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energy density.

PACS numbers: 04.50.+h; 95.35.+d.

Keywords: Ghost dark energy; quintessence; fractal gravity.

∗ h.abedi@ut.ac.ir
† musts6@yahoo.com (corresponding author)

1



I. INTRODUCTION

Recent cosmological observations give very important evidences in favor of the present

acceleration of the cosmic expansion. It is commonly believed that our universe has a

phase transition[1] from decelerating to accelerating and expands with accelerating velocity.

To explain this acceleration, in the context of modern cosmology, we need an anti gravity

fluid with negative pressure[2]. This interesting feature of the Universe is caused by the

mysterious dark components: dark energy, dark matter, dark radiation. The cosmological

constant, as vacuum energy density, is the best instrument to identify this nature of the

universe. Actually, with the equation-of-state parameter ωΛ = −1, it represents the earliest

and simplest theoretical candidate for dark energy, but it causes some other difficulties like

fine-tuning and cosmic-coincidence puzzle[3]. The former cosmologists ask why the vacuum

energy density is so small[4] and the latter ones say why the vacuum energy and dark matter

are nearly equal today[5]. Furthermore, according to type Ia supernovae observations, it

is now known that the time-varying dark energy models give a better fit compared with

a cosmological constant[2] and in particular, the value of the equation-of-state parameter

of dark energy (ωD) gives three different phases such as vacuum (ωD = −1), phantom

(ωD < −1) and quintessence (ωD > −1). Also, many other candidates (tachyon, K-essence,

quintessence, dilaton, Chaplygin gas, modified gravity) have been proposed to explain the

nature of dark energy[6, 7], but still the nature of dark universe is completely unknown[8]. A

good review about the dark energy problem, including a survey of some theoretical models,

is given by Li et al. in 2011[9].

In literature, recently, a very interesting interpretation on the origin of a dark energy

is suggested, without giving new degrees of freedom, with the dark energy of the right

magnitude to obtain the observed expansion[10–14]. Among various models, the new model

of dark energy called Veneziano ghost dark energy[15] is supposed to exist to solve the U(1)A

problem in low-energy effective theory of QCD[16–18], but it is completely decoupled from

the physical sector[19–21]. The Veneziano ghost field is unphysical in the quantum field

theory in Minkowski spacetime, but exhibits an important non-trivial physical influence in

the expanding Universe and this remarkable effect gives rise to a vacuum energy density

ρD ∼ HΛ3
QCD ∼ (10−3eV )4 (with H ∼ 10−33eV and ΛQCD ∼ 100eV we have the right

magnitude for the force accelerating the Universe today)[22]. This numerical coincidence is
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noteworthy and also means that the ghost energy model gets rid of fine tuning problem. On

the other hand, scalar fields can be regarded as an effective description of the dark Universe

and naturally arise in particle physics including the String/M theory and super-symmetric

field theories, hence scalar fields are expected to reveal the dynamical mechanism and the

nature of the dark Universe[2]. Fundamental theories such as string/M theory provide many

possible scalar field candidate, but they do not predict its potential V (ϕ) uniquely.

In the present work, we are interested in that if we consider the ghost dark energy model

as the underlying theory of dark energy in time-like fractal gravity, how the low-energy

effective scalar field model can be used to describe it. On this purpose, we reconstruct the

potential and the dynamics of the fractal quintessence according to the results we obtained

for the Ghost dark energy. We can establish a correspondence between the ghost dark energy

and quintessence scalar field in time-like fractal gravity, and describe ghost dark energy in

this case effectively by making use of quintessence.

II. CORRESPONDENCE BETWEEN GHOST AND QUINTESSENCE

We assume the ghost dark energy is accommodated in a flat Friedmann-Robertson-Walker

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
. (1)

Here a(t) is the cosmic scale factor and it measures the expansion of the universe.

In four-dimensional time-like fractal gravity, we have the following action[23, 24]

S = SG + Sm, (2)

where

SG =
1

2κ2

∫
dξ
√
−g[R− η∂µυ∂

µυ], (3)

Sm =

∫
dξ
√
−g£m. (4)

where g, R and £m are the determinant of metric gµν , Ricci scalar and the matter part

of total lagrangian, respectively. Also, we have κ2 = 8πG (where G denotes the gravita-

tional constant). Next, υ and η are two quantities known as the fractal function and fractal

parameter, respectively. It is important to mention here that dξ(x) is Lebesgue-Stieltjes

3



measure generalizing the standard four-dimensional measure d4x. The dimension of ξ is

[ξ] = −Dα, where α is a positive parameter. The theory of fractal gravity is power-counting

renormalizable, free from ultraviolet divergence and Lorentz invariant[25]. Recently, in lit-

erature, Calcagni[23, 24] worked on the quantum gravity in a fractal universe and discussed

cosmology in that framework.

