|x=∞ = (x+1)2−x2|x=∞ = x2+2x+1−x2|x=∞
= 2x+ 1|x=∞ = 2x|x=∞ = f ′(x), as 2x � 1|x=∞.

Lemma 2.1. Generalizing the derivative of a power at infinity. If f(x) = xp|x=∞ then
df
dx

= f(x+ 1)− f(x)|x=∞

Proof. f(x + 1)− f(x)|x=∞ = (x + 1)p − xp|x=∞ = (xp +
(
p
1

)
xp−1 +

(
p
2

)
xp−2 + . . .)− xp|x=∞

= pxp−1|x=∞, as xk+1 � xk|x=∞.

Example 2.2. Find the derivative of sinx. Since sinx behaves the same as it does for
finite values as it does at infinity, take the difference at infinity. Let f(x) = sinx. f(x +
1) − f(x)|x=∞ = sin(x + 1) − sinx|x=∞ = ((x + 1) − 1

3!
(x + 1)3 + 1

5!
(x + 1)5 − . . .) −(x −
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1
3!
x3 + 1

5!
x5 − . . .)|x=∞ = 1 + (− 1

3!
(x + 1)3 + 1

5!
(x + 1)5 − . . .) +( 1

3!
x3 − 1

5!
x5 + . . .)|x=∞

= 1 +
∑∞

k=1(−1)k( 1
(2k+1)!

(x+ 1)2k+1 − 1
(2k+1)!

x2k+1)|x=∞

Consider 1
(2k+1)!

(x+1)2k+1|x=∞, taking the two most significant terms, 1
(2k+1)!

(x+1)2k+1|x=∞
= 1

(2k+1)!
x2k+1 + 1

(2k+1)!

(
2k+1
1

)
x2k|x=∞ = 1

(2k+1)!
x2k+1 + 1

(2k)!
x2k|x=∞

Substituting the expression into the previous sum, f(x+1)−f(x)|x=∞ = 1+
∑∞

k=1(−1)k( 1
(2k+1)!

x2k+1+
1

(2k)!
x2k − 1

(2k+1)!
x2k+1)|x=∞ = 1 +

∑∞
k=1(−1)k 1

(2k)!
x2k|x=∞ = cosx|x=∞, since a power series

f ′(x) = cos x.

Given a function f(x), we can determine its derivative at infinity by converting f(x) to a
power series, taking the difference, and converting from the power series back into a function.

Theorem 2.1. When f(x) =
∑∞

k=0 cix
i,

df(x)

dx
= f(x+ 1)− f(x)|x=∞

Proof. Given f(x) =
∑∞

k=0 akx
k, df(x)

dx
=
∑∞

k=0
d
dx
akx

k =
∑∞

k=0 kakx
k−1. Consider the dif-

ference, f(x + 1) − f(x) =
∑∞

k=0(ak(x + 1)k − akx
k) =

∑∞
k=0 kakx

k−1 = df(x)
dx

, by Lemma
2.1.

An application of the derivative at infinity is, with the comparison logic, where rather than
either assume that infinitesimally close expressions are equal or using orders of higher mag-
nitude to simplify under addition by forming a difference we can obtain the derivative. Since
the derivative is a function, we have an asymptotic result.

Example 2.3. While solving for relation z: f + ln(n+ 1) z g + lnn|n=∞, f + ln(n+ 1)−
lnn z g|n=∞, f + d

dn
lnn z g|n=∞, f + 1

n
z g|n=∞

Without the derivative at infinity, with an assumed f ' g|n=∞ logical errors in the calculation
are more easily made. This can be addressed by solving using magnitude arguments and
non-reversible arithmetic; however, this does not yield an asymptotic error estimate.

With the use of the sequence derivative, an asymptotic expression of the difference is formed.

The sequence derivative can be an alternative to the use of the binomial theorem. (However,
if there is any doubt other well known methods such as the binomial theorem are available.)

Example 2.4. Using the binomial theorem, (2n + 1)
1
2 − (2n)

1
2 |n=∞ = (2n)

1
2 (1 + 1

2n
)
1
2 −

(2n)
1
2 |n=∞ = (2n)

1
2 (1 + 1

2
1
2n

+ . . .− 1)|n=∞ = (2n)
1
2

1
4n

= 1

2n
1
2
|n=∞ = 0
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The same calculation with the derivative at infinity and non-reversible arithmetic.

