Foundations of a mathematical model of physical reality

By J.A.J. van Leunen

Last modified: 21 februari 2015

Abstract

This paper starts from the idea that physical reality implements a network of a small number of mathematical structures. Only in that way can be explained that observations of physical reality fit so well with mathematical methods.

The mathematical structures do not contain mechanisms that ensure coherence. Thus apart from the network of mathematical structures a model of physical reality must contain mechanisms that manage coherence such that dynamical chaos is prevented.

Reducing complexity appears to be the general strategy. The structures appear in chains that start with a foundation. The strategy asks that especially in the lower levels, the subsequent members of the chain emerge with inescapable self-evidence from the previous member. The chains are interrelated and in this way they enforce mutual restrictions.

As a consequence the lowest levels of a corresponding mathematical model of physical reality are rather simple and can be comprehended by skilled mathematicians.

In order to explain the claimed setup of physical reality, the paper selects a special foundation for the major chain. That foundation is a skeleton relational structure and it was already discovered and introduced in 1936.

The paper does not touch more than the first development levels. The base model that is reached in this way puts already very strong restrictions to more extensive models.

Some of the features of the base model are investigated and compared with results of contemporary physics.

If the model introduces new science, then it has fulfilled its purpose.

Contents

1		Introduction					
2		The	majo	r chain	. 4		
	2.	1	The	foundation	. 4		
	2.	2	Exte	nding the major chain	. 4		
3		Con	seque	ences of the currently obtained model	. 5		
4		Supp	portir	ng continuums	. 6		
		4.1.	1	Representing continuums and continuous functions	. 6		
5		The	ortho	omodular base model	. 7		
6	Attaching characteristics to a module						
	6.	1	Мар	of well-ordered coherent set	. 9		
	6.2		Coh	erent swarm	. 9		
	6.3		The	coherent map	10		
	6.	4	Gen	eration cycle	10		
	6.	5	Mod	lel wide progression steps and cycles	10		
	6.	6	Swa	rm behavior	11		
	6.7		Swa	rm characteristics	11		
	6.8 Swa		Swa	rm diversity	12		
		6.8.3	1	Fermions	12		
		6.8.2	2	Bosons	13		
		6.8.3	3	Spin axis	13		
	6.	9	Mas	s and energy	13		
		6.9.3	1	Information messengers	13		
		6.9.2	2	Mass energy equivalence	13		
	Re	elatio	n to	the wave function	14		
7		Traces of embedding 1					
	7.	1	Emb	edding potentials	15		
	7.	2	Sym	metry related potential	16		
		7.2.3	1	Difference with gravitation potential	16		
8		Composi		es	16		
	8.	1	Clos	ed strings	16		
	8.	2	Ope	n strings	17		
	8.	3	Bind	ling	17		
	8.	4	Orth	omodular model	17		
		8.4.2	1	Gravitation	17		
		8.4.2	2	Symmetry related potential	17		

	8.5	Con	temporary physics	. 17
	8.5.	1	Atoms	. 17
	8.5.2	2	Hadrons	. 17
	8.5.3	3	Standard model	. 18
9	Rest	trictir	ng the orthomodular base model	. 18
10	Ro	ole o	f the incoherent subspaces	. 18
11	Co	onclu	ısion	. 18
Αŗ	pendix	x		20
1	Qua	iterni	onic calculus	20
	1.1	Qua	ternions	20
	1.2	Sym	metry flavors	21
	1.3	Sym	metry flavor conversion tools	22
	1.3.3	1	Conjugation	22
	1.3.2	2	Rotation	22
	1.4	Diffe	erential calculus	23
	1.4.3	1	The coupling equation	23
	1.4.2	2	The wave equation	24
	1.5	Spac	ce-progression models	25
	1.5.3	1	The Maxwell-Huygens wave equation	26
2	Rela	ated h	nistoric discoveries	26

1 Introduction

Physical reality is that what physicists try to model in their theories. It appears that observations of features and phenomena of physical reality can often be explained by mathematical structures and mathematical methods.

This leads to the unorthodox idea that physical reality itself mimics a small set of mathematical structures. In that case physical reality will show the features and phenomena of these structures.

Mathematical structures appear in chains that start from a foundation and subsequent members of the chain emerge with inescapable self-evidence from the previous member. The chains are often interrelated and impose then mutual restrictions. It is obvious to expect the same setup for the structures that are maintained by physical reality.

Physical reality is known to show coherence. Its behavior is far from chaotic. The mathematical structures do not contain mechanisms that ensure coherence. Thus apart from the network of mathematical structures a model of physical reality must contain mechanisms that manage coherence such that dynamical chaos is prevented. In physical reality, reducing complexity appears to be the general strategy.

One chain is expected to play a major role and its foundation can be viewed as the major foundation of the investigated model of physical reality. The discovery of this foundation is essential for explaining how the network of mimicked mathematical structures is configured.

2 The major chain

2.1 The foundation

This paper uses the skeleton relational structure that in 1936 was discovered by Garret Birkhoff and John von Neumann as the major foundation of the model. Birkhoff and von Neumann named it "quantum logic"[1].

The ~25 axioms that define an orthocomplemented weakly modular lattice form the first principles on which the model of physical reality is supposed to be built [2]. Another name for this lattice is *orthomodular lattice*. Quantum logic has this lattice structure. Classical logic has a slightly different lattice structure. It is an orthocomplemented modular lattice. Due to this resemblance, the discoverers of the orthomodular lattice gave quantum logic its name. The treacherous name "quantum logic" has invited many scientists to deliberate in vain about the significance of the elements of the orthomodular lattice as logical propositions. For our purpose it is better to interpret the elements of the orthomodular lattice as *construction elements* rather than as *logic propositions*.

The selected foundation can be considered as part of a recipe for modular construction. What is missing are the binding mechanism and a way to hide part of the relations that exist inside the modules from the outside of the modules. That functionality is realized in higher levels of the model.

2.2 Extending the major chain

The next level of the major chain of mathematical structures *emerges with inescapable self-evidence* from the selected foundation. Not only quantum logic forms an orthomodular lattice, but also the set of closed subspaces of an infinite dimensional separable Hilbert space forms an orthomodular lattice [1].

Where the orthomodular lattice was discovered in the thirties, the Hilbert space was introduced shortly before that time [3].

