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Abstract 

 The paper investigates the possibility of continuous variation of a manifold starting from a 

given one. Theoretical investigation engenders the fact that such a continuous passage is not 

possible provided you start from a given manifold specified by its metric coefficients. You have 

to move in discrete steps starting from the given one, satisfying some equations discussed in 

the paper. A manifold surface can always be constructed using arbitrary continuous and 

differentiable functions as metric coefficients. The ensuing Ricci tensor and Ricci scalar will 

always satisfy the Bianchi Identity and hence the field equations. The functionals   in the 

general Relativity  use the Ricci scalar [ensuing from the metric coefficients] as arguments. 

Different surfaces[manifolds ] are generated by varying the metric coefficients [in order to vary 

the Ricci scalar or such functions as dependent on it]. In each case the manifold satisfies the 

Bianchi identity and hence the Field Equations prior to the application of the stationary action 

principle. This perhaps induces a motivation for discretization. Discretization will modify all the 

principles involved in General Relativity making them of a suitable nature in the present 

context. This may open up the gates for including the General Relativity Lagrangians in a more 

rigorous manner. 

Keywords: Metric Tensor, Transformations, Manifolds, Gauss Egregema, Christoffel Symbols 

PACS: 04.20.Cv 

1.Introduction 

The paper aims to establish the following ideas: (1)From a given manifold we may move to 

other manifolds only in discrete steps but not in a continuous manner by changes in the metric 

coefficients. Any effort to access manifolds in a continuous manner would lead to 

contradictions. This idea is intimately tied to the idea of the General Relativity Lagrangians 

starting from the Einstein Hilbert Action to the f(R) gravity and other Lagrangians in the 

Extended gravity Theories. The common feature connected with the actions corresponding to 

the stated Lagrangians is making continuous changes in the metric coefficients to allow for the 

process of variation. But such continuous variation is not possible as we shall see in this 

paper.(2)If a surface(manifold) is constructed with arbitrary continuous differentiable functions 

as metric coefficients, the ensuing Ricci tensor together with the Ricci scalar and the metric 

coefficients will satisfy the Bianchi identity:∇𝛽(𝑅𝛼𝛽 − 𝑔𝛼𝛽𝑅) = 0. The physical basis behind the 

field Equations is that energy density curves space and time and that the covariant derivative of 

the stress energy tensor with respect to time and spatial coordinates is zero. All surfaces 

[manifolds] constructed from arbitrary using continuous differentiable functions as  metric 

coefficients will serve this purpose. The general Relativity like those of Einstein Hilbert and the 
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f(R)  gravities use manifold surfaces expressed through their metric coefficients as independent 

variables. But we cannot vary them in a continuous manner in applying the stationary action 

principle.  

 

 

2.Global Transformations 

Transformation of tensors in Curved Space Time 

A second rank contravariant tensor[1] 𝑇𝛼𝛽 has been chosen to discuss some salient features 

related to the current investigation. 

𝑇̅𝜇𝜈 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼

𝜕𝑥̅𝜈

𝜕𝑥𝛽
𝑇𝛼𝛽  (1) 

𝜕𝑥̅𝜇

𝜕𝑥𝛼 are elements from the transformationmatrix. You may consider transformation from 

spherical to rectangular system in Schwarzschild geometry. Manifold[2] remaining the same we 

consider these coordinate transformations from one system to another. Such transformations 

do always exist 

Transformations described by (1) do not contain or involve the metric coefficients: they are 

independent of the nature of the manifold.The transformations may be of a local nature but 

the variable are global variables. It means 
𝜕𝑥̅𝜇

𝜕𝑥𝛼 may be a function of space time variables 

(𝑡, 𝑥, 𝑦, 𝑧) but the variables t,x,y and z are global variables figuring in local transformations. 