Considering a time-like fractal profile[24] υ = t−β (where β = 4(1 − α) is the fractal

dimension) in four-dimensional (D = 4) fractal gravity, we recover the following Friedmann-

equation:

H2 − βHt−1 +
ηβ2

6t2(β+1)
=

1

3M2
p

(ρG + ρm), (5)

where ρG and ρm are the density of the ghost dark energy and dark matter inside the universe,

respectively. Here we assume a pressureless dark matter pm = 0, Mp is the reduced Planck

mass (M−2
p = 8πG) and H = ȧ

a
is the Hubble parameter. Next, it is known that β = 0

describes the infra-red regime while β = 2 implies the ultra-violet regime.

On the other hand, the continuity equation is written as

ρ̇+ (3H − βt−1)(ρ+ p) = 0, (6)

where ρ and p are the total energy and pressure densities, respectively.

Nonetheless, the gravitational constraint[24] in a flat fractal Friedmann-Robertson-

Walker spacetime is

Ḣ + 3H2 +

(
2 +

3η

t2β

)
βH

t
− β(β + 1)

t2
− ηβ(2β + 1)

t2β+2
= 0. (7)

Note that in the infra-red regime equation (5) gives the corresponding relation in Einstein’s

theory of general relativity (there is no gravitational constraint). Also, the gravitational

constraint in the ultra-violet regime become

Ḣ + 3H2 +

(
2 +

3η

t4

)
2H

t
− 6

t2
− 10η

t6
= 0. (8)

Solving this equation gives[24]

H(t) = −2t−1 − 22η

13t5
Θ(15

4
; 17

4
; 3η
2t4

)

Θ(11
4
; 13

4
; 3η
2t4

)
, (9)

a3(t) = t−6Θ(
11

4
;
13

4
;
3η

2t4
). (10)
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Here Θ (also denoted as 1F1 or M) is Kummer’s confluent hypergeometric function of the

first kind:

Θ(a; b; x) ≡ Γ(b)

Γ(a)

+∞∑
n=0

Γ(a+ n)

Γ(b+ n)

xn

n!
. (11)

Defining the following dimensionless density parameters,

ΩG =
ρG

3H2M2
p

, (12)

Ωm =
ρm

3H2M2
p

, (13)

Ωf =
β

H2

(
H

t
− ηβ

6t2(β+1)

)
, (14)

we can rewrite the fractal Friedmann equation as

1 = ΩG + Ωm + Ωf . (15)

Here, the parameter Ωf represents the fractal contribution to the total density. Moreover,

the Friedman equation can also be rewritten in a very elegant form∑
i=G,m,f

Ωi ≡ 1, (16)

where

Ωi ≡ (ΩG,Ωf ,Ωm). (17)

A. Non-interacting Case

For this case, the conservation equations read

˙ρm +

(
3H − β

t

)
ρm = 0, (18)

ρ̇G +

(
3H − β

t

)
(1 + ωG)ρG = 0, (19)

where ωG = pG
ρG
. The ghost energy density is proportional to the Hubble parameter[26]

ρG = λH. (20)
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Here λ is a constant of order Λ3
QCD and ΛQCD ∼ 100MeV is QCD mass scale. Taking a

time derivative in both sides of relation (20) and using Friedmann equation (5), we obtain

ρ̇G = λ(2H − βt−1)−1

[
ηβ2(β + 1)

3t2β+3
− βH

t2
− ρG

3M2
p

(3H − βt−1)(1 + ωG + ϱ)

]
, (21)

where

ϱ =
ρm
ρG

. (22)

Inserting this relation in continuity equation (19) and using expressions of dimensionless

density parameters, we find

ωG = −1 +
ηβ2(β+1)
3H2t2β+3 − β

Ht2
−
(
3H − β

t

)
(1− ΩG − Ωf )(

3H − β
t

) (
ΩG − 2− β

t

) . (23)

In the fractal infra-red regime, considering equation (23), we get

ωIR
G = (ΩG − 2)−1. (24)