The Hilbert space adds extra functionality to this orthomodular lattice. This extra functionality concerns the superposition principle and the possibility to store numeric data in eigenspaces of normal operators. In the form of Hilbert vectors the Hilbert space features a finer structure than the orthomodular lattice has.

Numbers do not exist in the realm of a pure orthomodular lattice. Via the Hilbert space number systems emerge into the model. Number systems do not find their foundation in the major chain. Instead they belong to another chain of mathematical structures. The foundation of that chain concerns mathematical sets.

The Hilbert space can only handle members of a division ring for specifying superposition coefficients, for the eigenvalues of its operators and for the values of its inner products. Only three suitable division rings exist: the real numbers, the complex numbers and the quaternions. These facts were known in the thirties but became a thorough mathematical prove in the sixties [4].

Separable Hilbert spaces act as structured storage media for discrete data that can be stored in real numbers, complex numbers or quaternions. Quaternions enable the storage of 1+3D data that have an Euclidean geometric structure.

The confinement to division rings puts strong restrictions onto the model. These restrictions reduce the complexity of the whole model.

Thus, selecting a skeleton relational structure that is an orthomodular lattice as the foundation of the model already puts significant restrictions to the model. On the other hand, as can be shown, this choice promotes modular construction. In this way it eases system configuration and the choice significantly reduces the relational complexity of the final model.

3 Consequences of the currently obtained model

The orthomodular lattice can be interpreted as a part of a recipe for modular construction. What is missing are means to bind modules and means to hide relations that stay inside the module. This functionality must be supplied by extensions of the model. It is partly supplied by the superposition principle, which is introduced via the separable Hilbert space.

The current model does not yet support coherent dynamics. The selected foundation and its extension to a separable Hilbert space can be interpreted in the following ways:

- Each discrete construct in this model is supposed to expose the skeleton relational structure that is defined as an orthomodular lattice.
- Each discrete construct in this model is either a module or a modular system.
- Every discrete construct in this model can be represented by a closed subspace of a single infinite dimensional separable quaternionic Hilbert space.
- Every module and every modular system in this model can be represented by a closed subspace of a single infinite dimensional separable quaternionic Hilbert space.

The modular construction recipe is certainly the most influential rule that exists in the generation of physical reality. Even without intelligent design it achieved the construction of intelligent species.

4 Supporting continuums

The separable Hilbert space can only handle discrete numeric data. Physical reality also supports continuums. The eigenspaces of the operators of the separable Hilbert space are countable. Continuums are not countable.

Soon after the introduction of the Hilbert space scientists tried to extend the separable Hilbert space to a non-separable version that supports operators, which feature continuums as eigenspaces. With his bra-ket notation for Hilbert vectors and operators and by introducing generic functions, such as the Dirac delta function Paul Dirac introduced ways to handle continuums [5]. This approach became proper mathematical support in the sixties when the Gelfand triple was introduced [6].

Every infinite dimensional separable Hilbert space owns a Gelfand triple. In fact the separable Hilbert space can be seen as embedded inside this Gelfand triple. How this embedding occurs in mathematical terms is still obscure. It appears that the embedding process allows a certain amount of freedom that is exploited by the mechanisms, which are contained in physical reality and that have the task to ensure coherence.

In the separable Hilbert space the closed subspaces have a well-defined numeric dimension. In contrast, in the non-separable companion the dimension of closed subspaces is in general not defined. The embedding of subspaces of the separable Hilbert space in a subspace of the non-separable Hilbert space that represents an encapsulating composite will at least partly hide the embedded constituents. This hiding is required for constituents of modular systems.

4.1.1 Representing continuums and continuous functions

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [5]. By using bra-ket notation, operators that reside in the separable Hilbert space and correspond to continuous functions, can easily be defined starting from an orthogonal base of vectors. This works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.

Let $\{q_i\}$ be the set of rational quaternions and $\{|q_i\rangle\}$ be the set of corresponding base vectors. They are eigenvectors of a normal operator $|q_i\rangle q_i\langle q_i|$. Here we enumerate the base vectors with index i.

 $|q_i\rangle q_i\langle q_i|$ is the configuration parameter space operator.

Let f(q) be a quaternionic function.

 $|q_i\rangle f(q_i)\langle q_i|$ defines a new operator that is based on function f(q).

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function f(q) can be used to define an operator, which features a continuum eigenspace that acts as target space of the function and uses the eigenspace of the reference operator $|q\rangle q\langle q|$. The eigenspace reference operator $|q\rangle q\langle q|$ acts as a flat parameter space that is spanned by a quaternionic number system.

 $|q\rangle f(q)\langle q|$ defines a curved continuum.

Here we no longer enumerate the base vectors with index i. We just use the name of the parameter.

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.

The continuums that appear as eigenspaces in the non-separable Hilbert space can be considered as quaternionic functions that also have a representation in the corresponding infinite dimensional separable Hilbert space. Both representations use a flat parameter space that is spanned by quaternions.

5 The orthomodular base model

Now we have achieved a level in which the major chain of mathematical structures does no longer offer an inescapable self-evident extension. The model uses separable and non-separable Hilbert spaces in order to store numeric data that can describe a series of discrete objects that are embedded in a continuum. The real parts of the parameters can be used to order the parameters and the target values of functions. If properly ordered these descriptions can represent a sequence of static status quos. However, this model contains no means to control the coherence between the subsequent members of the sequence.

We will call this stage of the model development "*The orthomodular base model*". Any further development of the model involves the insertion of mechanisms that ensure the coherence between the subsequent members of the sequence of static status quos.

The orthomodular base model describes the relational structure of modular systems. Via the management mechanisms it can add characteristics to the modules. These characteristics are based on eigenvalues of normal operators that reside in the separable Hilbert space and have eigenvectors in the closed subspace that represents the module.

The numeric data that occur in the orthonormal model must be taken from division rings. The most elaborate choice for these data are quaternions. The peculiarities of these quaternions influence the features and the behavior of the discrete objects and the fields that occur in the orthonormal model.

Many of these peculiarities are hardly known by scientists. As far as they apply to this paper these subjects are treated in the Appendix.

6 Attaching characteristics to a module

We take one closed subspace as an example.

In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space states: "If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an orthonormal base consisting of eigenvectors of the operator."

The corresponding eigenvalues characterize this closed subspace.

The normal operator $|a_i\rangle a_i\langle a_i$ that maps the closed subspace onto itself **may** correspond to a **companion operator** $|\wp(a_i)\rangle\wp(a_i)\langle\wp(a_i)|$ that resides in the non-separable companion of the Hilbert space. \wp represents the map. Its target is a curved continuum.