It may be noted that  the metric coefficients are described as functions of the global 

coordinates[grid coordinates] but the transformations described by (1) do not involve the 

metric coefficients 

Incidentally these metric coefficients themselves participate in global transformations  

𝑔̅𝜇𝜈 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼

𝜕𝑥̅𝜈

𝜕𝑥𝛽
𝑔𝛼𝛽 

𝑔̅𝜇𝜈 =
𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑔𝛼𝛽 

Standard literature proof of the above relates to the invariance of the line element and the 

involvement of global coordinates and is provided below: 

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽  

𝑑𝑠′2 = 𝑔′𝜇𝜈𝑑𝑥′𝜇𝑑𝑥′𝜈  

[prime in the above denotes transformation and not derivative] 
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Due to invariance: 

𝑑𝑠′2 = 𝑑𝑠2 

𝑔′𝜇𝜈𝑑𝑥′𝜇𝑑𝑥′𝜈 = 𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽 = 𝑔𝛼𝛽

𝜕𝑥𝛼

𝜕𝑥′𝜇
𝑑𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝜈
𝑑𝑥′𝜈 

Therefore  

   𝑔′𝜇𝜈𝑑𝑥′𝜇𝑑𝑥′𝜈 = 𝑔𝛼𝛽
𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝜈
𝑑𝑥′𝜇𝑑𝑥′𝜈 

⟹ 𝑔′𝜇𝜈 =
𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝜈
𝑔𝛼𝛽 

The proof of the fact that 𝑔𝛼𝛽 is a second order covariant tensor is connected with global 

transformations 

Now if you transformed from spherical to rectangular system for the Reissner Nordstrom[3] 

metric the elements 
𝜕𝑥̅𝜇

𝜕𝑥𝛼 in the transformation matrix will not change though the manifold has 

changed. This is corroborated by the proof[4]  that the difference of two connections is a 

tensor. It considers changes in the manifold[changes in 𝒈𝜶𝜷] with unchanged values of the 

transformation matrix elements[Supplementary Material ; Section 2: Difference of Two 

Connections] 

We have two types of transformations 

1) Manifold remaining the same the system of coordinates change: the metric coefficients 

change according to the transformation given above 

2) The manifold itself changes: in this case the metric coefficients may change in an 

arbitrary manner, remaining continuous differentiable functions. We may use arbitrary 

continuous differentiable functions to construct a manifold surface:thev following will 

hold (1) Covariant derivative of 𝑔𝜇𝜈 with respect to time and spatial coordinates will be 

satisfied.(2) The Bianchi identities will remain valid 

During the process of variation information in point (2) above becomes active. 

Again while we are on some particular manifold before or after variation information in 

point (1) becomes relevant 

 

 In a particular type of geometry for example Schwarzschild Geometry[5] you may consider in 

relative motion of complicated type between the two global coordinate systems. In such 

situations we have the same type of relation as (1) except that the transformation elements will 

contain velocity components, angular speed acceleration etc. 

𝑇̅𝜇𝜈 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼

𝜕𝑥̅𝜈

𝜕𝑥𝛽 𝑇𝛼𝛽  (2) 
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The matrix elements for (1) and (2) will be different when we change the system of coordinates 

with out changing the manifold. But they will not change when we pass from one geometry to 

another[from one manifold to another] due to the absence of 𝑔𝜇𝜈in  provided we maintain the 

same type of relative motion between the global grid systems. The transformation elements 

will contain speed acceleration and other higher order derivatives in  the global perspective 

We may consider a manifold due to several masses in the fray. The global coordinate system 

will have world lines where the observer is spatially at rest but such observers may be in 

motion with respect to all the bodies in the fray. 

In this  paper we are concerned with the global transformations  in relation o both the points 

(1) and (2). The tensors are being viewed from the perspective of global coordinates. For 

example if you are in Schwarzschild geometry you are viewing the tensors as a spatially 

stationary observer in the commonly used spherical system of coordinates or in some other 

system like the rectangular one which is less common.. This corresponds to some particular 

world line at any specified point on the manifold. Let us call it the stationary world line at the 

point P 

Local Transformations 

Though we are concerned with global transformations we have a brief discussion on the local 

transformations in this section. 

P is a point on manifold  M1 and P’ is the image on the close manifold M2. At the same 

coordinate location((𝑡, 𝑥, 𝑦, 𝑧), the tangent planes at P and P’ have been considered before and 

after the infinitesimal change of the manifold.

 



5 
 

 

First we consider the tangent plane at some point P in curved space time geometry. Observers 

passing along AB and CD have their own mutual local transformation laws, simplest being the 

Lorentz Transformations when relative motion is uniform. 

