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In the present study, we discuss a non-equilibrium picture of thermodynamics at
the apparent horizon of flat Friedmann-Roberton-Walker universe in f(T,θ) theory of
gravity, where T is the torsion scalar and θ is the trace of the energy-momentum tensor.
Mainly, we investigate the validity of the first and second laws of thermodynamics in
this scenario. We consider two descriptions of the energy-momentum tensor of dark
energy density and pressure and discuss that an equilibrium picture of gravitational
thermodynamics can not be given in both cases. Furthermore, we also conclude that
the second law of gravitational thermodynamics can be achieved both in phantom and
quintessence phases of the universe.
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1. INTRODUCTION

Recently, Planck-2013 observations [1] of the cosmic microwave background
has implied that the matter in our universe is dominated by two enigmatic compo-
nents: dark energy (68.3 percent) and dark matter (26.8 percent). The remaining part
(4.9 percent) is occupied by ordinary matters. It is commonly believed that our uni-
verse has a phase transition [2] from decelerating to accelerating and expands with
accelerating velocity. This interesting feature of the universe is believed to be caused
by mysterious dark contents. There are several proposals to be a candidate for dark
part of the universe, but still the nature of dark universe is completely unknown [3].
One of the candidates is giving some unknown matters called dark energy in the
framework of general relativity, another one is to modify the gravitational theory [4].
Adopting modified gravitation theories leads to very interesting conclusions at cos-
mological, galactic and solar systems scales. Besides, there is no definite physical
criterion to select one of modified gravitation theories capable of matching the data
at all scales [5]. Understanding the apparent acceleration of the universe is one of the
most challenging topics for modern cosmology and fundamental physics today.

On the other hand, the gravitational thermodynamics is also one of the famous
issues of current interest in modern cosmology. Cai and Kim [6] showed that, in

RJP 60(Nos. 1-2), 44–55 (2015) (c) 2015 - v.1.3a*2015.2.7Rom. Journ. Phys., Vol. 60, Nos. 1-2, P. 44–55, Bucharest, 2015



2 Thermodynamics in f(T,θ) gravity 45

general relativity, the Friedmann equation can be written in the form of the first law
of thermodynamics

−dE = TAdSA (1)
on the dynamical apparent horizon r̂A. In their work, Cai and Kim introduced that
TA = (2πr̂A)−1, SA = πr̂2

AG
−1, dE are the Hawking temperature, the horizon en-

tropy and the internal energy, respectively. Later, in general relativity, Friedmann
equation was written in another form

dE = TdS+WdV (2)

at dynamical apparent horizon, whereE = ρV , W = 1
2(ρ−p) are the internal energy

and work density, respectively [7].
The gravitational thermodynamics has been studied in many modified gra-

vity theories such as Gauss-Bonnet gravity [7], Lovelock gravity [8, 9], Braneworld
gravity [10], non-linear gravity [11], scalar-tensor gravity [12], f(R)-gravity [13,
14], f(T )-gravity [15, 16] and f(R,θ)-gravity (here θ is the trace of the energy-
momentum tensor) [17]. It has been seen that, in scalar-tensor theory, f(R)-gravity,
f(T )-gravity and f(R,θ)-gravity, non-equilibrium definition of gravitational ther-
modynamics is required [14, 16–19]. These recent investigations have encouraged
us to explore whether an equilibrium definition of thermodynamics can be obtained
in the framework of f(T,θ)-gravity. This work may provide some specific conclu-
sions which would discriminate f(T,θ)-gravity from various theories of modified
gravity.

The plan of this paper is as follows: In the next section we introduce f(T,θ)-
gravity. In section 3, we mainly discuss whether an equilibrium definition of gravita-
tional thermodynamics is possible in f(T,θ)-gravity. The entropy at dynamical hori-
zon is constructed from the first law of gravitational thermodynamics corresponding
to the Friedmann equation. Next, we also investigate the second law of gravitational
thermodynamics and obtain the validity condition. In section 4, we investigate an-
other description of thermodynamics in f(T,θ)-gravity. Finally, outlook of the work
is given in section 5.