The Hilbert spaces are structured storage places and in that way they can describe things. They cannot control what happens. That is the task of management mechanisms.

Here we take the position that the eigenvalues are generated by a mechanism that implements a stochastic process. This process does not reside in the Hilbert spaces, but part of its behavior can be described by a series of operators. Some of these operators reside in the separable Hilbert space. Other participating operators reside in the non-separable Hilbert space.

The stochastic process can be considered as a combination of a stochastic selector, such as a Poisson process and a binomial process, which is implemented by a 3D spread function \mathcal{S} . This **stochastic spread function** produces a distribution of discrete locations that can be described by a density distribution ρ .

The involved operators and mechanisms are:

- In the separable Hilbert space a **reference operator** $|q_i\rangle q_i\langle q_i|$ provides the parameter space of involved functions. The set of eigenvalues $\{q_i\}$ of this operator represent all rational members of a quaternionic number system.
- In the non-separable Hilbert space a **reference operator** $|q\rangle q\langle q|$ provides the parameter space of involved functions. The set of eigenvalues $\{q\}$ of this operator represent all members of a quaternionic number system.
- The *density operator* $|q_i\rangle\rho(q_i)\langle q_i|$, resides in separable Hilbert space and represents the density $\rho(q_i)$ of the discrete distribution $\{a_j\}$ that is generated by the stochastic spread function \mathcal{S} .
- The *target space operator* $|q\rangle \mathscr{O}(q)\langle q|$ resides in the non-separable Hilbert space and is implemented by a continuous mapping function $\mathscr{O}(q)$.
- The *density operator* $|q\rangle \wp((\rho(q)))\langle q|$ resides in the non-separable Hilbert space and represents the density $\wp((\rho(q)))$ of the discrete distribution $\{\wp(a_j)\}$ that is generated by the stochastic spread function $\mathcal S$ via the convolution $\mathcal P=\wp\circ\mathcal S$ of the map \wp and the spread function $\mathcal S$.
- The **stochastic selection mechanism** selects parameter values a_j according to the density operator $|q_i\rangle\rho(q_i)\langle q_i|$ that represents the density $\rho(q_i)$ of the discrete distribution $\{a_j\}$ that is generated by the stochastic spread function \mathcal{S} .

Thus the selection mechanism and the combination of the operators that reside in the separable Hilbert space produce a sequence of eigenvalues $\{a_j\}$ of operator $|q_i\rangle q_i\langle q_i|$ that map onto the closed target set in the continuum that is formed by the density operator $|q\rangle \mathscr{D}\big((\rho(q))\big)\langle q|$ that represents the convolution $\mathcal{P}=\mathscr{D}\circ\mathcal{S}$.

 $\{a_i\}$ is a coherent subset of $\{q_i\}$.

 $\wp(q)$ represents the continuum eigenspace of the target space operator.

Since $\mathcal{P}(q)$ is a continuous function, $\{\mathcal{P}(a_j)\}$ is a discrete coherent subset of the continuous target space $\{\wp(q)\}$.

The target subset $\{\mathcal{P}(a_j)\}$ represents the freedom that is left by the embedding of the separable Hilbert space into the non-separable Hilbert space. This imaging process is described by the convolution:

$$\mathcal{P} = \wp \circ \mathcal{S}_{j} \tag{1}$$

 \mathcal{S}_j is a stochastic spatial spread function and varies with each subsequent progression step.

produces an exact map.

The exact target location $\mathcal{P}(a_j)$ is not known beforehand, but after selection of the source eigenvalue a_j the image $\mathcal{P}(a_j)$ is exactly known.

Averaged over all selections, $\mathcal P$ produces a blurred image.

The blur only concerns the imaginary part of the quaternion.

The average a of the imaginary parts of all $\{a_j\}$ is the center location of the set. The combination of all involved operators and the selection mechanism produces a blurred image of a.

6.1 Map of well-ordered coherent set

Since the source eigenvalues $\{a_j\}$ are all quaternions, they can be ordered with respect to their real value. All source eigenvalues have different real parts. That real value contains the sequence number. The set of source eigenvalues forms a **well-ordered coherent set**. As a consequence, the image of the map of the source eigenvalues onto the continuum eigenspace can be described by a dynamic continuous location density distribution in which the sequence number acts as the progression parameter. This also means that $\{a_i\}$ describes a **hopping path**.

6.2 Coherent swarm

The well-ordered coherent set $\{a_j\}$, which can be described by a dynamic continuous location density distribution $\rho(q)$ may also have a Fourier transform. In that case we call the set a **coherent swarm**. The coherent swarm owns a displacement generator. This means that at first approximation the swarm $\{a_i\}$ **moves as one unit**. Having a Fourier transform is a higher level coherence requirement.

It means that the swarm can be represented by a wave package. On movement, wave packages tend to disperse. Since the dynamic continuous location density distribution only describes the swarm, it is continuously regenerated. The swarm does not disperse. This also holds during movement of the swarm. Thus there exist no danger of dispersion.

On the other hand the representation by a wave package indicates that the swarm $\{a_j\}$ may take the form of an interference pattern. That interference pattern is still a location swarm. It is not constructed by interfering waves!

6.3 The coherent map

Thus in the **special case** that a companion operator $|\wp(a_i)\rangle\wp(a_i)\langle\wp(a_i)|$ of the normal operator $|a_i\rangle a_i\langle a_i|$ that maps the subspace onto itself exists and the source eigenvalues $\{a_j\}$ form a well ordered coherent set, then the embedding of the module can be described by a progression dependent continuous mapping function \wp , which produces a blurred image $\mathcal{P}(a)$ of the average of the source eigenvalues. \wp uses a flat parameter space that is spanned by a quaternionic number system. The coherent set of source eigenvalues can be considered to be generated by a mechanism that can be characterized by a source location spread function \wp . This function has fixed statistical characteristics, uses quaternions as its target values and progression as its parameter value. The progression parameter is taken from the parameter space of \wp . Now the blurred image \mathcal{P} is the convolution of the mapping function \wp and the source location spread function \wp .

$$\mathcal{P} = \wp \circ \mathcal{S} \tag{1}$$

The coherent set of source eigenvalues can be described by a discrete source location density distribution $\{a_j\}$. If these eigenvalues are generated in a sequence, then at each member of the sequence the represented object can be considered to occupy a single source location. In this way the object can be considered to hop between the elements of the coherent swarm of eigenvalues. Each landing location corresponds with a hop. The sequence number can act as the progression parameter. The progression parameter can be stored in the real part of the landing location eigenvalue.