(2n+ 1)
1
2 − (2n)

1
2 |n=∞ = (2n+ 2)

1
2 − (2n)

1
2 |n=∞ = (2(n+ 1))

1
2 − (2n)

1
2 |n=∞ = d

dn
(2n)

1
2 |n=∞

= 1
2
(2n)−

1
2 2|n=∞ = 1

2n
1
2
|n=∞ = 0. 2n+ 1 = 2n+ 2|n=∞

The following definitions and results are given, as logarithms are extensively used with
sequences and convergence tests.

Definition 2.1. Let lnk be k nested log functions, by default having variable n. lnk =
ln(lnk−1), ln0 = n.

Definition 2.2. Let Lw =
∏w

k=0 lnk.

Lemma 2.2. d
dn

lnw = 1
Lw−1
|n=∞

Example 2.5. In the following comparison, (ln3(x + 1) − ln3 x)|x=∞ = d
dx

ln3 x|x=∞ =
1

L2(x)
|x=∞ = 0. In a sense this is the error term. [1, Example 2.19].

x
p

p+1 z xln2(x)/ln2(x+1)|x=∞ (Solve for relation z)

ln(x
p

p+1 ) (ln z) ln(xln2(x)/ln2(x+1))|x=∞
p

p+ 1
lnx (ln z)

ln2(x)

ln2(x+ 1)
lnx|x=∞

p ln2(x+ 1) (ln z) (p+ 1)ln2(x)|x=∞
ln p+ ln3(x+ 1) (ln2 z) ln(p+ 1) + ln3(x)|x=∞
ln p+ (ln3(x+ 1)− ln3 x) (ln2 z) ln(p+ 1)|x=∞ (Apply derivative)

ln p (ln2 z) ln(p+ 1)|x=∞
ln p < ln(p+ 1)|x=∞

ln2 z = <, z = ee
<

= <

In working with integers, it is sometimes convenient to solve the problem for real numbers,
then translate back into the integer domain.

The development of a way to convert between the integer domain or the domain of sequences,
and the continuous domain, is similarly beneficial. For example, converting between sums
and integrals.

By threading a continuous function through a monotonic sequence, we can construct a
continuous function with the monotonic properties.

an an+1
an+2

an+3 a(n)

Figure 1: Monotonic function and sequence through points
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Further, since a monotonic series or integral can be deformed to a strictly monotonic series or
integral ([5, Theorem 3.1]), we need only consider the strictly monotonic case. By definition
of the convergence Criterion E3 [3], cases where this cannot be done are said to be undefined.

Consider a positive sequence (an) in ∗G. Without loss of generality, let (an)n=∞ be strictly
monotonic, either increasing or decreasing.

Fit a curve, with conditions: a(n) = an. Let a(x) =
∑n

k=0 ckx
k, pass through n + 1 points.

Solve for (ck).

Fitting a power series curve through a strictly monotonic sequence; the curve fitted is also
strictly monotonic (within the index interval).

Since we determine convergence at infinity, we fit the curve for the sequence at infinity. Then
a(x) is strictly monotonic, and an analytic function. By converting a sequence difference,
for example an+1 − an to the continuous power series representation, Theorem 2.1 can be
applied and a derivative formed.

In solving for one domain and transferring to the other, we can bridge between sequences
and continuous functions.

Definition 2.3. Let (an)|n=∞ be a sequence at infinity and a(n) a continuous function
through the sequence.

an = a(n)|n=∞; n ∈ J∞
Definition 2.4. Let the derivative of a sequence at infinity be the difference of consecutive
terms.

an+1 − an =
dan
dn
|n=∞ or a2n+1 − a2n =

dan
dn

where an|n=∞ 6= α a constant.

How the derivative of a sequence is defined is problem dependent. It is up to the user. In
a similar way we may start counting from 0 or 1. By the contiguous rearrangement theo-
rem [5, Theorem 2.1], we need only determine one contiguous rearrangement to determine
convergence or divergence.