Here, one can easily see that at the early time (t → 0) where ΩG ≪ 1 we have ωG = −1
2
,

while at the late time (t → ∞) where ΩG → 1 the fractal ghost dark energy mimics a

cosmological constant, i.e. ωG = −1. Furthermore, in the ultra-violet regime, we get

ωUV
G = −1 +

4η
H2t7

− 2
Ht2

−
(
3H − 2

t

)
(1− ΩG − ΩUV

f )(
3H − 2

t

) (
ΩG − 2− 2

t

) , (25)

where

ΩUV
f =

2

H2

(
H

t
− η

3t6

)
, (26)

H(t) = −2

t
− 22η

13t5

Γ(17
4
)Γ(11

4
)
∑+∞

n=0

Γ( 15
4
+n)

Γ( 17
4
+n)

( 3η

2t4
)
n

n!

Γ(15
4
)Γ(13

4
)
∑+∞

m=0

Γ( 11
4
+m)

Γ( 13
4
+m)

( 3η

2t4
)
m

m!

. (27)

In Figure 1, we plotted[27] the time evolution of the equation-of-state parameter ωUV
G .

From this figure we see that ωUV
G of the fractal ghost dark energy model cannot cross the

phantom divide. This figure also shows that, at the late time (t → ∞), the equation-of-

state parameter of the ghost dark energy in the fractal ultra-violet regime yields ωUV
G

∼= 1
3

which implies the ultra-relativistic matter behavior. On the other hand, ωUV
G at early time

(t → 0) behaves like the pressureless dark energy, i.e. ωUV
G = 0, where its equation-of-

state behaves like the dust. Furthermore, we know that the equation-of-state parameter
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needs to be less that −1/3, but we have positive values in the ultra-violet regime. As a

conclusion, one can say that, in the ultra-violet regime, the fractal ghost dark energy model

does not cross the phantom line. On the other hand, the recent astronomical data from

Planck-2013[28], SNe-Ia[29], WMAP[30], SDSS [31] and X-ray[32] strongly suggest that our

universe is spatially flat and dominated by an exotic component with negative pressure, so

called dark energy[4, 6, 33]. Hence, in the ultraviolet regime, the fractal ghost dark energy

model does not give meaningful results.

1 2 3 4 5
t0.0

0.2

0.4

0.6

0.8

ΩG
UV

FIG. 1: Time evolution of equation-of-state parameter of the fractal ghost dark energy in the

ultra-violet regime, equation (27), for η = λ = 1 and ΩG = 0.72.

Now, we are in a position to establish the correspondence between the ghost dark energy

and quintessence scalar field. First, we assume the quintessence scalar field model is the

effective underlying theory. The action for quintessence is defined as[3]

SQ = −1

2

∫
d4x

√
−g[gµν∂µϕ∂νϕ+ 2V (ϕ)], (28)

where V (ϕ) is the potential of quintessence. The quintessence field is defined by an ordinary

time-dependent and homogeneous scalar which is minimally coupled to gravity, but with

a particular potential that leads to the accelerating universe[5]. Taking a variation of the

action (28) with respect to the inverse metric tensor gµν yields the energy-momentum tensor

of the quintessence field:

TQ
µν = ∂µϕ∂νϕ− 1

2
gµνg

λδ∂λϕ∂δϕ− gµνV (ϕ). (29)

Therefore, for the quintessence scalar field, energy and pressure densities are found as[34, 35]

ρQ =
ϕ̇2

2
+ V (ϕ), (30)

7



pQ =
ϕ̇2

2
− V (ϕ), (31)

and, the equation-of-state parameter of the quintessence is written as

ωQ =
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (32)

It is seen that the universe accelerates for ϕ̇2 < V (ϕ) if ωQ < −1
3
[5, 34]. In order to

implement the correspondence between the ghost dark energy and quintessence scaler field,

we identify ρQ = ρG and ωQ = ωG. From this point of view, we obtain that

ϕ̇2 = (1 + ωG)ρG

=
ηβ2(β+1)
3H2t2β+3 − β

Ht2
−

(
3H − β

t

)
(1− ΩG − Ωf )

(3H2M2
pΩG)−1

(
3H − β

t

) (
ΩG − 2− β

t

) , (33)

V (ϕ) =
1

2
(1− ωG)ρG

= 3H2M2
pΩG

[
1−

ηβ2(β+1)
3H2t2β+3 − β

Ht2
−
(
3H − β

t

)
(1− ΩG − Ωf )