If curvature changes as we change the manifold by some valid infinitesimal amount the 

inclination of the said tangent plane changes [with respect to the previous position: inclination 

between planes  not shown in the figure]] and the angles between curves passing through P 

also change. Angle between AB and CD is different from the angle between A’B’ and C’D’ 

 

At each point P and P’ we will have a world line where the observer is at rest with respect to 

the global system of coordinates. Each point will have such  a ”stationary” world line passing 

through it. Metrics like Schwarzschild’s  are relative to spatially stationary observers at origin. 

The transformation elements as depicted in equation (1) will not be different for the two 

manifolds for observers on the stationary world lines.  

We may work out “global transformations” for observers along these stationary world lines 

when we pass from one manifold to another(point 1) and while on any particular manifold we 

consider global transformations between coordinate systems as depicted in point 2 

 

Again  we have transformations for  observers moving along different world lines on same the 

tangent plane. The motion between such observers may not be uniform and will not necessarily 

fall into the category of the Lorentz Transformations though such relative motion pertains to 

the tangent plane. Lorentz transformations are the simplest type of transformations on the 

tangent plane when relative motion is uniform in nature. The tangent plane is not an exclusive 

uniform motion plenum: it is simply Minkowski space where acceleration and relative 

accelerations are permitted. A p[air of frames may have relative acceleration between them 

We simply do not know the laws for frames that translate non uniformly between them but we 

may assume the existence of relevant laws. 

In formal literature tensors and their transformations are defined in respect of the tangent 

plane[5] at some point P on a manifold. We can pass locally from curved space time at point P 

to the tangent plane[Euclidean plane: Minkowski space] by numerous  local chartings and 

each local chart creates a basis for  tensors in the tangent space .This basis incidentally has 

the same dimensionality as the manifold.. The bases thus created on the same tangent plane 

at point P may be transformed into one  another and the corresponding tensors defined on 

them may also be transformed using relations like (1) where the coordinates involved are 

local coordinates , derived from the global ones [obviously by transgression of the Gauss 

Egregema:  we are passing from curved space time to Minkowski space by such 

mapings/diffeomorphisms].  
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[The transformations on the tangent described above are transformations in Minkowski 

space] 

The same tensor on the tangent plane can have different representations in the distinct bases 

on the said plane. Any tensor on the local tangent plane may be transported to  some other 

tangent plane on the manifold another by the method of parallel transport. 

In the case of variations, the manifold itself changes though by an infinitesimal amount at 

each coordinate location (t,x,y,z). We have close tangent planes at P before and after 

variation. We may call the point P , P’, after variation but it is actually the same coordinate 

location (t,x,y,z) 

The Tangent planes representing Minkowski space  are inclined with respect to each other 

and the angles between curves passing through them have changed. Our aim would be to 

locate a world line L1 at P and L2 at P’ so that the values of elements of the local 

transformation matrix  
𝜕𝜉̅𝜇

𝜕𝜉𝛼  have not changed though the local coordinates may have changed 

due to subtle changes in the local charting due and due to variation of the manifold.[ 𝜉𝛼 and 𝜉𝜇̅ 

are local coordinates on the same tangent plane pertaining to distinct basis formed by different 

local charts:𝑥𝜇 ⟷ 𝜉𝜈 𝑎𝑛𝑑 𝑥𝜇 ⟷ 𝜉̅𝜈 at P 

Here 𝑥𝜇  is the global coordinate at P while 𝜉𝜈 and 𝜉̅𝜈 are the  local coordinates on the same 

tangent plane at P due to different local chartings 

On the new tangent plane formed due to variation we could as before think of an infinite 

number of local charts from 𝑥𝜇  to 𝜉′𝜈 and 𝜉′̅𝜈. We  can choose a pair so that 
𝜕𝜉̅𝜇

𝜕𝜉𝛼 =
𝜕𝜉̅′𝜇

𝜕𝜉′𝛼 

This technique can help us in adding and subtracting tensors on different tangent planes using 

relations like (1). The value of the metric tensor coefficients are independent of local charts and 

they conform to global transformations of the type described by relation (1) 

These metric coefficients are expressed in terms of global coordinates in the known metrics like 

Schwarzschild’s metric. There is always a necessity of transforming them in respect of the global 

coordinates 

Considering the fact that  𝑔𝜇𝜈  is a tensor [metric tensor of rank 2 we have in the global 

perspective 

𝑔̅𝜇𝜈 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼

𝜕𝑥̅𝜈

𝜕𝑥𝛽
𝑔𝛼𝛽 

𝑔̅𝜇𝜈 =
𝜕𝑥𝛼

𝜕𝑥̅𝜇

𝜕𝑥𝛽

𝜕𝑥̅𝜈
𝑔𝛼𝛽 

Any denial of global transformation would render the tensor attribute of 𝑔𝜇𝜈 as 

invalid 
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We may inter relate global and local tensors by suitable processes /mappings though such 

procedure is not necessary for our article. The local transformations on any particular tangent 

plane are not of concern to us. We are concerned in global transformations of two types: in one 

type the manifold itself does not change: only the coordinate system described on it changes. 

