Mass Rules, Shell Models and the Structure of Hadrons

Paolo Palazzi, particlez.org

pp@particlez.org
http://particlez.org
FIAS Kolloquium
Frankfurt a.M. , June $5^{\text {th }} 2014$

origin of the idea

1971 p-p elastic at ISR: kink in do/dt

1972 no quarks found at the ISR

1973 e-p DIS at SLAC: point-like spin $1 / 2$ partons, gluons, sea, ..
what are the partons, if not the quarks?
idea, looking at decays in PDG listings:

the stable leptons

count number of stable leptons in decays,
(gamma $=2$): muon $=3$, pion $=4, \ldots$
\rightarrow N(leptons) proportional to the mass; shell structure like in atoms and nuclei?
\rightarrow identify 4 shells: pi, $\mathrm{K}, \mathrm{p}, \Omega$

ACHEMATIC MODEL OF BARYONS AND MESONS *
 M. GELL-MANN
 California Institute of Technology, Pasadena, California

Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightiold way" $1-3$), we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to derive isotopic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone ${ }^{4}$). Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the Fspin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only and treat the matrix elements of the weak, electromagnetic, and gravitational interactions by means
ber $n_{f}-n_{f}^{-}$would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and $z=-1$, so that the four particles d^{-}, s^{-}, u° and b° exhibit a parallel with the leptons.

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}, z=-\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u \frac{1}{3}, \mathrm{~d}^{-\frac{1}{3}}$, and $\mathrm{s}^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out of $(q \bar{q})$, ($q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1,8 , and 10 that have been observed, while the lowest meson configuration ($q \bar{q}$) similarly gives just 1 and 8.

Indicazioni di una struttura a shelt delic partlceile e conseguenze refatiye

Ei aborato presentato 3i concorso-esame per I * 1donelta* al grado di RS (ricercatore) dell. INFN.
glugno 1975

RIASSUNTO

Un*tpotesi generale sul contributc det copponenti isconosclutil delle particello 3lla massa toiale, assoctata at un semolice concetto geometrico di stabilita*, Impilca che le radlcl cublche delle गasse delle darticefle retativanente piu* stabll! sono equispaziate.

La relazione sulndicata ev verlficata sulto snetirg dl massa, e si predicono ulterlori zone di stakilita* at̂orno a $t_{4} .6 \mathrm{GeV}$ e G. 8 GeV .

SI stobilisce un* analogia con 1 nuctei ed numerl naglcia
Si fraggono delle conclusioni sul numero dol componantl elenentari del plone, e si formula in potest che i leptonl stabill siano t costituenti elenentari detia materla. Ne derivano alcung oroprieta* delf interazicne di logame, e conseguenze sul signiflcato del numeri quantlci, In oarticolare il numero barlonlco.

I was not alone:

- mass difference of $70 \mathrm{MeV} / \mathrm{c}^{2}$:
- Nambu in 1952,
- Mac Gregor in 1970, and a few others
- stable leptons as constituents:
- Barut in 1979

Table 1
Change of coupling toontant from the uimple Sormula (4) aed (5),

Mreon Kineric Energy (Mer)	49	50	120	160
	032	0.40	0.28	0.17
	1.32	Lev	1.46	151

considerably in its magnitude, but the above simple arguments permits us to discuss soughly their angular distributions as follows ; the normally seattered mesion has angular distribution which is nearly the same as in reference 2 , because the effect of V^{\prime}-particle is only to change the coupting eonstant. But as to the charge exchange seattering, the angular listribution is mote like that of Prockss 11 , because this seattering is composed of process 1 and II and, exact evaluation shows that the proces II is predominant ${ }^{\text {t }}$. Sance tibe angular distribaition of scattered meson given in raference 2 is nearly the same for process I and II, and we may roughly expect almost the same angular distribution foe notrnal- and exchangescattering.

In condusion, the writer wishes to expreis his sincere thanks es Prof. M. Kobayasi and to Mr. S. Takagi for their kind interest taken in this wock.

1) The nemury of efferewth, me A Pais, perping, Theor. PbpL S (1950). 634.
2) P-I- Fuace, A M. Suchs and). Steinberget:

Row is (1692), -834, 935, us
3) Oung to the shoice of coupling as given in coupling nonitams, is (4) and (\$)

 but $\left.\left(E n n^{n=3} / \operatorname{lgc}_{n}\right)\right)^{7}$ in

40	500	120	160
0.72	0.67	0.62	0.59

An Empirical Mass Spectrum of Elementary Particlen

Y, Namba

Onrle Gise U/wiumime

$$
\text { Mat it, inez } 1952
$$

It setms to be a general conviction of curtent physitists diat the theary of elementary particles in its ultimate form could or should give the mas opectruim of these particles jast in the sarte way as quatuen mechanics has succeeded in accounting for the regularity of atamic spectra. Even if we dirrggard any philosophical background in such a postulation of theretical physics, the moent discovery of many unstable, appaready elementary particles atives us at the efforts towarils a systematic comprehention of the variety of elementary partides. With the present undoubtedly insulficient accuimulation of oar knowledge, however, it may perhaps be too ambitious and ratber unsound to look for an empirical '+4 Balmer's law". Nevertheless we should like her: to quesent one such attempt because it
happens to be extremely simple, and because the significance and utility, if any, of this kind of attempt could best be appreciated at the stage where it awaits more experimental data to prove or disprove itself by its own predictions.

