SET OF ALL PAIRS OF TWIN PRIME NUMBERS IS INFINITE

Alexander S. Nudelman
S. L. Sobolev Institute of Mathematics SB RAS, Novosibirsk Academgorodok, Russia
alex@nudelman.info

Abstract

In this paper we formulate an intuitive Hypothesis about a new aspect of a well known method called "Sieve of Eratosthenes" and then prove that set of natural numbers $N=\{1,2, \ldots\}$ contains infinite number of pairs of twin primes.

Introduction. Following established tradition, as $p_{i}, i \in N$, we shall denote i-th prime $\left(p_{1}=2\right) . N^{+}$shall designate numerical series $N \cup\{0\} . r\left(\frac{a}{b}\right)$, where $b \neq 0$, shall designate the remainder of division of a by b, assuming $0 \leq$ $r\left(\frac{a}{b}\right)<b$. Set of possible remainders from division by b, i.e. $\{0,1, \ldots, b-1\}$, will be denoted as $R(b)$. If A is a finite set of numbers, then $|A|$ shall mean the count of integers in A.

If $i \in N$ and $S_{i} \subseteq R\left(p_{i}\right)$, then

$$
M_{i}\left(S_{i}\right)=\left\{x \in N \left\lvert\, r\left(\frac{x}{p_{i}}\right) \in S_{i}\right.\right\} .
$$

It is clear that if $S_{i}=R\left(p_{i}\right)$ then $M_{i}\left(S_{i}\right)=N$, and if $S_{i} \subset R\left(p_{i}\right)$ then sets $M_{i}\left(S_{i}\right)$ and $N \backslash M_{i}\left(S_{i}\right)$ are infinite.

1 The Hypothesis

If $i \in N, S_{i} \subset R\left(p_{i}\right)$ and $\left|S_{i}\right|=1$, then increasing sequence of all elements of the set

$$
M_{i}\left(S_{i}\right)=\left\{x \in N \left\lvert\, r\left(\frac{x}{p_{i}}\right) \in S_{i}\right.\right\}
$$

will be an arithmetic progression with common difference of p_{i}. Set of $M_{i}\left(S_{i}\right)$, where $1<\left|S_{i}\right|<p_{i}$, which combines corresponding arithmetic progressions, will be called a group arithmetic progression with common difference of p_{i}.

It is clear that for every $i \in N$, if $S_{i} \subset R\left(p_{i}\right)$, then

$$
\lim _{q \rightarrow \infty} \frac{\left|M_{i}\left(S_{i}\right) \cap\{x \in N \mid x \leq q\}\right|}{q}=\frac{\left|S_{i}\right|}{p_{i}} .
$$

Let $n \in N$ and $S_{i} \subset R\left(p_{i}\right)$ for every $i \leq n$. Let D_{n} is a set such that

$$
D_{n}=\bigcap_{i=1}^{n} M_{i}\left(S_{i}\right)=\left\{x \in N \left\lvert\, r\left(\frac{x}{p_{1}}\right) \in S_{1}\right., \ldots, r\left(\frac{x}{p_{n}}\right) \in S_{n}\right\},
$$

and $D_{n}(q)$, where $q \in N$ and $q>p_{n}$, is a set such that

$$
D_{n}(q)=D_{n} \cap\left\{x \in N \mid p_{n}<x \leq q\right\} .
$$

Since all arithmetic progressions included in the group are disjoint, then for every $1<i \leq n$

$$
D_{i}=\bigcup_{k \in S_{i}}\left\{D_{i-1} \bigcap M_{i}(\{k\})\right\},
$$

which, in view of mutual primeness of p_{i} with p_{1}, \ldots, p_{i-1}, makes it quite probable that

$$
\lim _{q \rightarrow \infty}\left|D_{i}(q)\right|=\lim _{q \rightarrow \infty}\left|D_{i-1}(q)\right| \cdot \frac{\left|S_{i}\right|}{p_{i}} .
$$

Since all common differences p_{1}, \ldots, p_{n} of arithmetic (possibly group) progressions included into D_{n} are mutually prime, it is therefore very likely that

$$
\lim _{q \rightarrow \infty}\left|D_{n}(q)\right|=\prod_{i=1}^{n} \frac{\left|S_{i}\right|}{p_{i}}
$$

Hypothesis.

$$
\left|D_{n}(q)\right| \approx\left(q-p_{n}\right) \cdot \prod_{i=1}^{n} \frac{\left|S_{i}\right|}{p_{i}} .
$$

(Approximation \approx is due to finitness of the set $\left\{x \in N \mid p_{n}<x \leq q\right\}$. .)
Let us consider two extreme cases - the minimum and the maximum sets D_{n} :

Case 1.