In the other type of transformation we are concerned with the manifold changes globally 

without the coordinate system on it changing. 

 

 Let  us take the stationary world line on each tangent plane at the points P and P’. Observers 

on such lines are at rest with the global coordinate system. Due to the process of infinitesimal 

change the in the manifold the metric coefficients have changed but events continue to be 

labeled by the same global coordinates for example (t,x,y,z) unless we change the system of 

coordinates like from rectangular to spherical. 

We can always link the local tensors on the tangent plane to some global tensor[many to one 

mapping], the global tensor obeying relation (1) between the two manifolds as considered in 

the process of variation. The local tensor follows similar rules with the local coordinates 

For the two tangent planes considered ion the variation we may take such local charts in each 

case maintaining that 
𝜕𝜉̅𝜇

𝜕𝜉𝛼  remain the same in value in each case though the local coordinate 𝜉 

may change. This is just for our convenience. But  local transformations are not so much of 

concern to us: we are interested in the global changes. Nevertheless we have in this section we 

have alluded to a small discussion on local transformations on the tangent plane 

 

 

Example of the GPS 

Time changes due to General Relativity effects predominate over Special Relativity time dilation 

for GPS calculations. The two effects have to be calculated separately. This is done in the case 

of the Global Positioning System[6] Schwarzschild’s metric does not provide us with the time 

dilation of Special relativity. Relation (1)  relates only to global transformations[for example 

from rectangular to spherical and vice versa]. Such transformations are not necessary for GPS in 

relation to what we are discussing . 

We require time changes at different heights due to potential difference and we come to know 

of it from Schwarzschild’s metric. This time difference predominates over Special Relativity time 

dilation 

3.Variation of the Action 

 The Einstein Hilbert  Action[7] and the f(R) gravity[8] Action 



8 
 

 

𝑆 = ∫ 𝑑4𝑥 [
1

2𝜅
𝑅√−𝑔 + 𝐿𝑚√−𝑔]    (3) 

Action for f(R) gravity 

𝑆 = ∫ 𝑑4𝑥 [
1

2𝜅
𝑓(𝑅)√−𝑔 + 𝐿𝑚√−𝑔]   (4) 

We consider different functions R to work out the variation of S due to change in the metric 

coefficients 𝛿𝑔𝜇𝜈 

[∇𝛼𝑔𝜇𝜈 = 0 as a relevant feature of metric compatibility] 

S is a set of real numbers corresponding to the integration of the Ricci scalar R or different 

functions R , f(R 

Let  the initial manifold be represented by M1[𝑅1being the function representing Ricci scalar on 

it. We have ∇𝛼𝑔𝜇𝜈 = 0 on M1 

We choose an infinitesimal 𝛿𝑔𝜇𝜈 . Then we go on to define another surface M2 

having as metric coefficients, (𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈). Now (𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈). Automatically we have 

∇𝑝(𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈) = 0 with respect to M2 The result  ∇𝑝(𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈) = 0 will follow 

automatically when the surface M2 is constructed from the functions 𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈 as metric 

coefficients. This has already been discussed in the earlier section. 