The nature of V_{0} particles ${ }^{1)}$ and $\tau-$ mesons ${ }^{9}$) has been investigated by several authors. Among other things, we note that their decay Q-values are rather uniform, i.e. of the same order of magnitude of the rest mass of the daughter π-mesons. This gives us a hint that some regularity might be found if the masses were measured in a unit of the order of the π-meson mass. The π-meson mass, being $\sim 274=137 \times 2$ electron masses (m_{e}), givan a second, rather fanciful hint that 137 m , ould be chosen as the unit. The ensurng result is given in the accompanying table. We see

particle	mass no. n	$137 \times n$	$\begin{aligned} & \text { experimental } \\ & \text { mass } \end{aligned}$
lepton	0	0	~ 0
photon	0	0	0
μ	$11 / 2$	206	$210 \pm 3 \mathrm{me}$
μ	,	274	276 ± 3 ($\pi^{\text {土 }}$)
V_{02}	6	822	800 ± 30
τ	7	959	966 ± 10
x			$1000 \sim 1500$
nucleon	$131 / 2$	1849	1837, 1839
$V_{01} 1$	$161 / 2 \quad Q=$	$35,70 \mathrm{Mev}$	$35 \pm 5,75 \pm 3 \mathrm{Mev}$
ν^{*}	171/2	? $=280 \mathrm{Mev}$	$\sim 280 \mathrm{Mev}$

that the "mass number" of the observed particles is either integer or half-odd, which is generally valid within a deviation of about $\sim \pm 15 m_{e}$, or $\sim \pm 1 / 10$ mass unit, for those cases in which the experimental error is also of this order of magnitude. In the above table, we have adopted the view that the heavy V_{0} particles have two kinds of Q-values, namely $\sim 35 \mathrm{Mev}$ ($1 \not 12$ mass unit) and $\sim 70 \mathrm{Mev}(1 \mathrm{~m} . \mathrm{u} .)^{33}$, decaying into a proton and a π-meson. $\quad V^{*}$ means the nucleon isobar whose existence is being con-
jectured from $\gamma-\pi$ reaction and π-proton scattering, ${ }^{5)}$ with an excitation of roughly about 280 Mev ($4 \mathrm{~m} . \mathrm{u}$.).

We can make a few comments on the result. (1) As was pointed out by Enatsu ${ }^{41}$, the adopted mass unit incidentally agrees with Heisenberg's natural unit. (2) Bosons seem to have integral, while fermions halfintegral, mass numbers. (3) The small mass value of the electron cannot be explained by the above rule. But we can take the view that this as well as the protonneutron and $\pi^{ \pm}-\pi^{0}$ mass differences correspond to a kind of fine structure. Indeed, their magnitude is just of the order of $1 / 137 \mathrm{~m} . \mathrm{u}$.

It goes without saying that this rule is purely of an empirical nature, and might turn out to be entirely illusory or accidental in the event of getting more reliable data or establishing the true theory of mass spectrum. But the rather strange distribution of the observed mass numbers might simply mean the lack of our knowledge. Indeed, only those particles which have favorable lives as well as abundances for detection have so far been observed, and we have no grounds at all to exclude the possibility that there exist other particles which are liable to escape direct observation. At any rate, an effective and close-by test of this rule may be provided by more accurate determination of the masses of the observed particles. In particular, the x meson may be predicted to have any of ~ $1030, \sim 1100, \sim 1160, \sim 1230, \sim 1300, \ldots$ electron masses $(71 / 2,8,81 / 2,9,91 / 2, \ldots$ m.u.).

1) E. g., R. Armenteros et al., Phil. Mag. 42 (1951), 1113.
2) P. H. Fowler et al., Phil. Mag. 42 (1951),
3) S. D. Wanlass et al., Bull. Amer. Phys. Soc. 27 (1952), No. 3, 7.
4) Remarks by H. Enatsu at the Tokyo meeting 5) Of the Physical Society of Japan. April 1-3, 1952 5) K. A. Brueckner, Bull Amer. Phys. Soc. 27 (1952), No. 1, 50.

$$
m_{\mathrm{e}} / \alpha=70.02 \mathrm{MeV} / c^{2}
$$

Letters to the Editor

nely simple, and because utility, if any, of this Id best be appreciated it awaits more experie or disprove itself by
V_{0} particles ${ }^{1)}$ and τ investigated by several sther things, we note alues are rather uniform, ir of magnitude of the ughter π-mesons. This : some regularity might sses were measured in of the π-meson mass. being $\sim 274=137 \times 2$
jectured from $\gamma-\pi$ reaćtion and π-proton scattering, ${ }^{5)}$ with an excitation of roughly about $280 \mathrm{Mev}^{-}$(4 m.u.).