We will call this special case "the coherent map".

6.4 Generation cycle

The generation by the stochastic spatial spread function \mathcal{S} is done before the map \mathcal{D} . This means that it occurs in the realm of the separable Hilbert space and is not yet affected by the embedding in the non-separable Hilbert space.

The stochastic generation process determines the short term cyclic part of the dynamical behavior of the object. The corresponding cycle period lasts until the spatial statistical characteristics of the generation result stabilize. Thus, the stochastic generation process is characterized by spatial statistical characteristics that are obtained after averaging over complete cycles of the generation process. These characteristics are the statistical characteristics of the coherent swarm.

The collection $\{\mathcal{P}(a_j)\}$ taken over the full generation cycle represents a spatial map of the cyclic dynamic behavior of the object.

6.5 Model wide progression steps and cycles

Each closed subspace that represents a coherent swarm is governed by a mechanism that ensures dynamic and spatial coherence. In fact many different types of such mechanisms exist. They correspond to elementary particle types. If these modules combine into composites, then the generation cycles must synchronize. This asks for a model wide progression step that is shorter than any cycle. A RTOS-like management mechanism must schedule the generation of composites from completed modules.

6.6 Swarm behavior

The coherent swarm moves as one unit. This means that the represented object features two kinds of kinetics. The first kind stays internal to the swarm. The second kind concerns the swarm as a whole.

Inside the swarm, the represented object hops from swarm element to swarm element. The hopping path is folded and if the swarm is at rest, then the hopping path is closed. Adding extra hops causes movement of the swarm. Adding a closed string of hops in a cyclic fashion causes an oscillation of the swarm. In composites, such as atoms only certain oscillation modes are tolerated. Adding an arbitrary open string of hops opens the hopping path. In that case the sum of all hops is no longer zero.

A dynamic local change of the mapping function \wp may move the swarm relative to other swarms. Such changes may occur when discrete objects curve the embedding continuum.

6.7 Swarm characteristics

The swarm has a central location, which in separable Hilbert space is defined as the average a of the coherent set of source eigenvalues $\{a_j\}$ and in the non-separable Hilbert space it is defined by the image $\mathcal{D}(a)$. This target value corresponds to an object source location a in the flat parameter space of \mathcal{D} . The source location may move as a function of progression.

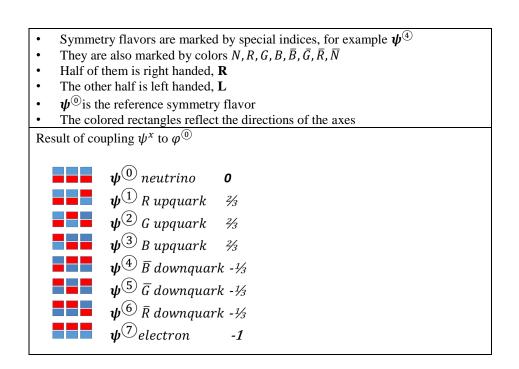
In the continuum the image of the swarm cannot move faster than the speed with which information can be transported.

The speed of transfer of information is set by the speed of information carriers. These information carriers are one-dimensional wave fronts. The quaternionic wave equation describes the way in which these wave fronts proceed.

The statistical characteristics of the swarm and the symmetry flavor of the swarm are sources for the properties that characterize the types of the objects that are represented by a coherent swarm.

6.8 Swarm diversity

The mechanism that generates the swarm determines the characteristics of the swarm. Apart from the number of elements of the swarm, the properties of the swarm appear to depend on its symmetry flavor. Due to the four dimensions of quaternions will quaternionic number systems, coherent swarms, quaternionic continuums and continuous quaternionic functions exist In 16 versions that only differ in their symmetry flavor.


Here we use the diversity that is represented by the standard model of contemporary physics as reference for naming elementary object types.

6.8.1 Fermions

Embedding couples coherent swarms that possess symmetry flavor ψ^x to an embedding continuum. If the symmetry flavor of the embedding continuum $\varphi^{\textcircled{0}}$ is fixed, then varying the symmetry flavor of the coherent swarm creates sixteen different elementary object types. Half of these types concern anti-particles.

The difference in the symmetry flavors between the members of the pair $\{\psi^x, \varphi^y\}$ can be related to the electric charge, the color charge and the spin of the corresponding elementary particle.

Fermions appear to couple to the reference symmetry flavor $\varphi^{\textcircled{0}}$ of the embedding continuum. Fermions are known to have half integer spin. In contemporary physics, their "color" structure becomes noticeable when composites are formed.

Electric charge relates to the number of dimensions in which symmetry flavors differ. The sign of the electric charge relates to the direction in which the difference occurs.

Color charge appears to relate to the index of the dimension in which the difference occurs. Isotropic differences correspond to "neutral" colors.

Quarks have "partial" electric charge. Up-quarks have electric charge $+ \frac{1}{2}$ e. Down-quarks have electric charge $- \frac{1}{2}$ e.

6.8.2 Bosons

Massive bosons couple to an embedding continuum as fermions do. They appear to contribute to the common gravitation potential. This means that bosons embed in the same field as fermions do. Boson swarms feature color-neutral symmetry flavors. Bosons have integer spin.

Massive bosons are observable as W_+ , W_- and Z particles. Their "color" structure cannot be observed. Until now, quark-like bosons are not observed.

6.8.3 Spin axis

For bosons the spin axis may be coupled to the polar axis. The polar angle runs from 0 through 2π . For fermions the spin axis may be coupled to the azimuth axis. The azimuth angle runs from 0 through π .

6.9 Mass and energy

Having mass can be interpreted as the capability to curve the continuum that embeds the concerned object. More mass corresponds to more curvature.

The dimension of the closed subspace, which represents a discrete object has a physical significance. Any eigenvector that contributes to spanning the closed subspace increases the dimension of the subspace. If all elements of the swarm contribute separately to the curvature of the embedding continuum, then the total curvature is proportional to the dimension of the subspace. In that case, this dimension relates to the mass of the object that corresponds to the swarm. If extra hops are added that cause movements or oscillations, then this adds to the mass in the form of kinetic energy. The extra hops may enter or leave in strings. Inside the swarm the hops that cause oscillation are stored as closed strings. Outside of the swarm the strings are open and appear as information messengers.