With respect to M2: 

𝑔′𝜇𝜈 + 𝛿𝑔′𝜇𝜈 =
𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝜈
(𝑔𝛼𝛽 + 𝛿𝑔𝛼𝛽) 

With respect to M1 

𝑔′𝜇𝜈 =
𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝜈 𝑔𝛼𝛽 (5) 

[Prime above denotes transformed values and not differentiation] 

The quantities 
𝜕𝑥𝛼

𝜕𝑥′𝜇 are identical for M1 and M2 since they involve the transformation of grid 

system 

By subtraction we obtain: 

𝛿𝑔′𝜇𝜈 =
𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝜈
𝛿𝑔𝛼𝛽  (6) 

Therefore 𝛿𝑔𝛼𝛽 is a tensor with respect to each surface M1 and M2[the grid transformations 

do not change] 

[𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖]is a symmetric tensor being a metric coefficient on M2: 𝛿𝑔𝛼𝑖  will also be a 

symmetric  tensor on M1 and on M2]; 
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We have from tensor properties[𝛿𝑔𝜇𝜈 being a tensor] 

𝛿𝑔𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝛿𝑔𝜇𝜈 (7) 

 

On M1: 𝛁𝒑𝒈𝝁𝝂 = 𝟎 but it is not necessary to have 𝛁𝒑𝜹𝒈𝝁𝝂 = 𝟎. We do have  𝜹𝒈𝝁𝝂 as a tensor 

on M1 but not as a metric tensor  

On M2: 𝛁𝒑(𝒈𝝁𝝂 + 𝜹𝒈𝝁𝝂) = 𝟎 

With respect to M2, 𝛁𝒑(𝒈𝝁𝝂 + 𝜹𝒈𝝁𝝂) = 𝟎 

But on M2 it is not necessary to have 𝛁𝒑𝒈𝝁𝝂 = 𝟎 and 𝛁𝒑𝜹𝒈𝝁𝝂 = 𝟎 individually/separately 

 

𝑔𝑖𝛽 + 𝛿𝑔𝑖𝛽 are metric coefficients with respect to M2 

Therefore (𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖)(𝑔𝑖𝛽 + 𝛿𝑔𝑖𝛽) = 𝛿𝛼
𝛽 ( (8) 

We could have used the above to define 𝛿𝑔𝛼𝛽from 𝛿𝑔𝛼𝛽. But we know that 𝛿𝑔𝛼𝛽 is a tensor 

with respect to both M1 and M2:  

𝛿𝑔𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝛿𝑔𝜇𝜈 

So we do not have the advantage of defining  𝛿𝑔𝛼𝛽from 𝛿𝑔𝛼𝛽𝑢𝑠𝑖𝑛𝑔  (3)without using extra 

conditions as given by  

𝛿𝑔𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝛿𝑔𝜇𝜈 

Now, 

𝑔𝛼𝑖𝑔𝑖𝛽 + 𝑔𝛼𝑖𝛿𝑔𝑖𝛽 + 𝑔𝑖𝛽𝛿𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 𝛿𝛼
𝛽 

Referring to M1:𝑔𝛼𝑖𝑔𝑖𝛽 = 𝛿𝛼
𝛽:Kroneker delta transforms to the Kronetker delta in all systems: 

Therefore, 

𝛿𝛼
𝛽 + 𝑔𝛼𝑖𝛿𝑔𝑖𝛽 + 𝑔𝑖𝛽𝛿𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 𝛿𝛼

𝛽 

Or, 

𝑔𝛼𝑖𝛿𝑔𝑖𝛽 + 𝑔𝑖𝛽𝛿𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 0    (9) 

𝑔𝛼𝑖𝛿𝑔𝑖𝛽 + 𝑔𝑘𝛽𝛿𝑔𝛼𝑘 + 𝛿𝑔𝛼𝑙𝛿𝑔𝑙𝛽 = 0  (10) 

 

Referring to M1 and an orthogonal system on it we have for fixed indices 𝛼and  : 
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𝑔𝛼𝛼𝛿𝑔𝛼𝛽 + 𝑔𝛽𝛽𝛿𝑔𝛼𝛽 + 𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 0 (11) 

[Referring to (4.1) 𝑔𝛼𝑖 = 0 if 𝑖 ≠ 𝛼 and 𝑔𝑘𝛽 = 0 if if 𝑘 ≠ 𝛽] 

Now  

𝛿𝑔𝛼𝑖 = 𝑔𝛼𝑚𝑔𝑖𝑛𝛿𝑔𝑚𝑛 

And  

𝛿𝑔𝛼𝛽 = 𝑔𝛼𝑝𝑔𝛽𝑞𝛿𝑔𝑝𝑞 

𝑔𝛼𝛼𝛿𝑔𝛼𝛽 + 𝑔𝛽𝛽𝑔𝛼𝑝𝑔𝛽𝑞𝛿𝑔𝑝𝑞 + 𝑔𝛼𝑚𝑔𝑖𝑛𝛿𝑔𝑚𝑛𝛿𝑔𝑖𝛽 = 0 

But the system is orthogonal 

Therefore  for non trivial metric coefficients: 