2. f(T,θ) THEORY OF GRAVITY

Throughout the work, we represent the space-time indices by Greek alphabet
(µ,ν,α,β... = 0,1,2,3) and the Latin alphabet (a,b, i, j....) = 0,1,2,3 will be used
to denote indices related to the tangent space.

The action of f(T,θ) gravity is given by

S =

∫
d4xh

[
f(T,θ)

16πG
+Lm

]
, (3)
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where Lm describes matter contents of the universe, h=
√
−g is the determinant of

tetrad field, g is the determinant of the metric tensor gµν and the metric tensor of the
spacetime is related to the tetrad by gµν = ηijh

i
µh

j
ν [20].

The connection which is used in Einstein’s theory of general relativity, is the
Levi-Civita connection

Γαµν =
1

2
gαβ(∂µgβν +∂νgβµ−∂βgµν). (4)

Levi-Civita connection leads us to vanishing torsion but non-zero spacetime curva-
ture [21]. In torsion gravity (known also as teleparallel theory of gravity), tetrad
fields give rise to the Weitzenbock connection which is given by

Γ̂αµν = hαi ∂νh
i
µ =−hiµ∂νhαi . (5)

Thence, the covariant derivative of the tetrad field vanishes identically

∇µhνi = hνi − Γ̂αµνh
i
α = 0. (6)

This result gives us vanishing curvature and surviving torsion [20, 21]. The torsion
and contortion are defined, respectively, by the following relations [22, 23]:

Tαµν = Γ̂ανµ− Γ̂αµν , (7)

Kα
µν = Γ̂αµν−Γαµν

=
1

2
(T α
µ ν +T α

ν µ−Tαµν). (8)

Next, we can define super-potential and the torsion scalar by

S µν
α ≡ 1

2
(Kµν

α+ δµαT
ξν
ξ − δ

ν
αT

ξµ
ξ ), (9)

T ≡ S µν
α Tαµν

=
1

4
T ξµνTξµν +

1

2
T ξµνTνµξ−T ξ

ξµ T
νµ
ν , (10)

respectively.
The generalized field equations of f(T,θ)-gravity are extracted by varying the

action (3) with respect to tetrad field as follows

fTGµν +
1

2
gµν(f −TfT ) +Sνµρ(fTT∇ρT +fTθ∇ρθ)

= 8πGθµν−fθθµν−fθBµν , (11)

here we denote that fT = ∂f/∂T , fθ = ∂f/∂θ, fTT = ∂2f/∂T 2 and fTθ = ∂2f/∂T∂θ
and we also have

Bµ
a =

hkαδθ
α
k

δhaµ
, (12)
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and
θ ≡ haµθµa = 3pm−ρm. (13)

The choice of f(T,θ) ≡ f(T ) results in the field equations of f(T )-gravity. The
energy-momentum tensor of perfect fluid is defined as

θµν = (ρm+pm)uµuν +pmgµν , (14)

where uµ is the four-velocity of the fluid. Hence, one can obtain that

Bµν = θµν−2pmgµν . (15)

We assume only the non-relativistic matter (cold dark matter and baryons) with pm =
0, consequently the contribution of T comes only from ordinary matters.

The flat Friedmann-Robertson-Walker spacetime is described by the line-element

ds2 =−dt2 +a2(t)δijdx
idxj , (16)

where a(t) defines the scale factor. In this background, the gravitational field equa-
tions of f(T,θ)-gravity transform

3H2fT −
1

2
(f −TfT ) = ρm(8πG−2fθ), (17)

−(3H2 + 2Ḣ)fT +
1

2
(f −TfT ) +HṪfTT −HfTθρ̇m = 0. (18)

Here dot means derivative with respect to cosmic time t. These can be rewritten as

3H2 = 8πGeff (ρm+ρd), (19)

−2Ḣ = 8πGeff (ρm+ρd+pd), (20)
where ρd and pd are the energy density and pressure of dark components

ρd =
1

8πG−2fθ

f −TfT
2

, (21)

pd =
−1

8πG−2fθ

(
f −TfT

2
+HṪfTT −HfTθ

3HḢfT −θṪ fTθ
4πG− 5

4fθ−θfθθ

)
, (22)

and

Geff ≡
1

fT
(G− fθ

4π
). (23)

The equation of state parameter of dark fluid ωd is obtained as (pd = ωdρd)

ωd =−1 +
fTθ

3HḢfT−θṪ fTθ
4πG− 5

4
fθ−θfθθ

− Ṫ fTT
1

2H (f −TfT )
. (24)

RJP 60(Nos. 1-2), 44–55 (2015) (c) 2015 - v.1.3a*2015.2.7



48 Muzaffer Askin, Habib Abedi, Mustafa Salti 5

The semi-conservation equation of ordinary matter [17] is given by

ρ̇+ 3Hρ= q. (25)

Similarly, the energy-momentum tensor of dark components satisfy the following
conservation laws

ρ̇d+ 3H(ρd+pd) = qd, (26)

ρ̇t+ 3H(ρt+pt) = qt, (27)
where ρt = ρm+ρd, pt = pd and qt = q+qd. Here, q and qt represent the energy ex-
change term and the total energy exchange term, respectively. Substituting equations
(19) and (20) in relation (27), one can obtain

qt =
3H2

8πG
∂t

(
fT

1− fθ
4πG

)
=
−T

16πG
∂t

(
fT

1− fθ
4πG

)
. (28)

We can recover the relation of total energy exchange term in f(T )-gravity if fθ = 0.
In teleparallel gravity, qt = 0 for the choice f(T,θ) = T .

3. LAWS OF GRAVITATIONAL THERMODYNAMICS

In this part of the work, we investigate the validity of the first and second
laws of the gravitational thermodynamics in f(T,θ) theory of gravity for the flat
Friedmann-Robertson-Walker spacetime.

3.1. THE FIRST LAW

In this sub-section, we examine the validity of the first law of gravitational ther-
modynamics in f(T,θ)-gravity at the apparent horizon of flat Friedmann-Robertson-
Walker universe.

The dynamical apparent horizon can be obtained by using [17]

hµν∂µr̂∂ν r̂ = 0. (29)

This relation leads us to the radius of dynamical apparent horizon for the flat Friedmann-
Robertson-Walker spacetime r̂A = 1

H . Next, the corresponding Hawking temperature
on the apparent horizon [6] is described by

TA =
1

2πr̂A

2Hr̂A− ˙̂rA
2Hr̂A

, (30)

where 2Hr̂A > ˙̂rA provides that the temperature is positive. Cai et al. [24], in 2009,
showed that the apparent horizon of the Friedmann-Robertson-Walker spacetime has
an associated Hawking temperature.
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6 Thermodynamics in f(T,θ) gravity 49

In general relativity, the horizon (apparent) entropy is described by the Bekenstein-
Hawking equation SA = A

4G , where A = 4πr̂2
A is the area of the apparent horizon

[25–27]. The horizon entropy in f(R)-gravity [28, 29] is given by SA = AfR
4G . Next,

in f(T )-gravity, the horizon entropy is defined as SA = AfT
4G [30]. In the f(T,θ)

theory of gravity, the horizon entropy is expressed as

SA =
A

4G

fT
Σ
, (31)

where

Σ = 1− fθ
4πG

. (32)

Considering equation (20) and the definition of dynamical apparent horizon, we find

fT
dr̂A
dt

= 4πGr̂3
A(ρt+pt)HΣ. (33)

Now, using equations (32) and (33) it follows that

1

2πr̂A
dSA = 4πr̂3

A(ρt+pt)Hdt+
r̂A

2GΣ
dfT +

r̂AfT
2G

d

(
1

Σ

)
. (34)

After multiplying both sides of this relation with a factor 2Hr̂A− ˙̂rA
2Hr̂A

, we obtain

TAdSA = 4πr̂3
A(ρt+pt)Hdt−2πr̂2

A(ρt+pt)dr̂A

+
πr̂2

ATA
GΣ

dfT +
πr̂2

ATAfT
G

d

(
1

Σ

)
(35)