We can' make a few comments on the result. (1) As was pointed out by Enatsu ${ }^{4)}$, the adopted mass unit incidentally agrees with Heisenberg's natural unit. (2) Bosons seem to have integral, while fermions halfintegral, mass numbers. (3) The small mass value of the electron cannot be explained by the above rule. But we can take the view that this as well as the protonneutron and $\pi^{ \pm}-\pi^{0}$ mass differences correspond to a kind of fine structure. Indeed, their magnitude is just of the order of $1 / 137 \mathrm{~m} . \mathrm{u}$.

It goes without saying that this rule
is onvolev of non amoinima not....o and minht

STABLE PARTICLPS AS BUILDINC BLOCKS OF MATTER *

A.O. Barut
International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT
Only absolutely stable particles can be truly elementary. A simple theory of matter besed on the three constituents, proton, electron and neutrino (and their antiparticles), bound together by the ordinary magnetic forces is presented, which allows us to give an intuitive picture of all processes of high-energy physics, including strong and weak interactions, and make quantitative predictions.

MIRAMARE - TRIESTE
April 1979

~ 30 years later

CERN-OPEN-2003-006
19 Mar 2004

Particles and Shells

Paolo Palazzi, CERN

Abstract

The current understanding of particle masses in terms of quarks and their binding energy is not satisfactory. Both in atoms and in nucleel the organizing principle of stability is the shell structure, while this does not seem to play any role for particles. In order to explore the possibility that shells might also be relevant at this inner level of aggregation, atomic and nuclear stability are expressed by "stablines", alignments of the $1 / 3$ power of the total number of constituents of the mast stable configurations. Could similar patterns be found in the particle spectrum? By analyzing the distribution of particle lifetimes as a function of mass, stability peaks are recognized for mesons and tor baryons and Indeed the cube roots of their masses follow two distinct stablines. Such allgnments would be a strong indication that the particles themselves are shell structured assuming only that each constituent contributes a eponstant amount to the fotal mass. This is incompatible with the prevalent view that the partons -real physical constituents seen in deep-inelastic scattering experiments-are the quarks. The mass of the B_{0} predicted by interpolation with the messon stabine is 7.4 40.2 GeV. On the baryon stabine two missing states are predicted at 3.9 and 7.6 GeV .

trouble...

Address correspondence toc paolo-palazzilicem,ch
Downlogad from: httpofiweblib.cern.ch/abstract?CERN-OPEN-2009-006

must establish

statistically relevant

hadron mass rules!

