A method of prime number verification Authors: Kyle Den Hartog, The Human Species

Here is a pattern I noticed and I need help verifying it.
If you take any square number (example: $100=10^{2}$) and divide it by any prime number, a wave of repeating numbers is formed. Example $100 / 7=14.285714$. This forms a repeating number of 142857 infinite number of times.

Next Example 100/11 $=9.090$ repeating infinitely
Next Example 100/997 = $0.100300902708124373119358074222668004012036108324974924774322 \ldots$ (period 166) These I have all checked via WolfRamAlpha.

Does this pattern mean anything? Seems like a very simple way to verify a prime, but the only ones I have found it doesn't work for are 1,2,and 5.

Also possibly needed to be noted, when you change the square number the period remains the same.

Here is the formula I have derived for it: $\mathrm{n}^{2} /\left(2^{n}-1\right)=H$. H represents a period of repeating numbers.