On the other hand, in the general relativity, the energy of the universe within
the apparent horizon is defined by the Misner-Sharp [31, 32] relation E = r̂A

2G . In
f(T,θ) theory of gravity, we define the energy of the universe within the apparent
horizon as

E =
r̂A
2G

fT
Σ
. (36)

It is important to mention here that E > 0 if Geff > 0, hence the effective gravita-
tional coupling constant in f(T,θ)-gravity should be positive [17]. By taking time
derivative of equation (36) we find

dE =−4πr̂3
A(ρt+pt)Hdt+ 4πr̂2

Aρtdr̂A+
r̂A

2GΣ
dfT +

r̂AfT
2G

d

(
1

Σ

)
. (37)

Then, using this result in equation (35) it follows that

TAdSA =−dE+WdV +
1 + 2πr̂ATA

2GΣ
r̂AdfT +

1 + 2πr̂ATA
2G

r̂AfTd

(
1

Σ

)
, (38)

where

W =
1

2
(ρt−pt) (39)
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50 Muzaffer Askin, Habib Abedi, Mustafa Salti 7

and

V =
4

3
πr̂3

A (40)

are the work density [17, 33, 34] and volume, respectively. Furthermore, we can
rewrite equation (40) in the following form:

TAdSA+TAdiS̃ =−dE+WdV, (41)

where

TAdiS̃ =−1 + 2πr̂ATA

2Gr̂−1
A

d

(
fT
Σ

)
. (42)

This extra term is the main reason for the violation of the first law of gravitational
thermodynamics in f(T,θ)-gravity. All of the matter fields see the same horizon
and Hawking temperature, but some gravitational degrees of freedom in f(T,θ) the-
ory of gravity feel a different background metric, horizon and Hawking temperature.
Black holes in such a case cannot be in equilibrium. From this point of view, the
first law of gravitational thermodynamics in equilibrium is violated. Dubovski and
Sibiryakov [35] have discussed the effect of spontaneous breaking of Lorentz in-
variance on black hole thermodynamics, and they found a similar conclusion. On
the other hand, when we compare the cosmological setup of f(T,θ)-gravity with
general relativity, teleparallel gravity, Gauss-Bonnet gravity and Lovelock gravity,
we have an additional term in the first law of thermodynamics [7–9, 17]. Next, we
may also interpret this additional term as the entropy production term developed due
to the non-equilibrium framework in f(T,θ)-gravity. Furthermore, if we assume
f(T,θ) = T , then we achieve the traditional first law of thermodynamics in general
relativity and teleparallel gravity.

3.2. THE SECOND LAW

The entropy of the matter inside the apparent horizon is defined by the follow-
ing Gibbs’ equation [36]

T̄ dSm = dEm+pmdV, (43)

where Em = ρmV is the internal energy and T̄ is the temperature of total energy
inside the horizon. Here, we consider that T̄ is proportional to horizon temperature
[14, 19], i.e. T̄ = γTA, where 0 < γ < 1 to ensure that temperature being positive
and smaller than the temperature of dynamical apparent horizon [17]. Taking the
time derivative of equation (43), one can get (remember we have pm = 0)

T̄
dSm
dt

= ρm

(
dV

dt
−3HV

)
. (44)
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8 Thermodynamics in f(T,θ) gravity 51

In the previous sub-section, we gave the evolution of horizon entropy SA and auxili-
ary entropy S̃. Hence, we can write

TA
dSA
dt

= 4πr̂3
A(ρt+pt)H−2πr̂2

A(ρt+pt)
dr̂A
dt

+
πr̂2

ATA
GΣ

dfT
dt

+
πr̂2

ATAfT
G

∂t

(
1

Σ

)
, (45)

TA
diS̃

dt
=−1 + 2πr̂ATA

2Gr̂−1
A

∂t

(
fT
Σ

)
. (46)