TABLAS FROM UCRL－8630treval June 1964
Table 5 －Stable particle：

		$\frac{10^{P C F}, G A}{3^{P}+1-C=1}$	\bullet	Mans dirs． （MeV）	$\begin{gathered} \text { Mean ilifa } \\ \text { (veec) } \end{gathered}$	$\begin{aligned} & \text { Masiz } \\ & (\mathrm{BeV})^{2} \end{aligned}$	Important decays			
			$\begin{aligned} & \text { Mass } \\ & \text { (3 } 19 \end{aligned}$				Partial mole	Practian	$\underset{(\mathrm{am}(\mathrm{~V})}{9}$	$\begin{gathered} \mathrm{Ear} \\ (\mathrm{Mev}) \end{gathered}$
	Y		－		atable	0	atable			
	$\overrightarrow{v e}_{e}$	J＂t／2	$0(00,2 \mathrm{kos}$ $\mathrm{o} \circ \mathrm{C} M \mathrm{MeV}$	1	atable	0	stable			
	${ }^{\text {F }}$	J＊5／2	0.515006 40．00000		atabie	0．660	stable			
	${ }_{4}{ }^{4}$	$5=1 / 2$	$\begin{aligned} & 505.619 \\ & * 0.002 \end{aligned}$	－53，95	$\begin{aligned} & \text { 2.200t5y10=6 } \\ & \text { t.000s } \\ & \text { reacaler2.5 } \end{aligned}$	0.041	avx	100\％	105，4）	52
$\begin{aligned} & \frac{1}{8} \\ & \frac{1}{2 x} \end{aligned}$	${ }^{*}$	$\mathrm{S}_{4}+{ }^{+2}$	138.60 $* 0.05$	$\begin{aligned} & 4.590 \\ & \text { c.e04 } \\ & \text { cealen2.4 } \end{aligned}$	$\begin{aligned} & 2,55 x+0^{-11} \\ & +.26 \end{aligned}$	0.019	${ }_{\text {No }}^{\mu v}$紫 F"	$\begin{aligned} & 460 \% \\ & (5.24 \lambda .05) 10^{-4} \\ & (1.24 t .25) 10^{-4} \\ & (1.3+4,2) 10^{-6} \end{aligned}$	33.75 $597-40$ $\begin{array}{r}4.08 \\ \hline\end{array}$	268 298 48
	＊				$\begin{aligned} & 1.80 \times 10^{16} \\ & \text { t.29 } \\ & \text { xacalan } 1.9 \end{aligned}$	0.618	${ }^{\gamma+}$	$\begin{gathered} 98,5 \\ (t .19 \mathrm{k} .051 / \mathrm{m} \end{gathered}$	$\begin{aligned} & 135.01 \\ & 433.97 \end{aligned}$	67. 67.
	k^{*}	$\stackrel{1}{2}$	493， 40.4		$\begin{aligned} & 1.227 \times 10^{-8} \\ & \text { S. } 008 \end{aligned}$	0.244		（63，52，4） $\begin{aligned} & (25.5 x, 4 / 1 / 2 \\ & (5,5, y) / 2 \end{aligned}$	$\begin{array}{r} 388.1 \\ 219.2 \\ 75.0 \end{array}$	$\begin{aligned} & 235 \\ & 205 \\ & 125 . \end{aligned}$
	K^{*}		443.0		50\％K1．S6\％k2		For oller decayt ate Table si Mecays			
	x_{i}				$\begin{aligned} & 0.92 \times 10^{-16} \\ & 0,02 \end{aligned}$	0，248		（69．405．115 ［30，641， $7 / 5$	$\begin{aligned} & 298,8 \\ & 225.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 206 \\ & 208 . \end{aligned}$
						0，248			$\begin{array}{r} 92.6 \\ 53.8 \\ 2527 \\ 357.9 \\ \hline \end{array}$	$\begin{aligned} & 139 \\ & 139 \\ & 2168 \\ & 229 . \\ & \hline \end{aligned}$
	－	$9(0-7) c^{+}$，${ }^{\text {d }}$	543．7		$\mathrm{T}^{2}<10 \mathrm{MeV}$	0，301			545． 143.7 13.5 269.5	274. 179 374. 236.
$\begin{aligned} & \text { y } \\ & \text { 匀 } \\ & \text { w } \\ & \text { w } \end{aligned}$	P	$\sqrt{2} \sqrt{29}$	$\begin{gathered} 938.256 \\ 40.005 \end{gathered}$	$\begin{aligned} & 6.2933 \\ & 4,0001 \end{aligned}$	stable 0．8．0					
	п		$\left.\begin{array}{c} 939,550 \\ 40,004 \end{array}\right\}$		$\begin{aligned} & 8.04 \times 10^{3} \\ & x .03 \end{aligned}$	D．as3	$\mathrm{me} \mathrm{\%}^{*}$	4006	0.78	4.1
	A	$\sqrt{29813}$	4159.40 +0.11		$\begin{aligned} & \text { 末.02 } \\ & \text { Xocale= 1. } 5 \end{aligned}$	＋201		Steale＝1．2 $\prod_{<1 \times 10-4}^{51.642}$ ，$/ 5$ （．88s．05）16－3 xreale＝1．7	40.9 74.5 176.6	103 130， 16s
	Σ^{+}	4／24／2＇3	$\begin{array}{r} 1539.46 \\ 10.14 \end{array}$	2.94.754.1	$0.766 \times 10-10$ $\pm .027$	2．415	$\stackrel{p+i}{n+i}$ For ath	$54,042.4 \%$ 49．0． 2.4% f（tcarater Th	$\begin{aligned} & 116.13 \\ & 110.26 \end{aligned}$	$\begin{gathered} 1998 \\ 135 \\ \text { cave } \end{gathered}$
	x^{*}		$=1492,3\}$		$<4.0 \times 10^{-14}$	4.422	A_{γ}	100\％	77.6	74.
	2＊		$\left.\begin{array}{c} 4197.08 \\ \text { torcole- } 19 \end{array}\right\}$		$\begin{aligned} & 4.58 \times 10^{-10} \\ & +.05 \end{aligned}$	1，433				
	2^{4}	1／2 $\left(1 / 2^{7}\right)$		${ }_{4,5}^{6.5}$	$\begin{aligned} & 3.06 \times 10^{-10} \\ & *, 40 \end{aligned}$	4.727			$\begin{aligned} & 76.9 \text { isa } \\ & \hline \text { S Decay } \end{aligned}$	
	5^{*}				$\begin{aligned} & 1.74 \times 10-10 \\ & \pm .05 \end{aligned}$	6．743	$\begin{aligned} & A \pi^{*} \\ & \mathrm{Ae} \mathrm{e}^{2} \\ & \mathrm{no} \end{aligned}$		$\begin{array}{r} 65.8 \\ 204.9 \\ 214.7 \end{array}$	$\begin{aligned} & 138 . \\ & 169, \\ & 308, \end{aligned}$
	IT	$\xrightarrow[\substack{\text { bis } \\ \rightarrow}]{ }$	1675		$-0.7 \times 10-10$		$\begin{aligned} & \text { 気 } \\ & \mathrm{AK} \end{aligned}$	？	$\begin{array}{r} 224 \\ 66 \\ \hline \end{array}$	$\begin{aligned} & 246 \\ & 246 \\ & \hline \end{aligned}$