2
(
3H − β

t

) (
ΩG − 2− β

t

) ]
. (34)

By making use of equation (33) we find

ϕ̇ =

√√√√ ηβ2(β+1)
3H2t2β+3 − β

Ht2
−

(
3H − β

t

)
(1− ΩG − Ωf )

(3H2M2
pΩG)−1

(
3H − β

t

) (
ΩG − 2− β

t

) . (35)

Now, we define a new variable

x = ln a, (36)

which helps us to rewrite the result (35) in another form. Using this new variable, we can

write

d

dx
= H

d

dt
, (37)

and we get

ϕ̇ = Hϕ′, (38)

where a prime denotes derivative with respect to the new variable x. Hence, integrating

equation (35) with respect to the new variable x yields

ϕ(a)− ϕ(a0) =

∫ a

a0

da

a

√√√√ ηβ2(β+1)
3H2t2β+3 − β

Ht2
−
(
3H − β

t

)
(1− ΩG − Ωf )

(3M2
pΩG)−1

(
3H − β

t

) (
ΩG − 2− β

t

) . (39)
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Here we have set a0 = 1 for the present value of the scale factor. The analytical form of the

potential in terms of the fractal ghost field cannot be determined due to the complexity of

the equations involved. However, it can be calculated numerically. For simplicity, we can

focus on the infra-red fractal profile, i.e. β = 0. Thus, we have

ϕIR(a)− ϕIR(a0) =
√
3Mp

∫ a

a0

da

a

√
ΩG(1− ΩG)

2− ΩG

, (40)

and

VIR(ϕ) =
3H2M2

pΩG(ΩG − 3)

2(ΩG − 2)
. (41)

On the other hand, considering the ultra-violet fractal profile (β = 2) we get

ϕ̇UV =

√
4η

H2t7
− 2

Ht2
−

(
3H − 2

t

)
(1− ΩG − ΩUV

f )

(3H2M2
pΩG)−1

(
3H − 2

t

) (
ΩG − 2− 2

t

) , (42)

and

VUV (ϕ) = 3H2M2
pΩG

[
1−

4η
H2t7

− 2
Ht2

−
(
3H − 2

t

)
(1− ΩG − ΩUV

f )

2
(
3H − β

t

) (
ΩG − 2− 2

t

) ]
, (43)

where ΩUV
f and H are given by equations (26) and (27), respectively. Finally, one can find

the evolutionary form of the quintessence field as

ϕUV (t) = ϕUV (0) +

∫ t

0

√
4η

H2t7
− 2

Ht2
−
(
3H − 2

t

)
(1− ΩG − ΩUV

f )

(3H2M2
pΩG)−1

(
3H − 2

t

) (
ΩG − 2− 2

t

) dt. (44)

B. Interacting Case

In this subsection, we generalize our investigation to the interacting case. Hence, in the

presence of interaction, the conservation equations read

˙ρm +

(
3H − β

t

)
ρm = Q, (45)

ρ̇G +

(
3H − β

t

)
(1 + ω̃G)ρG = −Q. (46)

Here we introduced Q to define mutual interaction between two principal components of

the Universe[36–40]. Negative values of Q corresponds to energy transfer from dark matter

sector to dark energy sector, and vice versa for positive values of Q. It is reported recently

that this interaction is observed in the Abell Cluster A586 showing a transition from dark
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energy sector to dark matter sector and vice versa[41, 42]. Moreover, this event may effec-

tively appear as a self-conserved dark energy, with a non-trivial equation of state mimicking

quintessence or phantom, as in the ΛXCDM scenario[43–45]. Nevertheless, the significance

of this interaction is not clearly identified[46]. To be general in this work we choose the

following expression for the interaction term.

Q = 3ξ2H(ρG + ρm) = 3ξ2HρG(1 + ϱ), (47)

with ξ a coupling parameter between dark energy and dark matter[47, 48] although more

general terms can be used. The sign of ξ2 indicates the direction of energy transition.

The case with ξ = 0 represents the non-interacting fractal Friedmann-Robertson-Walker

model, while ξ = 1 yields the complete transfer of energy from dark energy sector to dark

matter sector. In some cases, ξ2 is taken in the range [0, 1][49]. Galactic clusters and CMB

observations show that the coupling parameter ξ2 < 0.025, i.e. a small but positive constant

of order of the unity[50, 51]. The negative coupling parameter case is avoided due to the

violation of gravitational thermodynamic laws.