Consider the technique of adequality [8, p.5] more generally to that of a principle of variation.

d(f(A)) = f(A+ E)− f(A)

As a change in consecutive integers is 1,

dn = (n+ 1)− n

we can see a correspondence between a sequence derivative, and the continuous derivative.

d(an) = an+1 − an =
an+1 − an

1
=
dan
dn
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To aid calculation, a convention of left to right equals symbol ordering is used to indicate
which direction a conversion is taking place. Further, by redefining a variable from an integer
to the continuous variable, will enable the transformation to be more natural and effortless.

Theorem 2.2. By threading a continuous function a(n) through sequence an and preserving
monoticity.

dan
dn

=
da(n)

dn
|n=∞

Proof. Let a(n) be represented by a power series. dan
dn

= an+1 − an = a(n + 1) − a(n)

= da(n)
dn
|n=∞ by Theorem 2.1

Remark: 2.1. The usefulness of the change of integers can be seen when considering the
equality of the Riemann sum to the integral [6, Remark 2.1], hence discrete change has
generality.

On the assumption that dkan
dnk can be similarly defined.

Definition 2.5. Converting between the discrete sequence and continuous curve through the
sequence, with left to right direction.

fn(an,
dan
dn

, . . .) = f(a(n),
da(n)

dn
, . . .)|n=∞ sequence to function

f(a(n),
da(n)

dn
, . . .) = fn(an,

dan
dn

, . . .)|n=∞ function to sequence

Theorem 2.3. For a strictly monotonic sequence, we can construct an associated strictly
monotonic function that is continually differentiable.

Proof. For a strictly monotonic sequence, the sequence derivative is never 0, a power series
at infinity, say for N infinite number of points, solving N equations, the resulting curve is
continually differentiable.

With the interchangeability of the derivative between sequences and continuous functions,
equations involving sequences can be solved as differential equations, and the result trans-
formed back into the domain with sequences. Bridging the continuous and discrete domains
at infinity.

Proposition 2.1. If an+1 − an|n=∞ = α, then an
n
|n=∞ = α. [7, 2.3.14]

Proof. As an alternative to the use of Stolz theorem, an+1 − an|n=∞ = an+1−an
dn
|n=∞ = α,

da(n)
dn

= α, separate the variables, d(a(n)) =
∫
αdn, a(n) = αn|n=∞, an = αn|n=∞, an

n
|n=∞ =

α.
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Theorem 2.4. Stolz theorem. Given sequence (yn)|n=∞ is monotonically increasing and
diverges, yn|n=∞ =∞, and xn−xn−1

yn−yn−1
|n=∞ = g, then xn

yn
|n=∞ = g

Proof. xn−xn−1

yn−yn−1
|n=∞ = xn−xn−1

dn
dn

yn−yn−1
|n=∞ = dxn

dn
dn
dyn
|n=∞ = dx(n)

dn
dn
dy(n)
|n=∞ = dx(n)

dy(n)
|n=∞ = g,

recognizing a separation of variables problem, separate and integrate the variables.
∫
dx =

g
∫
dy|n=∞, x(n) = gy(n)|n=∞, xn = gyn|n=∞, xn

yn
|n=∞ = g.

In applications with series expansions that include differences, when it is possible to arbi-
trarily truncate the series, apply the transforms for the new system.

Example 2.6. Using the sequence derivative with a sin expansion. 0 < a1 < 1, an+1 = sin an,
Show n

1
2an = 3

1
2 |n=∞.

Within the interval, 0 ≤ sinx < x, then an+1 ≤ an. Applying this to infinity, an|n=∞ = 0
Using a Taylor series expansion, a one term expansion fails, giving a derivative of 0. However
a two term expansion succeeds.

sinx = x− x3

3!
+. . ., an+1 = sin an|n=∞ = an− a3n

3!
|n=∞, an+1−an = −a3n

6
|n=∞, da(n)

dn
= −a3

6
|n=∞,

da
a3

= −dn
6
|n=∞, − 1

2a2
= −n

6
|n=∞, 1

a2
= n

3
|n=∞, 3 = na2, 3

1
2 = n

1
2an|n=∞.