𝑚 = 𝛼; 𝑛 = 𝑖and𝑝 = 𝛼; 𝑞 = 𝛽 

𝑔𝛼𝛼𝛿𝑔𝛼𝛽 + 𝑔𝛽𝛽𝑔𝛼𝛼𝑔𝛽𝛽𝛿𝑔𝛼𝛽 + 𝑔𝛼𝛼𝑔𝑖𝑖𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 0[summation on𝑖 only] 

In the orthogonal systems: 

𝑔𝛽𝛽 =
1

𝑔𝛽𝛽[summation on 𝛽 not implied in this formula] 

Or, 

𝑔𝛼𝛼𝛿𝑔𝛼𝛽 + 𝑔𝛼𝛼𝛿𝑔𝛼𝛽 + 𝑔𝛼𝛼𝑔𝑖𝑖𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 0 [summation holds on 𝑖: alpha and beta are fixed 

indices] 

 

Or, 

2𝑔𝛼𝛼𝛿𝑔𝛼𝛽 + 𝑔𝛼𝛼𝑔𝑖𝑖𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 0   (12)[summation on 𝑖 only ] 

If the product term   𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 ignored with respect to 𝛿𝑔𝛼𝛽, 

𝑔𝛼𝛼𝛿𝑔𝛼𝛽 = 0[not summed] 

Implies: 𝛿𝑔𝛼𝛽 = 0 

If we do not ignore 𝑔𝛼𝛼𝑔𝑖𝑖𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽[𝛼, 𝛽 fixed indices: summation on 𝑖] 

 

We have from (12) 

𝑔𝛼𝛼𝛿𝑔𝛼𝛽 = −
1

2
𝑔𝛼𝛼𝑔𝑖𝑖𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽[summation only on 𝑖] 
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Multiplying both sides of the above by 𝑔𝛼𝛼 

𝑔𝛼𝛼𝑔𝛼𝛼𝛿𝑔𝛼𝛽 = −
1

2
𝑔𝛼𝛼𝑔𝛼𝛼𝑔𝑖𝑖𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 [we have summed on 𝑖:alpha,beta fixed] 

𝑔𝛼𝛼 =
1

𝑔𝛼𝛼[orthogonalsystems;alpha not in summation] 

𝛿𝑔𝛼𝛽 = −
1

2
𝑔𝑖𝑖𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 (13)[summation on 𝑖: 𝛼, 𝛽 fixed indices] 

 

𝛿𝑔𝛼𝛽 = −
1

2
𝑔00𝛿𝑔𝛼0𝛿𝑔0𝛽 − 𝑔11𝛿𝑔𝛼1𝛿𝑔1𝛽 − 𝑔22𝛿𝑔𝛼2𝛿𝑔2𝛽 − 𝑔33𝛿𝑔𝛼3𝛿𝑔3𝛽 

The 10 quadratic equations have been listed below[𝛿𝑔𝛼𝛽 = 𝛿𝑔𝛽𝛼] 