Inserting equations (21) and (47) in equation (46) we find

ω̃G = −1−
(2H − β

t
)−1(3H − β

t
)−1

H
[
1− HΩG

2H−β
t

] {
ηβ2(β + 1)

3H2t2β+3
− βH

t2
−H2(1− ΩG − Ωf )(3H − β

t
)

+3ξ2H2(2H − β

t
)(1 +

1− ΩG − Ωf

ΩG

)

}
. (48)

Before establishing a correspondence between the quintessence and ghost dark energy, we

want to consider a constant fractal profile (υ=constant) to make some discussions using

equation (48). For a constant fractal profile, using equation (48), we get

ω̃G = − 1

2− ΩG

[
1 +

2ξ2

ΩG

]
. (49)

Here we can see that in the late-time (t → ∞) where ΩG → 1, the equation-of-state param-

eter of interacting fractal ghost dark energy crosses the phantom regime (ω̃G = −1− 2ξ2 <

−1). For the present time where ΩG = 0.72, the phantom regime crossing can be achieved

if we can choose ξ2 > 0.1. In addition to these conclusions, equations (45) and (46) show

that the interaction term is a function of a quantity with units of inverse time multiplied

with the energy density and it is important to mention here that an ideal interaction term

must be motivated from quantum gravity[2].
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Next, for the time-like infra-red profile, we get

ω̃IR
G |ξ2>0=

ΩG + 2ξ2

ΩG(ΩG − 2)
. (50)

We know that the sign of ξ2 indicates the direction of energy transfer. Hence, we may also

take ξ2 < 0 which describes energy transition from the dark matter sector to the dark energy

sector. It is easy to show that for ξ2 < 0, equation (50) becomes

ω̃IR
G |ξ2<0=

ΩG − 2ξ2

ΩG(ΩG − 2)
. (51)

1.0 1.5 2.0
Ξ

-8

-6

-4

-2

Ω
�

G
IR

for Ξ2>0

FIG. 2: The equation-of-state parameter of the fractal ghost dark energy in the infra-red regime

for the condition ξ2 > 0, equation (50). Here we have taken ΩG = 0.72.

1.0 1.5 2.0
Ξ

2

4

6

8

Ω
�

G
IR

for Ξ2<0

FIG. 3: The equation-of-state parameter of the fractal ghost dark energy in the infra-red regime

for the condition ξ2 < 0, equation (51). Here we have taken ΩG = 0.72.
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Figure 2 shows that for the present time with taking ΩG = 0.72 the phantom region

crossing (ω̃IR
G < −1) can be achieved provided ξ2 > 0 which is consistent with recent

observations[52, 53]. At the same time, figure 3 shows that ξ2 < 0 leads to ω̃IR
G > −1

3
for

the present time. This result indicates that the Universe is in deceleration phase at the

present time which is ruled out by recent observations[28–32]. Furthermore, in figure 3,

we see that the equation-of-state parameter takes values more than 1 for some values of

ξ. Generally, ξ2 is taken in the range [0, 1]. ξ = 0 describes the non-interacting fractal

Friedmann-Robertson-Walker model, while ξ = 1 represents the complete transfer of energy

from dark energy sector to dark matter sector. If we ignore ξ > 1 values in figure 3, we get

meaningful results and can remove disturbing values of the equation-of-state parameter.

For the ultra-violet fractal regime, we have

ω̃UV
G |ξ2>0 = −1−

(2H − 2
t
)−1(3H − 2

t
)−1

H
[
1− HΩG

2H− 2
t

] {
4η

H2t7
− 2H

t2
−H2(1− ΩG − Ωf )(3H − 2

t
)

+
3ξ2H2

ΩG

(1− Ωf )(2H − 2

t
)

}
, (52)

and

ω̃UV
G |ξ2<0 = −1−

(2H − 2
t
)−1(3H − 2

t
)−1

H
[
1− HΩG

2H− 2
t

] {
4η

H2t7
− 2H

t2
−H2(1− ΩG − Ωf )(3H − 2

t
)

−3ξ2H2

ΩG

(1− Ωf )(2H − 2

t
)

}
. (53)

Now, we implement a connection between the quintessence scalar field and interacting

fractal ghost dark energy. In further calculations we assume that ξ2 > 0. In this case, the

potential and time-derivative of scalar field are found as

ϕ̇I =
Mp(2H − β

t
)−

1
2 (3HΩG)