While it is standard practice of including the integral symbol when integrating, the integral
itself may be subject to algebraic simplification, on occasions, it can be better to leave off
the integral symbol.

Definition 2.6. For a continuous variable, integration can be expressed without the integral
symbol. (a dn) means

∫
a dn.

When considering a change of variable, as in the chain rule, a variable is used to express
the change. However this is not necessarily required, By the d() operator, integration and
differentiation are possible. This can be more direct.

Example 2.7.
∫

2u
u2+1

du. Let v = u2 + 1, dv
du

= 2u.
∫

2u
u2+1

du =
∫

dv
du

1
v
du =

∫
dv 1

v
= ln v

Alternatively without the variable,
∫

2u
u2+1

du =
∫ d(u2+1)

du
1

u2+1
du =

∫
d(u2+1) 1

u2+1
= ln(u2+1)

Formally the integral symbol
∫

and the change in variable dx integrate the expression be-
tween them

∫
y(x)dx. However, when working with the algebra and cancelling, integration

and differentiation become factors. The integral symbol is not always necessary, and the
order of cancellation does not necessarily put the variable at the right end.

From the point of view of solving, the integral symbol
∫

may be omitted, where trying
different combinations of change may be beneficial.
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Providing the context is clear, you can remove the integral symbols, but include the symbols
at the end when communicating.

The generalised p-series test [4].∑ 1∏w−1
k=0 lnk · lnpw

|n=∞ =

{
0 converges when p > 1
∞ diverges when p ≤ 1

Example 2.8. [7, p.89 3.3.6]. Given sn =
∑n

k=1 ak, sn|n=∞ =∞.
3.3.6.a Show

∑ an+1

sn ln sn
|n=∞ =∞ diverges.

Transform the problem into the continuous domain.
∑ an+1

sn ln sn
|n=∞ =

∑ an+1

sn ln sn
dn|n=∞ =∫

a
s ln s

dn|n=∞ where n has been redefined. Let a(n) and s(n) be continuous functions to
replace an and sn respectively. s = a dn, s|n=∞ =∞.

Observing ds
dn

= d(a dn)
dn

= a then
∫

a
s ln s

dn|n=∞ =
∫

1
s ln s

ds
dn
dn|n=∞ =

∫
1

s ln s
ds|n=∞ = ∞

diverges.

Alternatively applying the chain rule.
∫

a
s ln s

dn|n=∞ =
∫

a
(a dn) ln (a dn)

dn|n=∞ =
∫

a
(a dn) ln (a dn)

dn
d(a dn)

d(a dn)|n=∞
=
∫

a
(a dn) ln (a dn)

1
a
d(a dn)|n=∞ =

∫
1

(a dn) ln (a dn)
d(a dn)|n=∞ =

∫
1

s ln s
ds|s=∞ = ∞ as on the

boundary.

The derivative of a sequence(Definition 2.4) leads to a chain rule with sequences.

Example 2.9. Example 2.8, solved with the derivative, noticing that an+1 = sn+1 − sn and
constructing a derivative dsn

dn
.∑ an+1

sn ln sn
dn|n=∞ =

∑ sn+1−sn
sn ln sn

dn|n=∞ =
∑

dsn
dn

1
sn ln sn

dn|n=∞ =
∑

1
sn ln sn

dsn|Sn=∞ = ∞ di-
verges.

Example 2.10. [7, p.89 3.3.6.b]. Continued from Example 2.8. Show
∑

an
sn(ln sn)2

|n=∞ = 0
converges.∑

an
sn(ln sn)2

|n=∞ =
∑ sn−sn−1

sn(ln sn)2
dn|n=∞ =

∑
dsn
dn

1
sn(ln sn)2

dn|n=∞ =
∑

1
sn(ln sn)2

dsn|sn=∞ =
∫

1
s(ln s)2

ds|s=∞
= 0 converges (Generalised p-series, p = 2 > 1).

The exception to the derivative forming a difference is when an|n=∞ = α is a constant, see
Definition 2.4. The sum of the power series, instead of being an infinite sum, reduces to a
single term, or an infinity of terms with a non-monotonic function. At infinity, the power
series could not be monotonic, or have a strict relation.