The fact that fermions and massive bosons contribute to a common gravitation potential means that they curve the same embedding continuum.

6.9.1 Information messengers

Information messengers represent open strings of hops. At the same time they are solutions of the wave equation. This means that they can be viewed as strings of one dimensional wave fronts. One dimensional wave fronts do not diminish their amplitude as function of the distance to their emission point. In an otherwise flat continuum the one dimensional wave fronts and thus the information messengers proceed with the speed of information transfer. The energy carried by information messengers is proportional to the number of one-dimensional wave fronts that they contain. As a consequence, the apparent frequency of information messengers is proportional to their energy. The emission, the absorption and the passage of information messengers takes a fixed number of progression cycles.

In contemporary physics the information messengers are known as **photons**.

6.9.2 Mass energy equivalence

Creation and annihilation of elementary particles shows the equivalence of mass and energy.

6.9.2.1 Suggested creation process

Creation of elementary particles starts with the combination of two photons that came from opposite directions in an intermediate object. The intermediate object is a very short lived massive

object that consists of as many paired elements as wave fronts are contained in the constituting photons. The wave fronts will convert into hops. The long chain of paired hops will then rip apart into two folded hopping strings that each form a coherent location swarm. Next the two swarms will split and move in opposite directions.

6.9.2.2 Suggested annihilation process

Annihilation of elementary particles starts with the combination of an elementary particle and its anti-particle that come from opposite directions in an intermediate object. The intermediate object is a very short lived massive object that consists of as many paired elements as elements are contained in the constituting coherent location swarms. The hops will convert into wave fronts. The long chain of paired wave fronts will then rip apart into two separate chains of wave fronts. Next these photons leave in opposite directions.

Relation to the wave function

The concept of wave function is used by contemporary physics in order to represent the state of a quantum physical object. The wave function is a complex amplitude probability distribution. Its squared modulus is a normalized density distribution of locations where the owner of the wave function can be detected. The value of this continuous distribution equals the probability of finding the owner at the location that is defined by the value of the parameter of the distribution.

If the detection is actually performed, then the object will be converted into something else. By the adherents of the Copenhagen interpretation, this fact is known as "the collapse of the wave function".

The normalized density distribution of locations where the owner of the wave function can be detected corresponds to the map of a coherent swarm on a flat continuum eigenspace of the companion operator in the orthomodular base model.

Thus the concept of the coherent map of a well-ordered coherent set on a flat continuum eigenspace of the companion operator in the orthonormal base model leads directly to an equivalent of the concept of the wave function in contemporary physics. Both concepts cannot be verified by experiments. The equivalence indicates that the suggested coherent map extension of the orthomodular base model runs in a sensible direction.

7 Traces of embedding

The embedding of a discrete eigenvalue in the continuum does not last longer than a single progression step. For each object, the embedding occurs only once at every used progression step. The source eigenvalue a_j is stored in the eigenspace of the location operator that resides in the separable Hilbert space. Immediately afterwards the embedding is released and is replaced by another embedding at a slightly different location a_{j+1} in the target continuum. This recurrent embedding process generates the map of the well-ordered coherent set of source eigenvalues $\{a_i\}$.

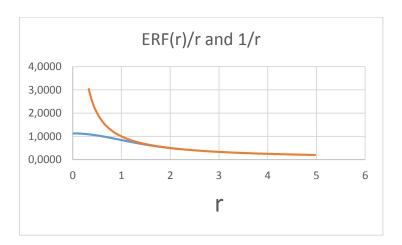
In the non-separable Hilbert space the map $\{\wp(a_j)\}$ affects the target subspace of the continuum eigenspace. This is done in a special way. The effect is determined by the **wave equation**. The homogeneous wave equation controls the situation just before and after the actual embedding action. The inhomogeneous wave equation determines the situation during the actual embedding action. The embedding results in the emission of a 3D **wave front**. That wave front folds and thus **curves** the target subspace of the continuum. After release of the embedding, the wave front keeps

proceeding, but then it will quickly diminish its amplitude as function of the distance to the emission location. The effects of the 3D wave fronts of all elements of the swarm combine and form a *potential*.

7.1 Embedding potentials

In this model embedding potentials form the averages over a small period of progression and over a region of space of the effects of wave fronts that are emitted during the embedding of particles.

The wave fronts that are emitted during the embedding of the members of the location swarm are isotropic 3D wave fronts. Their spreading is controlled by the 3D version of the Huygens principle. This means that their amplitude decreases with the distance r from the source as 1/r.


Here we consider a simplified situation. With an isotropic density distribution $\rho_0(r)$ in the swarm the scalar potential $\varphi_0(R)$ can be estimated as:

$$\varphi_0(R) = \int_0^R \rho_0(r) dr \tag{1}$$

R is the distance to the center of the swarm.

If the density distribution approaches a 3D Gaussian distribution, then this integral equals1:

$$\varphi_0(R) = \text{Erf}(R)/R \tag{2}$$

We suppose that this distribution is a good estimate for the structure of the swarm of a free electron. It is remarkable that this potential (the blue curve) has no singularity at R=0. At the same time, already at a short distance of the center the function very closely approaches 1/R (the orange curve).

¹ http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density

In contemporary physics this embedding potential is known as the gravitation potential. It describes the curvature of the embedding continuum.

7.2 Symmetry related potential

All elements of the coherent swarm have the same symmetry flavor. The effects of symmetry flavor coupling work over the whole reach of the coherent swarm. The source of this influence is located at the target value of the mapping function $\wp(a)$. The charge at this location depends on the difference between the symmetry flavor of the coherent swarm and the symmetry flavor of the embedding continuum.

Also here the quaternionic wave equation describes what happens, but the charge stays at its center location. If the swarm stays at rest, then the charge stays static as well and the governing equation is:

$$\nabla^* \nabla \varphi = \nabla_0 \nabla_0 \varphi + \langle \nabla, \nabla \varphi \rangle = \rho$$

Here φ represents the quaternionic electric potential and ρ represents the distribution of electric charges.

For the electrostatic potential this reduces to

$$\langle \nabla, \nabla \varphi_0 \rangle = \rho$$

7.2.1 Difference with gravitation potential

The electrostatic potential deviates in many aspects from the gravitation potential. Where every element of the swarm contributes separately to the gravitation potential, will the electrostatic potential only depend on the symmetry flavor of the swarm. It is generated by the complete swarm and not by the separate elements. The virtual location of the electrostatic charge coincides with the location of the center of mass of the swarm.