[^0]$4>$ A A C

19 hetp：／／nobelprize－org／physics／laurea－Q－nobel priz

Nobelprize．org

NDPEL	PHYStCs	CHEMLSTit	Heoticine	LTERKTUEE	IEACS	Economis
LAUREATES	9 Nur	5．Ebuci	mal			

KUNGL
VETENSKAPSAKADEMIEN
THE ROVAL SWEDISH ACNDEMO OF SCILNCIS

The Nobel Prize in Physics 2004 －Information for the Public

5 October 2004
The discovery which is awarded this year＇s Nobel Prize is of decisive importance for ou understanding of how the theory of one of Nature＇s fundemental forcess works，the force that bes together the smailest pieces of matter－the quarks．David Gross，David Politzer and Frank Wilczek have thr
to complete the Standard Model of Pa to complete the Standard Model of Pa objects in Nature and how they intera in the endeavour to provide a unified the spatial scale－from the tíniest atis distances of the piverse．

The strong force explained The strong interaction－oflen called Forces．It acts between the quarks，if nuclei，Progress in particla physics or appear hard to grasp for anyone with analysing an everyday phenomenon lact determined by the fundamontal neutrons，electrons－in fact，about 80 processes in the interior of the protor This year＇s Nobel Prize is about this in

David Gross，David Politeer and Fr，

 interaction which explains why quark energies．The discovery laid the foun more complete name is Quanturn Ch－ great detail，in partucular duning recer Physics，CERN，in Genova．-5

atomic physics timeline

CHEMISTRY

1808 Dalton: chemistry is atomic
TAXONOMY
1869 Mendeleyev: periodic table

ENERGY LEVELS

1885 Balmer: spectral rules
1890 Rydberg: extended spectral rules
CONSTITUENTS
1987 Thomson: electron
MODEL
1907 Lenard: model with (+,-) charges
1904 Nagaoka: planetary model
1913 Bohr: model of the H atom

THEORY

1925 Heisenberg: matrix (QM)
1926 Schroedinger: equation (QM)
1926 Schroedinger: H atom
1927: Heitler and London, quantum theory explains chemical bonding
1928 Dirac: equation

particle physics timeline

TAXONOMY

1961 SU(X) multiplets: plausible but incomplete

ENERGY LEVELS (MASSES)

lots of data, but no rules:
1962-64 GMO and 1962 Chew-Frauschi plot,
no longer quoted by the PDG
CHEMISTRY
1963 Cabibbo: later re-expressed as quark mixing, later CKM
MODEL
1964 quark "model" evolved from taxonomy, schematic
CONSTITUENTS
1969 partons (.. = quarks, undeconfinable)
THEORY
197x, blessed in 2004: perfect, but ...

the meson mass system

Patterns in the Meson Mass Spectrum

Paolo Palazzi 2004

Abstract

The conjecture that particle masses are multiples of a unit u of about 35 MeV has been proposed in various forms by several authors: mesons are even multiples of u, leptons and baryons odd multiples. Here this mass quantization is reassessed for all particles with mass below 1 GeV (stable leptons and $\mathrm{f}_{0}(600)$ excluded), and found to be statistically significant. Subsequently all the mesons listed by the PDG are grouped in families defined by quark composition and JPC, and analyzed for even mass multiplicity with a unit close to 35 MeV separately for each group. For all the the families that can be analyzed unambiguously this multiplicity hypothesis is found to be statistically significant. Most scalar and vector families show a dependence of u from the spin, while for pseudoscalars the effect is not present. Only 5 states out of 120 are rejected due to abnormally large fit residuals. The mass units of the various families are quantized on a grid of 12 intervals of about 0.25 MeV , ranging from 33.88 up to 36.86 MeV . The location of the values on the u-grid shows an intriguing pattern of correlation with the quantum numbers.

Address correspondence to: pp@particlez.org

NB: two kinds of plots

- mass unit: mass vs integer: linear-linear
m vs P
(also mass unit vs integer)

- shells:
$X^{1 / 3}$ vs integer: cuberoot-linear

$$
m^{1 / 3} \text { vs } i_{s}
$$

mass unit: $u \cong 35 \mathrm{MeV} / c^{2}$ to avoid half-integers
hypothesis:
$m_{i}=u^{*} P_{i}: P \in E$ for mesons
($P \in O$ for baryons and leptons)
test procedure:
FOREACH set of [mesons / (q-qbar, JPC)] DO:

1. discard states with large errm
2. maximize $R^{2}(m, P)$ varying u around $35 \mathrm{MeV} / \mathrm{c}^{2}$
3. fit u with the least squares
4. remove outliers with Chauvenet's criterion
5. check for spin dependence $\mathrm{d} / \mathrm{I} / \mathrm{d} J$
6. compute statistical relevance as $p\left(H_{0}\right)$ by MC

ENDDO

example: the pions

1 remove states with large errors
2 maximize R^{2} varying u

6 statistical relevance

summary

Summary of mass unit analysis, mesons

type	k	u	erru	uw	p-value	du/dJ	PDG	(1)	(2)	(3)	(4)	tot		rating
pi	3	34.69	0.051	34.68	0.997	N	11	1		1	1	3	8	****
b	9	36.16	0.050	36.16	0.990	N	3						3	***
rho	6	35.19	0.071	35.31	0.973	N	11	2		1		3	8	***
a					0.995							2	11	****
a(0)	5	35.00	0.073	35.17	0.941									
K	6	35.34	0.073	35.39	0.943	N	11				1	1	10	***
K*					0.882	Y	12	1		1	2	4	8	
$\mathrm{K}^{*}(1)$	2	34.35	0.016	34.35										**
eta	0	33.86	0.053	33.86	0.999	N	13	4				4	9	****
h	2	34.42	0.056	34.43	0.975	N	6	2				2		****
omega					0.934	Y	7	1				1	6	****
omega(1)	8	35.80	0.049	35.81	0.943									
					0.732	Y	3						3	**
phi(1)	10	36.51	0.050	36.41										
f	7	35.78	0.070	35.60	0.998	?	33	5	18			23	10	***
D ${ }^{\text {T}}$	3	34.67	0.016	34.66	0.997	N	5						5	****
D^{0}		34.58	0.023	34.60	0.960	N	4							****
D(s)	5	35.16	0.021	35.15	0.997	N	6						6	****
eta(c)	0	33.89	0.022	33.87			2						2	**
psi	12	36.84	0.034	36.87	0.959		7			1		1	6	****
chi(c)	7	35.57	0.006	35.56		Y	3						3	**
B	3	34.74	0.005	34.73			3				1	1	2	*
B(s)	2	34.42	0.004	34.42			2						2	*
Y	6	35.29	0.009	35.30	0.985		6			1		1	5	****
		avg->	0.044		0.949		161	18	18	5	5	46	115	<-tot
leptons	4	34.84	0.022	34.84			2						2	**

u vs k

predictions

new states must agree (and they do)

$m=P^{*} u$, psi mesons

Reject: psi(4160)
2004: psi(4160) rejected
The psi(4160) with a residual of 33 , rejected by Chauvenet's criterion. Its mass quoted by the PDG is based on a single measurement by DASP, and in the DASP paper the result of their analysis is compared with MARK1 data showing a more complex peak structure.

Above the psi(4040) the MARK1 data show a peak at around 4110 and possibly more. The psi(4415) is seen unambiguously by both experiments. The DASP view of the discrepancy is: "..our data are in closer agreement with those of SLAC-LBL but show some differences in the finer details of the energy dependence. For instance the 4.16 structure is not resolved in the SLAC-LBL data".

For sure there are differences, but the DASP interpretation is questionable. Apparently some MARK1 peaks were never identified or never made it to the PDG. A possible interpretation of their spectrum around 4100 is: psi(4040), $P=110$; psi (4125), $P=112$; possibly a psi(4200) , $P=114$; no psi (4160).

2007: new $B E S$ value $=4191.6 \pm 6.0$
meson type $=$ psi
outliers

name	$*$	q	\mathbf{J}	x	P	m	errm	u	dm	dm $/ \mathbf{m}$
psi(1S)	4	0	1		84	3096.9	$4.0 \mathrm{E}-02$	36.868	2.2	0.07%
psi(2S)	4	0	1		100	3686.0	$9.0 \mathrm{E}-02$	36.860	1.9	0.05%
psi(3770)	4	0	1		102	3769.9	2.5	36.960	12.1	0.32%
psi(3836)	3	0	$2 ?$		104	3836.0	13.0	36.885	4.5	0.12%
psi(4040)	4	0	1		110	4040.0	10.0	36.727	-12.5	-0.31%
psi(4415)	4	0	1		120	4415.0	6.0	36.792	-5.9	-0.13%
psi(4160)	$4 ?$	0	1	3	112	4159.0	20.0	37.134	32.8	0.79%

back to meson shells

atomic shells

$Z^{1 / 3}$

$N_{i}=2,8,20,28,50,82,126$: magic
Z_{i} from Segrè plot, max. stability

$$
A_{i}=N_{i}+Z_{i}
$$

plot $A_{i}^{1 / 3}$ vs i, tag $=N_{i}$

2 shell lines with interesting properties:

- cross at the first shell, $\mathrm{He}-4(\delta y<3 \%)$;
- in shells 2 and 3 , line \#2 corresponds to values of A of 12=6+6 and 28=14+14; 14 recognized long ago as quasi-magic; the "magicity" of 6 is a more recent result;
- the ratio of the cubes of the slopes of the two lines is 1.99 , very close to 2 : the number of nucleons in series \#2 grows from one shell to the next at a rate $=1 / 2$ the one of series $\# 1$;
- in line \#1 the "packing fraction" is maximal:

$$
(0.916)^{3}=0.768
$$

$$
\begin{aligned}
A 1(n) & =2^{*}\left[\Sigma(i+1)^{*} i, i=n, 1,1\right]=2^{*}\left[(n+1)^{*} n+n^{*}(n-1)+.+2^{*} 1\right] \\
& =4,16,40,80, \ldots . \\
A 2(n) & =2^{*}\left[\Sigma(i+1)^{*} i, i=n, 1,2\right]=2^{*}\left[(n+1)^{*} n+(n-1)^{*}(n-2)+. .\right] \\
& =4,12,28,52,88,136,200,280
\end{aligned}
$$

meson stability

Meson stability vs mass

meson shells

combine meson mass shell plot with mass units:

$35 \mathrm{MeV} / c^{2}=1$ constituent

$M(i):\left(4, \mathbf{1 4}, \mathbf{2 8}, \mathbf{5 4}, 84,152,{ }^{*}, 294\right)[i=1,8], \quad y=0.712{ }^{*} x+\mathbf{0 . 8 9 4}, R^{2}=0.9981$ very similar to the corresponding values for the second nuclear line
$N(i):(4, \mathbf{1 2}, \mathbf{2 8}, \mathbf{5 2}, 88.140,208)[i=1,7], \quad y=0.729{ }^{*} x+\mathbf{0 . 8 2 4}, \quad R^{2}=0.9999$

sub-shells
meson stability up to $2 \mathrm{GeV} / c^{2}$ with mass scale in steps of $70 \mathrm{MeV} / c^{2}$:

- the η at $P=16$, analogous of the doubly-magic 0-16
- three clusters around $1260 \mathrm{MeV} / \mathrm{c}^{2}(P=36), 1420 \mathrm{MeV} / \mathrm{c}^{2}(P=40)$, and 1680 $\mathrm{MeV} / \mathrm{c}^{2}(P=48)$.
- three further clusters with fewer states, $\sim 1820 \mathrm{MeV} / \mathrm{C}^{2}(P=52), 2030 \mathrm{MeV} / \mathrm{c}^{2}$ ($P=58$), and $2310 \mathrm{MeV} / \mathrm{c}^{2}(P=66)$.
$P=40$ corresponds to shell 3 in the nuclear line \#1, the doubly-magic Ca-40.
the P distribution for all $(\mathrm{a}, \mathrm{a}),(\mathrm{s}, \mathrm{a})$ and (s, s) states confirms the three clusters around 36,40 and 48, as well as at 52, 58 and 66 . In the shell interpretation the peaks at $P=36,48,52,58$ and 56 would correspond to sub-shells (to be developed).
$P=80$ is the doubly-magic shell $4 \sim 2800 \mathrm{MeV} / c^{2}$; the histogram is empty from $P=72$ to 84: as in nuclei, the doubly-magic-equivalent shell series stops at 3.

meson shells summary

Meson Shells

- meson shells 1 to 8 corresponds to nuclear shell line \#2, and also doubly-magic shells can be identified:

1) π at $P=4 \sim \mathrm{He}-4$
2) η at $P=16 \sim O-16$
3) states at $P=40 \sim \mathrm{Ca}-40$
but no states are known near the extrapolated mass values for the following shells in that series, $\mathrm{P}=80, \ldots$;

- on the main meson shell line, the quark composition progression from shell 1 to 8 is:
aa, sa, ss, ca+cs, cc, ba+bs, bc, bb; (a=u or d)
- intriguing role of the s quark,
- explanation of the mysterious values of "quark masses" (for whatever it is worth);
- t quark: expect 4 more shells at specific mass values in the range 14-31 GeV/c², none observed;
- is shell 8 the structural limit for this kind of bound states, like 6 for atoms and 7 or 8 for nuclei?
- what are the top events?

$$
m(\mathrm{t})=m(\mathrm{~W})+m\left(\mathrm{Z}^{0}\right)
$$

- constant mass contribution for each parton: suggests solid-phase aggregates, possibly a 3D lattice organization;
- quantization of the mass unit on a grid of 13=12+1 values: may be related to the coordination number of the lattice;
- mesons spins and charges equal or close to 0 , with a large number of partons: aggregation with alternating up/down spins and +/- charges.
- on a periodic lattice with coordination number = 12 (such as the fcc), with spin-1/2 partons of charge $0,-1$ and +1 , arranged as a partially charged "ionic" lattice, several configurations are possible. For a given node of the lattice, the number of charged neighbors k can vary from 0 (all neutral) to 12 (all charged), a total of 13 values. Depending on the charge balancing constraints on these lattice variants, some values of k may not be realized, while other may correspond to more than one configuration; charge balancing constraints might be the reason for the deviation of the value of P of the shell states from series S2.
- assume that the contribution to the total mass is larger for a charged parton than for a neutral one:
- $u(0)=33.88 \mathrm{MeV} / c^{2}$, neutral parton,
- $u(12)=36.84 \mathrm{MeV} / c^{2}$ charged parton;
this assumption agrees with the charges of the final products of the decays of the μ (1 charged out of $3=4 / 12, k=4$) and of the $\pi^{ \pm}(1$ charged out of $4=3 / 12, k=3)$ as verified by the position of the corresponding points on the u-grid. This would not be true with the neutral parton heavier than the charged one.