Example 2.11. To demonstrate the case, applying the derivative to the following problem.

Let (an) be a sequence with an|n=∞ = α 6= 0, an > 0. Prove that the series
∑∞

k=1(an+1 − an)
and

∑∞
k=1(

1
an+1
− 1

an
) both absolutely converge or both absolutely diverge. [7, 3.4.17]
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Reorganising the problem, show
∑

(an+1 − an)|n=∞ and
∑

( 1
an+1
− 1

an
)|n=∞ both absolutely

converge or both absolutely diverge.

Following the approach given in this paper.
∑

(an+1−an)|n=∞ =
∑

dan
dn
dn|n=∞ =

∫
da
dn
dn|n=∞

=
∫
da|n=∞ = a|n=∞ = α∑ an−an+1

anan+1
dn|n=∞ =

∫
− da
dn

1
a2
dn|n=∞ =

∫
− 1
a2
da|n=∞ = 1

a
|n=∞ = 1

α

Both the sums fail the convergence criterion E3 where we expect the sums at infinity to be
either 0 or ∞.

This is suggesting that for a constant we need to treat the theory separately. Here the problem
is reconsidered with the reasoning that an is a constant, and an+1 − an is an infinitesimal,

Proof.
∑

( 1
an+1
− 1

an
)|n=∞ =

∑ an−an+1

an+1an
|n=∞ =

∑
− 1
an+1an

(an+1 − an)|n=∞ =
∑
− 1
α2 (an+1 −

an)|n=∞ =
∑

(an+1−an)|n=∞. Since at infinity the sums are equal, so is their absolute value
sum.

When approximating numerically, solving for a variable by variation, it is common to incre-
mentally approach the solution with numerical schemes.

If δn → 0 then xn+1 − xn = δn, xn+1 − xn =
dxn
dn

=
dx(n)

dn
|n=∞ = 0

The iterative scheme has a solution when its derivative is zero, corresponding to the solution
of the problem.

Example 2.12. [2, Example 2.4] We can show the derivative of xn, successive approxima-
tions, as decreasing in the following algorithm. x ∈ ∗G; δ ∈ Φ; (x + δ)2 = 2. Develop
an iterative scheme, x2 + 2xδ + δ2 = 2; x2 + 2xδ = 2 as 2xδ � δ2, x2n + 2xnδn|n=∞ = 2,
δn = 1

xn
− xn

2
|n=∞. Couple by solving for xn+1 = xn + δn.

In the ideal case, (xn + δn)2|n=∞ ' 2 Provided δn → 0, (xn)|n=∞ is a series of progressions
towards the solution. This can be expressed as a derivative. xn+1 = xn + δn, xn+1− xn = δn,
dxn
dn

= δn.

Transferring the algorithm ∗G→ R, provided we observe the same decrease in δn, the algo-
rithm finds the solution.

Let x1 = 1.5, δn : (−8.3×10−2,−2.45×10−3,−2.12×10−6,−1.59×10−12, . . .) As the gradient
is negative and decreasing, n vs xn is monotonically decreasing and asymptotic to the solution
xn|n=∞ =

√
2.
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3 Convergence tests

Theorem 3.1. The Alternating convergence theorem(ACT). If (an)|n=∞ is a monotonic
decreasing sequence and an|n=∞ = 0 then

∑
(−1)nan|n=∞ = 0 is convergent.

Proof. Compare against the boundary [4] between convergence and divergence.∑
(−1)nan z

∑ 1∏w
k=0 lnk

|n=∞ (Rearrangent, see [5])∑
a2n − a2n−1 z

∑ 1∏w
k=0 lnk

|n=∞ (A sequence derivative)∑ dan
dn

z
∑ 1∏w

k=0 lnk
|n=∞ (Discrete to continuous n)

da(n)

dn
z

1∏w
k=0 lnk

|n=∞ (Separation of variables)

da(n) z

∫
1∏w

k=0 lnk
dn|n=∞

a(n) z lnw+1|n=∞ (substituting conditions, a(n)|n=∞ = 0)

0 z ∞, z = <
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