Now, using the relations (44), (45) and (46), we find

dSt
dt

=
24π

γT r̂A

[
(1−γ)ρ̇tV + (1− γ

2
)(ρt+pt)V̇

]
≥ 0, (47)

where
St = Sm+SA+ S̃ (48)

is the total entropy. The result given by equation (47) describes the validity of the
second law of gravitational thermodynamics, i.e. St ≥ 0. Hence, using (19) and (20),
equation (47) can be reduced to the following result

dSt
dt

=
12π

γTGΣH3

Ω

H
≥ 0, (49)

where
Ω

H
= 2(1−γ)ḢH2fT + (2−γ)Ḣ2fT + (1−γ)ΣH3∂t

(
fT
Σ

)
(50)

Therefore the condition to satisfy the second law of gravitational thermodynamics is
equivalent to Ω ≥ 0 and it shows the validity of the second law of thermodynamics
depends onH > 0, Ḣ > 0 and the f(T,θ)-gravity model. Also, Σ and fT are positive
in order to keep E > 0. On the other hand, if we assume γ = 1 which means the
temperature between inside and outside the dynamical apparent horizon remains the
same then the second law of gravitational thermodynamics is valid only if

Ω̃ =
Ḣ2fT

Σ
≥ 0. (51)

In the flat Friedmann-Robertson-Walker universe, the effective equation-of-
state parameter is given as

ωeff =−1− 2Ḣ

3H2
. (52)

Here Ḣ < 0, ωeff > −1, corresponds to quintessence (non-phantom) region of the
universe while Ḣ > 0, ωeff <−1, represents the phantom phase. It seems Ω̃≥ 0 in
both phantom and quintessence phases. As a result, the second law of gravitational
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thermodynamics in f(T,θ)-gravity is satisfied in both phantom and quintessence re-
gions of the universe. In literature, Bamba and Geng found that the second law of
gravitational thermodynamics holds in f(R)-gravity and f(T )-gravity [14, 16] and
Sharif and Zubair obtained the same conclusion in f(R,θ) theory of gravity [17].

4. ANOTHER POINT OF VIEW

In section 3, we have seen that there is an additional non-equilibrium entropy
production term diS̃ in laws of gravitational thermodynamics. In this section, we
discussed, by redefining the dark energy density and dark pressure, whether the extra
entropy production term can be removed. It has been shown so far that the equilib-
rium definition of thermodynamics can be obtained in modified theories of gravity
and there can be no extra entropy production term [14, 16, 19].

4.1. REDEFINING THE DARK COMPONENTS

Gravitational field equations (19) and (20) can be rewritten as

3H2 = 8πĜeff (ρm+ ρ̂d), (53)

−2Ḣ = 8πĜeff (ρm+ ρ̂d+ p̂d), (54)
where ρ̂d and p̂d are redefinitions of the dark energy density and dark pressure and
the dark components are redefined as

ρ̂d =
1

8πG−2fθ

[
f −TfT

2
+ 3(1−fT )H2

]
, (55)

p̂d =
−1

8πG−2fθ

(
f −TfT

2
+HṪfTT + (1−fT )(3H2 + 2Ḣ)

−HfTθ
3HḢfT −θṪ fTθ
4πG− 5

4fθ−θfθθ

)
, (56)

and

Ĝeff ≡G−
fθ
4π
. (57)

These new definitions of dark components lead us to the following expression of total
energy exchange

q̂t =
−T
8πG

∂t

(
1

Σ

)
6= 0. (58)

Since ∂t[fθ(T,θ)] 6= 0 we get Σ 6= 0. Hence q̂t does not equal to zero. Thus, we may
not define the equilibrium picture of gravitational thermodynamics in this modified
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10 Thermodynamics in f(T,θ) gravity 53

theory of gravity, and we should consider the non-equilibrium description of ther-
modynamics. This conclusion differ from other modified gravity theories due to the
matter dependence of Lagrangian density [17].

Now, we re-investigate the validity of the first and second laws of gravitational
thermodynamics in this point of view.