- $\boldsymbol{\eta}$ and $\boldsymbol{\eta}_{\mathrm{c}}$ is at $\boldsymbol{k}=0$ on the \mathbf{u}-grid, with all constituents neutral; the specific mass unit of the π^{0} is 33.74 , close to $u(0)=33.88$, so that 4 neutral constituents can be assumed; the pion is at shell 1 with $P=4$, while the η^{\prime} is at shell 3 with $P=28$, and the η_{c} at shell 5 with $P=88$, right at the nominal values of P in the series A2(n) $=4,12,28,52,88, \ldots$.
- with no charged constituents, the η and η_{c} do not need to obey any charge balancing constraints and can sit right at the geometrical shell closure; this should also apply to the η_{b}, therefore it is expected that the mass shell line with:

$$
\pi^{0}, \eta^{\prime}, \eta_{c}, \eta_{b} \text { in shells } 1,3,5,8
$$

would show a sharper alignment, as verified by the chart;

- mesons are similar to nuclei and at the same time show indications of a solid-phase fcc structure, and this may be more than a coincidence: fcc nuclei are not new, see the work of Norman D. Cook, and his recent book: Models of the Atomic Nucleus (Springer).

η shells: sharper

[tetrahedrically-truncated tetrahedrons]

He-4
0-16
$\mathrm{Ca}-40$
$A 1(n)=2^{*}\left[\sum(i+1)^{*}, i=n, 1,1\right]=2^{*}\left[(n+1)^{*} n+n^{*}(n-1)+\ldots+2^{*} 1\right]$
$A 2(n)=2^{*}\left[2(i+1)^{*} i, i=n, 1,2\right]=2^{*}\left[(n+1)^{*} n+(n-1)^{*}(n-2)+..\right]$

Norman D. Cook
2006
MODELS of the ATOMIC NUCLEUS

Looking for neutral and charged partons and antipartons with spin $1 / 2$ and mass less than $30 \mathrm{MeV} /$ c^{2}, and with more than one type of neutrals, among the known particles there is only one possible choice:

the stable leptons -->

constituents:

stable leptons?

A.O. BARUT

Department of Physics, University of Colorado, Bouldor, Colorado 80309

Only absolutely atable indestructible particles can be truly elementary. A simple theory of matter based on the three constituents, protor, electron and neutrino (and their antiparticles), bound together by the ordinary magnetic forces is presented, which allows us to give en inbulcive picture of all processes of high-energy physics, including strong and. weak interactions, and make quantitative predictions.
I. INTRODUCTION

SU(3) from permutations
At present, the picture of elementary particle physics mostly used in high-energy phenomenology is becoming admittedly very complicated. Besides leptons (which we see), one introduces familles of "quarks", each with different colours, then the so-called "gluons", which are the gauge vector mesons binding the quariss, then there are the socalled "Higes particleg", which give masses to some of the vector mesons (all of which are not seen in the laboratory). One is already begiming to talk about a second generation of more fundamental and simpler objects for these quarks and gluons etc., even though these first generations of "basic" objects have not been seen. This type of framework secms to create more problems than it solves 1).

the baryon mass system

 same analysis, P is odd
$m=P^{*} u, N$ baryons

Σ du/dJ flip-flop

u vs K
u vs k, baryons

u vs k
Θ^{+}
u vs k, baryons

baryon shells

baryon stability

baryon shells

Baryon shells

baryon vs meson shells

baryon shells organization, clues:

- shells 1 and 2 are not cohesive
- packing density $\cong 1 / 3$ of the full FCC
- 6 nodes at shell 1
diamond lattice? maybe...
interaction

Q uantum sure
 Cinrome no need, lattice Dinamics none, in $1^{\text {st }}$ approx

Barut 1980

Q uantum M agneto
 S tatic

 momentur.
implications

- quark-lepton relationship elucidated
- "quark masses" rationalized
- color is not needed
- baryon number may relate to a different lattice
- antimatter asymmetry shifts from the universe to the atom
- 13 out of the >26 SM parameters are gone
- electro-strong unification
- $\alpha_{\text {s }}$ computed in bound state $=0.101 \pm 0.0014$
problems
- top, but $m(t) \cong m(Z)+m(W)$

Thank you for your attention !

http://lparticlez.org
pp@particlez.org

[^0]:

