Three conjectures on the numbers obtained concatenating the multiples of 30 with the squares of primes

Marius Coman
email: mariuscoman13@gmail.com

Abstract

In this paper I conjecture that there exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b, which are primes or powers of primes, respectively semiprimes p*q such that $q-p+1$ is prime or power of prime, respectively semiprimes $p 1 * q 1$ such that $q 1-p 1+1$ is semiprime p2*q2 such that $q 2-p 2+1$ is prime or power of prime.

Conjecture 1:

There exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b, which are primes or powers of primes.

Such triplets [a, b, ab] are:

: [30, 49, 3049]; [30, 169, 30169]; [30, 529, 30529]; [30, 841, 30841]; [30, 1681, 301681]; [30, 4489, $304489] ;[30,5329,305329] ;[60,169,60169] ;[60$, 289, 60289]; [60, 961, 60961]; [60, 1849, 601849]; [60, 5329, 605329]; [60, 6241, 606241]; [60, 7921, 607921]; [90, 49, 9049]; [90, 121, 90121]; [90, 289, 90289]; [90, 529, 90529]; [90, 841, 90841]; [90, $4489,904489] ; \quad[90,5329, ~ 905329] ; \quad[90, ~ 9409$, 909409]; [120, 49, 12049]; [120, 121, 120121]; [150, 169, 150169]; [180, 49, 18049]; [180, 289, 180289]; $[210,361,210361] ; \quad[240,49,24049] ; \quad[270,121$, 270121]; [300, 961, 300961]; [330, 49, 33049]...

Note:

Two interesting sequences can be made:
(1) The least prime p for which the numbers formed by concatenation $m p^{\wedge} 2$, where $m=30 * n$, n taking positive integer values, are primes: : 7, 13, 11, 11, 13, 7, 19, 7, 11, 31, 7 \{...)
(2) The least positive integer n for which the numbers formed by concatenation $m p \wedge 2$, where $m=30 * n$, p taking the values of primes greater than or equal to 7, are primes:

```
: 1, 3, 1, 2, 6, 1, 1, 2, 5, 1, 2, 5, 7 (...)
```


Conjecture 2:

There exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b, which are semiprimes $p * q$ such that $q-p+1$ is prime or power of prime.

Such triplets [a, b, ab] are:

```
: [30, 1849, 301849 = 151*1999 and 1999 - 151 + 1 =
    1849 = 43^2];
: [30, 3481, 303481 = 157*1933 and 1933 - 157 + 1 =
    1777];
: [30, 9409, 309409 = 277*1117 and 1117 - 277 + 1 =
    841 = 29^2];
: [60, 49, 6049 = 23*263 and 263 - 23 + 1 = 241];
: [60, 121, 60121 = 59*1019 and 1019 - 59 + 1 = 961 =
    31^2];
: [60, 529, 60529 = 7*8647 and 8647 - 7 + 1 = 8641];
: [60, 841, 60841 = 11*5531 and 5531 - 11 + 1 = 5521];
: [60, 2209, 602209 = 23*26183 and 26183 - 23 + 1 =
    26161];
: [60, 2809, 602809 = 617*977 and 977 - 617 + 1 = 361
    = 19^2];
: [60, 3481, 603481 = 79*7639 and 7639 - 79 + 1 =
    7561];
: [60, 5041, 605041 = 167*3623 and 3623 - 167 + 1 =
    3457];
: [60, 9409, 609409 = 113*5393 and 5393 - 113 + 1 =
    5281];
: [90, 169, 90169 = 37*2437 and 2437 - 37 + 1 = 2401 =
    7^4];
: [90, 1369, 901369 = 7*128767 and 128767 - 7 + 1 =
    128761];
: [90, 2809, 902809 = 859*1051 and 1051 - 859 + 1 =
    193];
: [120, 169, 120169 = 7*17167 and 17167 - 7 + 1 =
    17161 = 131^2];
: [150, 49, 15049 = 101*149 and 149 - 101 + 1 = 49 =
    7^2];
: [150, 289, 150289 = 137*1097 and 1097 - 137 + 1 =
    961 = 31^2];
: [180, 121, 180121 = 281*641 and 641 - 281 + 1 = 361
    = 19^2];
: [180, 529, 180529 = 73*2473 and 2473 - 73 + 1 = 2401
    = 7^4];
[...]
```


Conjecture 3:

There exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b, which are semiprimes $p 1 * q 1$ such that q1 - p1 + 1 is semiprime $p 2 * q 2$ such that $q 2-p 2+1$ is prime or power of prime.

Such triplets [a, b, ab] are:

```
: [30, 289, 30289 = 7*4327 and 4327 - 7 + 1 = 4321 =
    29*149 and 149 - 29 + 1 = 121 = 11^2];
: [30, 361, 30361 = 97*313 and 313 - 97 + 1 = 217 =
        7*31 and 31-7 + 1 = 25 = 5^2];
: [30, 961, 30961 = 7*4423 and 4423-7 + 1 = 4417 =
        7*631 and 631 - 7 + 1 = 625 = 5^4];
: [30, 1369, 301369 = 23*13103 and 13103 - 23 + 1 =
        13081 = 103*127 and 127 - 103 + 1 = 25 = 5^2];
: [60, 4489, 604489 = 83*7283 and 7283-83 + 1 = 7201
        = 19*379 and 379 - 19 + 1 = 361 = 19^2];
: [90, 5041, 905041 = 89*10169 and 10169 - 89 + 1 =
    10081 = 17*593 and 593-17 + 1 = 577];
: [120, 529, 120529 = 43*2803 and 2803-43 + 1 = 2761
    = 11*251 and 251 - 11 + 1 = 241];
[...]
```