4.2. NEW FORM OF THE FIRST LAW

In this new scenario, the time derivative of dynamical apparent horizon is writ-
ten as

dr̂A
dt

= 4πr̂3
AHGΣ(ρ̂t+ p̂t) (59)

Now, the horizon entropy is given as

SA =
A

4G

1

Σ
. (60)

Considering equation (59) the horizon entropy takes the following form

1

2πr̂A

dSA
dt

= 4Hπr̂3
A(ρ̂t+ p̂t) +

r̂A
2G

∂t

(
1

Σ

)
. (61)

Next, multiplying both sides of this relation with a factor 2Hr̂A− ˙̂rA
2Hr̂A

gives

TA
dSA
dt

= 4Hπr̂3
A(ρ̂t+ p̂t)−2πr̂2

A(ρ̂t+ p̂t)
dr̂A
dt

+
πr̂2

ATA
G

∂t

(
1

Σ

)
. (62)

Introducing the following Misner-Sharp energy relation

E =
r̂A
2G

1

Σ
= V ρ̂t, (63)

we find
dE

dt
=−4Hπr̂3

A(ρ̂t+ p̂t) + 4πr̂2
Aρ̂t

dr̂A
dt

+
r̂A
2G

∂t

(
1

Σ

)
. (64)

Now, by combining equations (62) and (64), we can obtain the following result for
the first law of gravitational thermodynamics

TAdSA+TAdiS̃ =−dE+WdV, (65)

where

TAdiS̃ =−1 + 2πr̂ATA

2Gr̂−1
A

d

(
1

Σ

)
=−Σ

[
E

TA
+SA

]
d

(
1

Σ

)
. (66)

is the additional entropy term which is produced due to the matter contents of the
universe. Here, in f(T,θ)-gravity, the first law of thermodynamics does not hold
due to the presence of extra entropy term TAdiS̃. But, this term vanishes if we take
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54 Muzaffer Askin, Habib Abedi, Mustafa Salti 11

f(T,θ) = f(T ) which leads to the equilibrium description of gravitational thermo-
dynamics in f(T ) theory of gravity. Under this limit we get the same result [16]
obtained by Bamba and Geng.

4.3. NEW FORM OF THE SECOND LAW

To establish the new form of second law of thermodynamics in f(T,θ)-gravity,
we consider the Gibbs relation in terms of all matter and energy components

TtdSt = d(ρ̂tV ) + p̂tdV. (67)

In this scenario, the second law of gravitational thermodynamics can be defined as

ṠA+ Ṡm+
˙̃
S ≥ 0, (68)

which implies that
12π

γTGΣH3

Λ

H
≥ 0, (69)

where
Λ

H
= 2(1−γ)ḢH2 + (2−γ)Ḣ2 + (1−γ)ΣH3∂t

(
1

Σ

)
. (70)

Hence, the second law of gravitational thermodynamics can be achieved if we have
the conditions ∂t( 1

Σ) ≥ 0, H ≥ 0 and Ḣ ≥ 0. Note that in both descriptions of
dark contents, the second law of thermodynamics is valid both in phantom and
quintessence regions of the universe.

5. OUTLOOK

f(T,θ)-gravity is the generalization of f(T )-gravity and can be applied to in-
vestigate many issues of modern cosmology and astrophysics. We focus on laws
of gravitational thermodynamics of a spherical symmetric Friedmann-Robertson-
Walker spacetime containing only the ordinary matter and we assume the boundary
of the universe is enclosed by apparent horizon with the Hawking temperature. We
observe that, in the first law of gravitational thermodynamics, an auxiliary entropy
term diS̃ is produced as compared both in general relativity and teleparallel gravity.
On the other hand, we derive a general circumstance for the second law of gravita-
tional thermodynamics. Bamba and Geng [16], in f(T ) theory of gravity, discussed
the first and second laws of thermodynamics at the dynamical apparent horizon of
Friedmann-Robertson-Walker universe with both non-equilibrium and equilibrium
descriptions. By assuming f(T,θ) = f(T ), our results give diS̃ = 0 which means
one can define an equilibrium description of thermodynamics in f(T )-gravity. In
general case, we conclude that (i) the description of equilibrium thermodynamics is
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12 Thermodynamics in f(T,θ) gravity 55

not feasible in f(T,θ) theory of gravity even if we redefine the dark energy den-
sity and dark pressure, (ii) in thermal equilibrium, the second law of gravitational
thermodynamics is satisfied in both phantom and quintessence phases.
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