Four conjectures involving the squares of primes and the numbers 360 and 6240

Marius Coman email: mariuscoman13@gmail.com

Abstract. In this paper I conjecture that there exist an infinity of primes m such that the number $n = m^*(m + 360)$ - 6240 is square of prime, respectively prime, respectively semiprime p*q such that q - p + 1 is prime or square of prime, respectively semiprime p1*q1 such that q1 - p1 + 1 is a semiprime q2*p2 such that q2 - p2 + 1 is prime or square of prime.

Conjecture 1:

There exist an infinity of primes m such that the number $n = m^*(m + 360) - 6240$ is square of prime.

Such pairs [m, n] are:

: [17, 169 = 13²]; [19, 961 = 31²]; [29, 5041 = 71²]; [41, 10201 = 101²]; [131, 58081 = 241²]; [193, 100489 = 317²], [263, 157609 = 397²]...

Conjecture 2:

There exist an infinity of primes m such that the number $n = m^*(m + 360) - 6240$ is prime.

Such pairs [m, n] are:

: [31, 5881]; [47, 12889]; [53, 15649]; [59, 18481]; [61, 19441]; [67, 22369]; [83, 30529]; [89, 33721]; [127, 55609]; [151, 70921]; [157, 74929]; [167, 81769], [293, 185089], [307, 198529], [311, 202441]...

Conjecture 3:

There exist an infinity of primes m such that the number $n = m^*(m + 360) - 6240$ is a semiprime $n = p^*q$ with the property that q - p + 1 is prime or square of prime.

Such pairs [m, n] are:

: [23, 2569 = 7*367 (367 - 7 + 1 = 361 = 19^2)]; : [43, 1089 = 13*853 (853 - 13 + 1 = 841 = 29^2)];

:	[101,	40321 = 61*661 (661 - 61 + 1 = 601)];
:	[103,	$41449 = 181*229 (229 - 181 + 1 = 49 = 7^2);$
:	[107,	$43729 = 7 \times 6247 (6247 - 7 + 1 = 6241 = 79^{2});$
:	[137,	$61849 = 127*487 (487 - 127 + 1 = 361 = 19^2);$
:	[229,	128641 = 197*653 (653 - 197 + 1 = 457)];
:	[239,	136921 = 269*509 (509 - 269 + 1 = 241)];
:	[281,	173881 = 41*4241 (4241 - 41 + 1 = 4201)];
:	[283,	175729 = 17*10337 (10337 - 17 + 1 = 10321)];
:	[313,	$204409 = 71 \times 2879$ (2879 - 71 + 1 = 2809 =
	53^2)];
:	[337,	228649 = 373*613 (613 - 373 + 1 = 241)];
:	[347,	239089 = 47*5087 (5087 - 47 + 1 = 5041 =
	71^2)] []

Conjecture 4:

There exist an infinity of primes m such that the number $n = m^*(m + 360) - 6240$ is a semiprime $n = p1^*q1$ with the property that q1 - p1 + 1 is a semiprime $p2^*q2$ such that q2 - p2 is prime or square of prime.

Such pairs [m, n] are:

:	[73, 25369 = 23*1103 (1103 - 23 + 1 = 1081 = 23*47)
	and $47 - 23 + 1 = 25 = 5^2$];
:	[97, 38089 = 41*929 (929 - 41 + 1 = 889 = 7*127 and
	$127 - 7 + 1 = 121 = 11^2$;
:	[109, 44881 = 37*1213 (1213 - 37 + 1 = 1177 = 11*107)
	and $107 - 11 + 1 = 97)$;
:	[113, 47209 = 17*2777 (2777 - 17 + 1 = 2761 = 11*251)
	and $251 - 11 + 1 = 241)$;
:	[163, 79009 = 7*11287 (11287 - 7 + 1 = 11281 =
	$29*389$ and $389 - 29 + 1 = 361 = 19^2$];
:	[197, 103489 = 37*2797 (2797 - 37 + 1 = 2761 =
	11*251 and $251 - 11 + 1 = 241)$;
:	[223, 123769 = 61*2029 (2029 - 61 + 1 = 1969 =
	$11*179$ and $179 - 11 + 1 = 169 = 13^{2}$;
:	[227, 127009 = 107*1187 (1187 - 107 + 1 = 1081 =
	$23*47$ and $47 - 23 + 1 = 25 = 5^2$;
:	[269, 162961 = 107*1523 (1523 - 107 + 1 = 1417 =
	13*109 and $109 - 13 + 1 = 97)];$
:	[277, 170209 = 13*13093 (13093 - 13 + 1 = 13081 =
	103×127 and $127 - 103 + 1 = 25 = 5^{2}$ []

Note:

Interesting results (primes, certain types of semiprimes) are also probably obtained with the formula $n = m^*(m + s - 1) - 6240$, where s is a square of prime or a Poulet number (I often stated that these numbers have sometimes a behaviour similar to squares of primes).