1
2

(3H − β
t
)
1
2

[
1− HΩG

2H−β
t

] 1
2

{
βH

t2
− ηβ2(β + 1)

3H2t2β+3
+H2(1− ΩG − Ωf )(3H − β

t
)

−3ξ2H2(2H − β

t
)
1− Ωf

ΩG

} 1
2

, (54)

V I(ϕ) = 3H2M2
pΩG +

3HM2
pΩG(2H − β

t
)−1

2(3H − β
t
)
[
1− HΩG

2H−β
t

] {ηβ2(β + 1)

3H2t2β+3
−H2(1− ΩG − Ωf )(3H − β

t
)

−βH

t2
+ 3ξ2H2(2H − β

t
)
1− Ωf

ΩG

}
, (55)
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where superscript I denotes interacting case. Next, we consider the time-like infra-red and

ultra-violet fractal profiles to discuss special cases. For the infra-red fractal profile, we have

the following results

dϕI
IR

d ln a
=

√
3M2

pΩG

2− ΩG

[
1− ΩG − 2ξ2

ΩG

]
, (56)

and

V I
IR(ϕ) =

3H2M2
pΩG

2(2− ΩG)

[
3− ΩG +

2ξ2

ΩG

]
. (57)

Furthermore, the evolutionary form of the fractal quintessence field in the infra-red regime

is obtained by integrating equation (49). The result is

ϕI
IR(a) = ϕIR(a0) +

∫ a

a0

da

a

√
3M2

pΩG

2− ΩG

[
1− ΩG − 2ξ2

ΩG

]
. (58)

On the other hand, in the time-like ultra-violet fractal regime, the following results for the

fractal quintessence are obtained

ϕ̇I
UV =

Mp(2H − 2
t
)−

1
2 (3HΩG)

1
2

(3H − 2
t
)
1
2

[
1− HΩG

2H− 2
t

] 1
2

{
2H

t2
− 4η

H2t7
+H2(1− ΩG − ΩUV

f )(3H − 2

t
)

−3ξ2H2(2H − 2

t
)
1− ΩUV

f

ΩG

} 1
2

, (59)

and

V I
UV (ϕ) = 3H2M2

pΩG +
3HM2

pΩG(2H − 2
t
)−1

2(3H − 2
t
)
[
1− HΩG

2H− 2
t

] { 4η

H2t7
−H2(1− ΩG − ΩUV

f )(3H − 2

t
)

−2H

t2
+ 3ξ2H2(2H − 2

t
)
1− ΩUV

f

ΩG

}
, (60)

where ΩUV
f and H are given by equations (26) and (27), respectively. Furthermore, inte-

grating equation (59) with respect to the cosmic time t yields

ϕI
UV (t) = ϕI

UV (0) +

∫ t

0

Mp(2H − 2
t
)−

1
2 (3HΩG)

1
2

(3H − 2
t
)
1
2

[
1− HΩG

2H− 2
t

] 1
2

{
H2(1− ΩG − ΩUV

f )(3H − 2

t
)

+
2H

t2
− 4η

H2t7
− 3ξ2H2(2H − 2

t
)
1− ΩUV

f

ΩG

} 1
2

dt. (61)
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III. CONCLUDING REMARKS

Considering the fractal ghost dark energy model as an effective description of the dark

energy theory, and assuming the quintessence scalar field as pointing in the same scenario,

it is exciting to discuss how the ghost energy density can be used to describe the fractal

quintessence scalar field.

In the present work, using the fractal theory of gravity, we established a connection

between the ghost dark energy scenario and the quintessence scalar field model. If we

consider the fractal quintessence scalar field model as an effective description of fractal ghost

dark energy, we should be able to use the scalar field model to mimic the evolving behavior

of the dynamical ghost dark energy and reconstruct this scalar field model according to the

evolutionary behavior of the fractal ghost dark energy. Hence, with this interesting strategy,

we reconstructed the potential of the fractal ghost quintessence and the dynamics of the

fractal field according to the evolution of ghost energy density. In the limiting case, we

considered the time-like infra-red and ultra-violet fractal profiles.

Furthermore, we also would like to mention here that the presented results in this study

can be generalized easily to other scalar fields such as phantom, tachyon, K-essence and

dilaton. One can also extend the aforementioned discussion in this work to the non-flat

fractal Friedmann-Robertson-Walker spacetime.
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