8 Composites

Closed subspaces can combine into wider subspaces. If in the disjunction no eigenvectors of the location operator are shared between the constituents, then the constituents stay independent and keep their characteristics. Still superposition coefficients may rule the relative contribution of these properties. The properties are added per property type and these sums are not affected by the superposition.

8.1 Closed strings

Elementary particles are represented by coherent location swarms that also implement a folded hopping path. At rest this hopping path is closed. Adding extra hops may open the hopping path. This means that the sum of all hops may no longer equal zero. As a consequence the swarm moves. If a closed string of hops is added, then on average the swarm still stays at the same location, but at the same time the swarm oscillates. Such oscillations occur inside atoms.

The added hops act for the whole swarm as displacement generators. The corresponding quaternions act as superposition coefficients.

Quaternionic superposition coefficients may act as rotators. Special rotators can switch the color charge of quarks. They do not affect color-neutral swarms.

8.2 Open strings

The closed strings of superposition coefficients enter and leave the composite as open strings.

Messengers are open strings that relate to particular swarm oscillations. They are known as **photons**.

Messengers are also represented by strings of one-dimensional wave fronts.

Gluons are open strings that relate to swarm rotations. They can switch the color charge of quarks

Color confinement stimulates that in composites the combined color charge is neutralized.

8.3 Binding

8.4 Orthomodular model

The origins of potentials are a means to bind constituents of composites.

The orthomodular base model suggests that at every progression step in every participating elementary particle only one swarm element is influenced by the currently existing potentials.

8.4.1 Gravitation

In the orthomodular base model, this is obvious for the gravitation potential which describes the curvature of the embedding continuum that is caused by these constituents. All embedding events contribute separately to the curvature of the embedding continuum. The constituents produce pitches into the embedding continuum and when they oscillate these pitches transform into ditches. The strength of the gravitation potential depends on the number of involved swarm elements.

8.4.2 Symmetry related potential

The origin of the symmetry related potential can also take a role in the binding of constituents, but this is questionable. The source of the symmetry related potential is probably located at the center of mass of the composite and is not located at the centers of mass of the constituents. If the sources of this potential would be located on the centers of mass of the constituents, then in case of oscillating constituents, this would result in ongoing emission of electromagnetic radiation.

8.5 Contemporary physics

Here we compare with results of contemporary physics.

8.5.1 Atoms

For stable composites, such as atoms, an ongoing emission of electromagnetic radiation is obviously not the case. Still the behavior of atoms with respect to absorption and emission of photons indicate that the electrons oscillate in concordance with the patterns of spherical harmonics.

For atoms, the strength of the symmetry related potential does not depend on the number of involved swarm elements.

8.5.2 Hadrons

In hadrons the situation is different. There the binding is regulated by gluons. Gluons are capable of rotating quarks such that their color charge switches to another value. Gluons can join in strings. As rotators they act in pairs. Gluons do not affect isotropic swarms.

8.5.3 Standard model

In the standard model of contemporary physics the symmetry related potential that governs the biding of electrons in atoms is considered to be the electromagnetic potential.

The standard model suggests the existence of other potentials that implement weak and strong forces. Gluons play a role in the strong force. Massive bosons play a role in the weak force. Introducing strong and weak forces suggests that the potentials act on the full swarm and not on the individual swarm elements. At least the forces suggest that the corresponding potentials act in an equal way on each of the swarm elements.

9 Restricting the orthomodular base model

Not all closed subspaces of the separable Hilbert space will represent modules that act as construction elements. Only closed subspaces for which a location generating mechanism governs, will act as modular construction elements. The management mechanisms that ensure spatial coherence will enforce this rule. The mechanisms appear to work in a step-wise fashion. This introduces a model-wide notion of progression in the model. Progression steps in the separable Hilbert space and it flows in the non-separable Hilbert space. The restriction converts the static model into a dynamic model in which special mechanisms ensure spatial and dynamical coherence. These are coupled due to the fact that the well-ordered coherent set of source eigenvalues represents a spatial map of the dynamic behavior of the source eigenvalue. At the same time the continuity of the mapping function \wp ensures that the coherence is preserved in the image $\mathcal P$ of the set.

10 Role of the incoherent subspaces

Incoherent subspaces correspond to closed subspaces that do not correspond to a well ordered coherent set of eigenvalues. If the subspace still contains eigenvectors of the location operator, then these eigenvalues may still produce an image in the continuum eigenspace of the companion location operator in the non-separable Hilbert space. Those images may produce spurious traces of embedding.

11 Conclusion

It appears sensible to suggest that physical reality mimics a network of mathematical structures that is controlled by a set of coherence ensuring management mechanisms. This setup aims at reducing relational complexity and it prevents dynamical chaos. The network consists of chains of structures that each start with a rather simple foundation. The major chain starts with an orthomodular lattice.

In this way an orthomodular base model emerges with inescapable evidence. This model treats all discrete objects as modules or modular systems that are embedded in continuums. This is supported by an infinite dimensional separable Hilbert space and a companion non-separable Hilbert space. Both Hilbert spaces act as structured storage media. The management mechanisms ensure the dynamic and spatial coherence. This leads to a model in which progression steps in the discrete part and flows in the continuous part of the model.

The habits and diversity of quaternions play an essential role in the extension of the orthomodular base model. These habits cause a large variety of module types that differ in their properties and in their behavior. The generation of the modules is controlled both by these habits and by stochastic management mechanisms. The behavior of the modules and of the continuums is restricted by the embedding process.

The paper shows that leading physicists did not always provide the most sensible choice. The models of contemporary physics are more complicated than is necessary and do not reach as deep as is possible.

Appendix

1 Quaternionic calculus

Quaternions have features and capabilities that are hardly known [7]. Some of them are treated here.

Quaternions are hyper-complex numbers that consist of a real scalar and a three dimensional real vector [8]. The vector plays the role of the imaginary part. Quaternions keep these parts in one compact unit. This has the advantage that it is immediately clear that these parts belong together.

It is not necessary to treat quaternions as one unit. Contemporary physics has selected for the option to treat the real part and the imaginary part separately. This has generated unhappy far reaching consequences.

1.1 Quaternions

We indicate the real part of quaternion a by the suffix a_0 .