𝛿𝑔00 = −
1

2
𝑔00𝛿𝑔00𝛿𝑔00 − 𝑔11𝛿𝑔01𝛿𝑔10 − 𝑔22𝛿𝑔02𝛿𝑔20 − 𝑔33𝛿𝑔03𝛿𝑔30 

𝛿𝑔11 = −
1

2
𝑔00𝛿𝑔10𝛿𝑔01 − 𝑔11𝛿𝑔11𝛿𝑔11 − 𝑔22𝛿𝑔12𝛿𝑔21 − 𝑔33𝛿𝑔13𝛿𝑔31 

𝛿𝑔22 = −
1

2
𝑔00𝛿𝑔20𝛿𝑔02 − 𝑔11𝛿𝑔21𝛿𝑔12 − 𝑔22𝛿𝑔22𝛿𝑔22 − 𝑔33𝛿𝑔23𝛿𝑔32 

𝛿𝑔33 = −
1

2
𝑔00𝛿𝑔30𝛿𝑔03 − 𝑔11𝛿𝑔31𝛿𝑔13 − 𝑔22𝛿𝑔32𝛿𝑔21 − 𝑔33𝛿𝑔33𝛿𝑔33 

𝛿𝑔10 = −
1

2
𝑔00𝛿𝑔10𝛿𝑔00 − 𝑔11𝛿𝑔11𝛿𝑔10 − 𝑔22𝛿𝑔12𝛿𝑔20 − 𝑔33𝛿𝑔13𝛿𝑔01 

𝛿𝑔20 = −
1

2
𝑔00𝛿𝑔20𝛿𝑔00 − 𝑔11𝛿𝑔21𝛿𝑔10 − 𝑔22𝛿𝑔22𝛿𝑔20 − 𝑔33𝛿𝑔𝛼2𝛿𝑔30 

𝛿𝑔30 = −
1

2
𝑔00𝛿𝑔30𝛿𝑔00 − 𝑔11𝛿𝑔31𝛿𝑔10 − 𝑔22𝛿𝑔32𝛿𝑔20 − 𝑔33𝛿𝑔33𝛿𝑔30 

𝛿𝑔12 = −
1

2
𝑔00𝛿𝑔10𝛿𝑔02 − 𝑔11𝛿𝑔11𝛿𝑔12 − 𝑔22𝛿𝑔12𝛿𝑔22 − 𝑔33𝛿𝑔13𝛿𝑔32 

𝛿𝑔23 = −
1

2
𝑔00𝛿𝑔20𝛿𝑔03 − 𝑔11𝛿𝑔21𝛿𝑔13 − 𝑔22𝛿𝑔22𝛿𝑔23 − 𝑔33𝛿𝑔23𝛿𝑔32 

𝛿𝑔31 = −
1

2
𝑔00𝛿𝑔30𝛿𝑔01 − 𝑔11𝛿𝑔31𝛿𝑔11 − 𝑔22𝛿𝑔32𝛿𝑔21 − 𝑔33𝛿𝑔33𝛿𝑔31 

 

 

We have 10 quadratic equations for 10 unknowns  𝛿𝑔𝛼𝛽 in (13), 𝑔𝑖𝑗 being known to us  
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In fact 𝛿𝑔𝛼𝛽 is a tensor as shown by relation ….and. 𝛿𝑔𝛼𝛽 and  𝛿𝑔𝛼𝛽  related by the usual index 

raising and index lowering rule of the tensors. 

Thus we have a discrete set of values for 𝛿𝑔𝛼𝛽 or 𝛿𝑔𝛼𝛽 because of the ten quadratic equations. 

The action cannot be varied by varying the metric coefficients in a continuous manner 

For a particular manifold M1 we can move to some specific ones by solutions of (13) but we 

cannot move to any arbitrary close manifold . There are 210 = 1024specific manifolds M2 

according to solutions of (13) and from any one of them we may move to another specific 

manifold which is again the solution of (7). Thus we may move through distinct manifolds in 

discrete steps but not in a continuous manner. 

Incidentally we also have, 

𝛿𝑔𝛼𝛽 = (𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇)(𝑔𝛽𝜈 + 𝛿𝑔𝛽𝜈))𝛿𝑔𝜇𝜈 (14) 

[Since 𝛿𝑔𝜇𝜈 is a tensor wrt  M2]. 

𝛿𝑔𝛼𝛽 = (𝑔𝛼𝜇𝑔𝛽𝜈 + 𝑔𝛼𝜇𝛿𝑔𝛽𝜈 + 𝑔𝛽𝜈𝛿𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇𝛿𝑔𝛽𝜈)𝛿𝑔𝜇𝜈 

𝛿𝑔𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝛿𝑔𝜇𝜈 + (𝑔𝛼𝜇𝛿𝑔𝛽𝜈 + 𝑔𝛽𝜈𝛿𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇𝛿𝑔𝛽𝜈)𝛿𝑔𝜇𝜈 

𝛿𝑔𝛼𝛽 = 𝛿𝑔𝛼𝛽 + (𝑔𝛼𝜇𝛿𝑔𝛽𝜈 + 𝑔𝛽𝜈𝛿𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇𝛿𝑔𝛽𝜈)𝛿𝑔𝜇𝜈 

(𝑔𝛼𝜇𝛿𝑔𝛽𝜈 + 𝑔𝛽𝜈𝛿𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇𝛿𝑔𝛽𝜈)𝛿𝑔𝜇𝜈 = 0 