Let for any $i \leq n$ set $S_{i}=\{0\}$, then

$$
D_{n}=\bigcap_{i=1}^{n} M_{i}\left(S_{i}\right)=\left\{x \in N \left\lvert\, r\left(\frac{x}{p_{1}}\right)=0\right., \ldots, r\left(\frac{x}{p_{n}}\right)=0\right\} .
$$

It is sufficient to mention the well known arithmetic fact, that the intersection of two arithmetic progressions with mutually prime common differences p_{x}, p_{y} is always an arithmetic progression with common difference of $p_{x} \times p_{y}$. Therefore, this part of the Hypothesis, having the form
$\left|D_{n}(q)\right| \approx\left(q-p_{n}\right) \cdot \frac{1}{p_{1} \times \cdots \times p_{n}}$, is provable in Peano Arithmetic.

Case 2.

Let $S_{1}=R\left(p_{1}\right) \backslash\{0\}, \ldots, S_{n}=R\left(p_{n}\right) \backslash\{0\}$, then

$$
D(n)=\bigcap_{i=1}^{n} M_{i}\left(S_{i}\right)=\left\{x \in N \left\lvert\, r\left(\frac{x}{p_{1}}\right) \neq 0\right., \ldots, r\left(\frac{x}{p_{n}}\right) \neq 0\right\}
$$

and by Hypothesis

$$
\left|D_{n}(q)\right| \approx\left(q-p_{n}\right) \cdot \prod_{i=1}^{n} \frac{\left|S_{i}\right|}{p_{i}}
$$

It is clear that set D_{n} is a set of numbers that are mutually prime with $p_{1}, p_{2}, \ldots, p_{n}$. It is also clear that $D_{n}\left(p_{n}^{2}\right)$ is a set of approximately all primes that are greater than p_{n} and less than p_{n}^{2}. If we follow the trend $T d_{n}$ of changes of $\left|D_{n}\left(p_{n}^{2}\right)\right|$ with increasing n, we will notice that

$$
T d_{n}=\frac{\left|D_{n+1}\left(p_{n+1}^{2}\right)\right|}{\left|D_{n}\left(p_{n}^{2}\right)\right|}=\frac{p_{n+1}^{2}-p_{n+1}}{p_{n}^{2}-p_{n}} \cdot \frac{p_{n+1}-1}{p_{n+1}},
$$

substituting $p_{n+1}=p_{n}+c$:
$T d_{n}=\frac{\left(p_{n}+c\right)^{2}-\left(p_{n}+c\right)}{p_{n}^{2}-p_{n}} \cdot \frac{p_{n}+c-1}{p_{n}+c}=\frac{p_{n}^{2}+2 p_{n} \cdot c+c^{2}-p_{n}-c}{p_{n}^{2}-p_{n}} \cdot \frac{p_{n}+c-1}{p_{n}+c}$.
Since $c \geq 2$ for any $n>1$, therefore $T d_{n}>1$ for any $n>1$. Taking into account the fact that $\left|D_{2}\left(3^{2}\right)\right|>0$, this means that there are infinitely many prime numbers in N (which is proved in Peano Arithmetic).

Consistency with the axioms of Peano Arithmetic of the two extreme cases of Hypothesis suggests that all intermediate cases of the Hypothesis are consistent with axioms of Peano Arithmetic.

2 Twin prime numbers

It is well known that all prime numbers greater than 3 are numbers of the form $6 m-1$ or $6 m+1$. Therefore, every pair of twin prime numbers "surrounds" some integer which is a multiple of six, which becomes the "middle" of the pair. Taking this fact into account, let us define set $D_{n}, n>2$ as follows:

$$
D_{n}=\left\{x \in N \left\lvert\, r\left(\frac{x}{p_{1}}\right)=r\left(\frac{x}{p_{2}}\right)=0 \& \bigwedge_{i=3}^{n}\left(r\left(\frac{x}{p_{i}}\right) \neq 1 \& r\left(\frac{x}{p_{i}}\right) \neq p_{i}-1\right)\right.\right\} .
$$

It is clear that set D_{n} contains only numbers $6 m, m>1$; moreover, the numbers $6 m-1$ and $6 m+1$ are mutually prime with p_{1}, \ldots, p_{n}. It is also clear that set $D_{n}\left(p_{n}^{2}\right)$ is a set of approximately all the "middles" of pairs of twin prime numbers laying between p_{n} and p_{n}^{2}. If we follow the trend $T d_{n}$ of changes of $\left|D_{n}\left(p_{n}^{2}\right)\right|$ with increasing $n(n \geq 3)$, we will notice that $(c \geq 2)$

$$
T d_{n}=\frac{\left|D_{n+1}\left(p_{n+1}^{2}\right)\right|}{\left|D_{n}\left(p_{n}^{2}\right)\right|}=\frac{\left(p_{n}+c\right)^{2}-\left(p_{n}+c\right)}{p_{n}^{2}-p_{n}} \cdot \frac{p_{n}+c-2}{p_{n}+c}>1 .
$$

Taken together with the apparent $\left|D_{3}\left(p_{3}^{2}\right)\right|>0$, this fact means that there are infinitely many pairs of twin primes in the set of natural numbers N.

References

[1] V. I. Arnold, Number Theory, Moscow, Uchpedgiz 1939.
[2] A. T. Gainov, Number Theory, Part 1, Novosibirsk, 1999.