We indicate the imaginary part of quaternion a by bold face a.

$$a = a_0 + a \tag{1}$$

The product of two quaternions does not commute and exists in two versions:

$$f = f_0 + \mathbf{f} = d e$$

$$f_0 = d_0 e_0 - \langle \boldsymbol{d}, \boldsymbol{e} \rangle \tag{2}$$

$$f = d_0 e + e_0 d \pm d \times e \tag{3}$$

The \pm sign indicates the influence of right or left handedness of the number system.

 $\langle d, e \rangle$ is the inner product of d and e.

 $d \times e$ is the outer product of d and e.

1.2 Symmetry flavors

Due to their four dimensions, quaternionic number systems exist in 16 versions that differ in their discrete symmetry sets. Half of these versions are right handed and the other half are left handed.

Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, i, j and k; with ij = k

If the real part is ignored, then still 8 symmetry flavors result Symmetry flavors are marked by special indices, for example $a^{(4)}$ They are also marked by colors $N, R, G, B, \overline{B}, \overline{G}, \overline{R}, \overline{N}$ Half of them is right handed, R The other half is left handed, L The colored rectangles reflect the directions of the coordinate axes Symmetry flavors of members of coherent sets: $a^{\bigcirc}NR$ a^{1} R L $a^{(2)} G L$ a^{3} B L $a^{(4)} \bar{B} R$ $a^{(5)} \bar{G} R$ $a^{6} \bar{R} R$ $a^{\bigcirc}WL$

Members of coherent sets $\{a_i\}$ of quaternions all feature the same symmetry flavor.

Continuous quaternionic functions $\psi(q)$ do not switch to other symmetry flavors.

The reference symmetry flavor of function $\psi(q)$ is the symmetry flavor of its parameter space .

Also continuous functions and continuums feature a symmetry flavor. The reference symmetry flavor of a continuous function $\psi(q)$ is the symmetry flavor of the parameter space $\{q\}$.

If the parameter space is a flat continuum, then it is a coherent set.

If the continuous quaternionic function describes the density distribution of a set $\{a_i\}$ of discrete objects a_i , then this set must be attributed with the same symmetry flavor.

1.3 Symmetry flavor conversion tools

1.3.1 Conjugation

Quaternionic conjugation

$$(\psi^x)^* = \psi^{(7-x)}; x = \textcircled{0}, \textcircled{1}, \textcircled{2}, \textcircled{3}, \textcircled{4}, \textcircled{5}, \textcircled{6}, \textcircled{7}$$

1.3.2 Rotation

Quaternions are often used to represent rotations.

$$c = ab/a \tag{1}$$

rotates the imaginary part of b that is perpendicular to the imaginary part of a over an angle 2θ , where $a = |a| exp(2\pi i\theta)$.

Via quaternionic rotation, the following normalized quaternions ϱ^x can shift the indices of symmetry flavors of coordinate mapped quaternions and for quaternionic functions:

$$\varrho^{\text{(1)}} = \frac{1+i}{\sqrt{2}}; \ \varrho^{\text{(2)}} = \frac{1+j}{\sqrt{2}}; \ \varrho^{\text{(3)}} = \frac{1+k}{\sqrt{2}}; \ \varrho^{\text{(4)}} = \frac{1-k}{\sqrt{2}}; \ \varrho^{\text{(5)}} = \frac{1-j}{\sqrt{2}}; \ \varrho^{\text{(6)}} = \frac{1-i}{\sqrt{2}}; \ \varrho^{\text{(6)}} = \frac$$

$$ij = k$$
; $jk = i$; $ki = j$

$$\varrho^{\text{(6)}} = \left(\varrho^{\text{(1)}}\right)^*$$

For example

$$\psi^{(3)} = \varrho^{(1)}\psi^{(2)}/\varrho^{(1)}$$

$$\psi^{\textcircled{3}}\varrho^{\textcircled{1}}=\varrho^{\textcircled{1}}\psi^{\textcircled{2}}$$

$$\psi^{\tiny{\scriptsize{\scriptsize{\scriptsize{\scriptsize{0}}}}}} = \varrho^x \psi^{\tiny{\scriptsize{\scriptsize{\scriptsize{0}}}}} / \varrho^x; \; \psi^{\tiny{\scriptsize{\scriptsize{\scriptsize{7}}}}} = \varrho^x \psi^{\tiny{\scriptsize{\scriptsize{\scriptsize{7}}}}} / \varrho^x$$

Also strings of symmetry flavor convertors may change the index of symmetry flavor of the multiplied quaternion or quaternionic function. The convertors can act on each other.

For example:

$$\varrho^{\text{(1)}}\varrho^{\text{(2)}} = \varrho^{\text{(2)}}\varrho^{\text{(3)}} = \varrho^{\text{(3)}}\varrho^{\text{(1)}} = \frac{1+i+j+k}{2}$$

The result is an isotropic quaternion. This means:

$$\varrho^{\text{(1)}}\psi^{\text{(2)}}/\varrho^x = \varrho^{\text{(2)}}\psi^{\text{(3)}}/\varrho^x = \psi^{(x+1)}$$

Here (x + 1) means $\mathbf{i} \to \mathbf{j} \to \mathbf{k} \to \mathbf{i} \to \mathbf{j} \to \mathbf{k}$, or $(1) \to (2) \to (3) \to (1) \to (2) \to (3)$ and so on.

1.4 Differential calculus

In a flat continuum we can use the quaternionic nabla

$$\nabla = \left\{ \frac{\partial}{\partial \tau}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\} = \frac{\partial}{\partial \tau} + i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z} = \nabla_0 + \nabla$$
(1)

$$\Phi = \Phi_0 + \mathbf{\Phi} = \nabla \psi \tag{2}$$

$$\Phi_0 = \nabla_0 \psi_0 - \langle \nabla, \psi \rangle \tag{3}$$

$$\mathbf{\Phi} = \nabla_0 \boldsymbol{\psi} + \nabla \psi_0 \pm \nabla \times \boldsymbol{\psi} \tag{4}$$

In Maxwell equations the equivalent terms have been given separate names. Maxwell equations use coordinate time t rather than proper time τ . See section on space-progression models.

1.4.1 The coupling equation

The coupling equation represents a peculiar property of the differential equation.

We start with two normalized functions ψ and φ and a normalizable function $\Phi=m\ \varphi$.

$$\|\psi\| = \|\varphi\| = 1 \tag{1}$$

These normalized functions are supposed to be related by:

$$\Phi = \nabla \psi = m \, \varphi \tag{2}$$

$$\Phi = \nabla \psi$$
 defines the *differential equation*. (3)

$$\nabla \psi = \Phi$$
 formulates a differential *continuity equation*. (4)

$$\nabla \psi = m \ \varphi$$
 formulates the *coupling equation*. (5)

1.4.1.1 Special forms of the coupling equation

The existence of symmetry flavors of quaternionic functions gives rise to special forms of the coupling equation for symmetry flavors $\{\psi^x, \psi^y\}$ of the shared base function.

$$\nabla \psi^x = m_{xy} \, \psi^y \tag{1}$$

For example the Dirac equation for the free electron in quaternionic format runs:

$$\nabla \psi = m_e \, \psi^* \tag{1}$$

 ψ^* and ψ are symmetry flavors of the same base function.

The Dirac equation for the positron runs:

$$\nabla^* \psi^* = m_e \, \psi \tag{2}$$

Thus

$$\nabla^* \nabla \psi = m_\rho \nabla^* \psi^* = m_\rho^2 \psi \tag{3}$$

Thus, for electrons ψ represents its own normalized object density distribution.

1.4.2 The wave equation

Locally, the wave function is considered to act in a flat continuum χ .

The quaternionic wave equation exists in a homogeneous ($\rho = 0$) and in in-homogeneous ($\rho \neq 0$) form.

$$\nabla^* \nabla \chi = \nabla_0 \nabla_0 \chi + \langle \nabla, \nabla \chi \rangle = \rho \tag{2}$$

The function ρ represents the temporary presence of one or more discrepant discrete objects.

Near the embedding location the homogeneous wave equation applies between two embedding occurrences and the in-homogeneous wave equation applies during the embedding.

$$\nabla^* \nabla \chi_0 = 0 \tag{3}$$

Equation (3) has 3D isotropic wave fronts as its solution. χ_0 is a scalar function. By changing to polar coordinates it can be deduced that a general solution is given by:

$$\chi_0(r,\tau) = \frac{f_0(ir - c\tau)}{r} \tag{4}$$

Where $c=\pm 1$ and \boldsymbol{i} represents a base vector in radial direction. In fact the parameter $\boldsymbol{i}r-c\tau$ of f_0 can be considered as a complex number valued function.

$$\nabla^* \nabla \chi = 0 \tag{5}$$

Here χ is a vector function.

Equation (5) has one dimensional wave fronts as solutions:

$$\chi(z,\tau) = f(iz - c\tau) \tag{6}$$

Again the parameter $iz - c\tau$ of f can be interpreted as a complex number based function.

The imaginary i represents the base vector in the x, y plane. Its orientation θ may be a function of z.

That orientation determines the polarization of the one dimensional wave front.

1.5 Space-progression models

The orthomodular base model applies the quaternionic wave equation for establishing the model's speed of information transfer.

Einstein used the Maxwell based wave equation in order to derive the speed of information transfer in his models [9]. This resulted in a spacetime model that features a Minkowski signature.

The Maxwell based wave equation uses coordinate time t. The quaternionic wave equation uses progression τ . Comparing these two parameters becomes difficult when space is curved, but for

infinitesimal steps space can be considered to be flat and the progression step becomes a proper time step. In that situation holds:

Coordinate time step vector = proper time step vector + spatial step vector

Or in Pythagoras format:

$$(\Delta t)^2 = (\Delta \tau)^2 + (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2$$

The formula indicates that the coordinate time step corresponds to the step of a full quaternion, which is a superposition of a proper time step and a spatial step.

An infinitesimal spacetime step Δs is usually presented as an infinitesimal proper time step $\Delta \tau$.

$$(\Delta s)^2 = (\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$$
, with signature +---.

The Lorentz transform uses a parameter that is compared with the maximum speed of information transfer. Einstein and contemporary physics models use coordinate time for this purpose.

The orthomodular base model will use progression for that purpose. As a consequence it supports a space-progression model that features an Euclidean signature.

1.5.1 The Maxwell-Huygens wave equation

In Maxell format the wave equation uses coordinate time t. It runs as:

$$\partial^2 \psi / \partial t^2 - \partial^2 \psi / \partial x^2 - \partial^2 \psi / \partial y^2 - \partial^2 \psi / \partial z^2 = 0$$

Papers on Huygens principle work with this formula or it uses the version with polar coordinates.

For isotropic 3D the general solution runs:

$$\psi = f(r - ct)/r$$
, where $c = \pm 1$; f is real

For 1D the general solution runs:

$$\psi = f(x - ct)$$
, where $c = \pm 1$; f is real

2 Related historic discoveries

- [1] Quantum logic was introduced by Garret Birkhoff and John von Neumann in their 1936 paper. G. Birkhoff and J. von Neumann, *The Logic of Quantum Mechanics*, Annals of Mathematics, Vol. 37, pp. 823–843
- [2] The lattices of quantum logic and classical logic are treated in detail in: http://vixra.org/abs/1411.0175.
- [3] The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert and others. http://en.wikipedia.org/wiki/Hilbert space.
- [4] In the sixties Constantin Piron and Maria Pia Solèr proved that the number systems that a separable Hilbert space can use must be division rings. See: "Division algebras and quantum theory" by John Baez. http://arxiv.org/abs/1101.5690

- [5] Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. Dirac also introduced its delta function, which is a generalized function. Spaces of generalized functions offered continuums before the Gelfand triple arrived.
- [6] In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an extension of the separable Hilbert space into a so called Gelfand triple. The Gelfand triple often gets the name rigged Hilbert space, which is confusing, because this construct is not a separable Hilbert space. http://www.encyclopediaofmath.org/index.php?title=Rigged Hilbert space.
- [7] Quaternionic function theory and quaternionic Hilbert spaces are treated in: http://vixra.org/abs/1411.0178 .
- [8] In 1843 quaternions were discovered by Rowan Hamilton. http://en.wikipedia.org/wiki/History_of_quaternions
- [9] In his introduction of special relativity in 1905, Einstein used the Maxwell based wave equation in order to describe the transfer of information. Due to this choice contemporary physics inherited a space time view that has a Minkowski signature. The model that is presented here uses the wave equation that is based on differential calculus of quaternionic functions. As a consequence this model uses a Euclidean space-progression view.

[10]These discoveries are used as foundations by the author's e-book "The Hilbert Book Model Game". http://vixra.org/abs/1405.0340.