(𝑔𝛼𝑖𝛿𝑔𝛽𝑗 + 𝑔𝛽𝑗𝛿𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖𝛿𝑔𝛽𝑗)𝛿𝑔𝑖𝑗 = 0  

Again 

(𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖)(𝑔𝑖𝛽 + 𝛿𝑔𝑖𝛽) = 𝛿𝛼
𝛽 ⇒ 𝑔𝛼𝑖𝛿𝑔𝑖𝛽 + 𝑔𝑖𝛽𝛿𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖𝛿𝑔𝑖𝛽 = 0(A)(15)[rank 2 mixed 

tensor terms] 

Or, 

𝑔𝛼𝑖𝑔𝑛𝑖𝑔𝛽𝑘𝛿𝑔𝑛𝑘 + 𝑔𝑛𝑖𝑔𝛽𝑘𝑔𝑛𝑘𝛿𝑔𝛼𝑖+𝑔𝑛𝑖𝑔𝛽𝑘𝛿𝑔𝛼𝑖𝛿𝑔𝑛𝑘 = 0 

Or, 

𝑔𝑛𝑖𝑔𝛽𝑘(𝑔𝛼𝑖𝛿𝑔𝑛𝑘 + 𝑔𝑛𝑘𝛿𝑔𝛼𝑖 + 𝑔𝛼𝑖𝛿𝑔𝑛𝑘) = 0(16) 

 

𝛿𝑔𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝛿𝑔𝜇𝜈 

𝛿𝑔𝛼𝛽 = (𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇)(𝑔𝛽𝜈 + 𝛿𝑔𝛽𝜈))𝛿𝑔𝜇𝜈 ⟹ (𝑔𝛼𝜇𝛿𝑔𝛽𝜈 + 𝑔𝛽𝜈𝛿𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇𝛿𝑔𝛽𝜈)𝛿𝑔𝜇𝜈 =

0 ⟹ (𝑔𝛼𝑖𝛿𝑔𝛽𝑗 + 𝑔𝛽𝑗𝛿𝑔𝛼𝑖 + 𝛿𝑔𝛼𝑖𝛿𝑔𝛽𝑗)𝛿𝑔𝑖𝑗 = 0   (17) 

A’ and B are identical. Therefore movement of manifold in discrete steps is possible. 
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We have to consider these discrete process 

We refer to familiar relation[9] stated below 

𝛿𝑔𝛼𝛽

𝛿𝑔𝑖𝑘
= −𝑔𝛼𝜇𝑔𝛽𝜈

𝛿𝑔𝜇𝜈

 𝛿𝑔𝑖𝑘
 

To investigate the above relation we start with; 

 

   𝑔𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝑔𝜇𝜈relation 

𝛿𝑔𝛼𝛽 = (𝛿𝑔𝛼𝜇)𝑔𝛽𝜈𝑔𝜇𝜈 + (𝛿𝑔𝛽𝜈)𝑔𝛼𝜇𝑔𝜇𝜈 + 𝑔𝛼𝜇𝑔𝛽𝜈(𝛿𝑔𝜇𝜈) 

𝛿𝑔𝛼𝛽 = (𝛿𝑔𝛼𝜇)𝛿𝛽
𝜇 + (𝛿𝑔𝛽𝜈)𝛿𝛼

𝜈 + 𝑔𝛼𝜇𝑔𝛽𝜈(𝛿𝑔𝜇𝜈) 

𝛿𝑔𝛼𝛽 = 𝛿𝑔𝛼𝛽 + 𝛿𝑔𝛽𝛼 + 𝑔𝛼𝜇𝑔𝛽𝜈(𝛿𝑔𝜇𝜈) 

Only assuming symmetricity of 𝛿𝑔𝛼𝛽 in terms of interchange of alpha and beta  , we may write : 

𝛿𝑔𝛼𝛽 = −𝑔𝛼𝜇𝑔𝛽𝜈(𝛿𝑔𝜇𝜈)  

Dividing both sides of the above by 𝛿𝑔𝑖𝑘 where I and k are fixed indices we have relation (17) of the  

𝛿𝑔𝜇𝜈

𝛿𝑔𝑖𝑘
= −𝑔𝜇𝛼𝑔𝜈𝛽

𝛿𝑔𝛼𝛽

𝛿𝑔𝑖𝑘
 

The process of differentiation  has been applied ;incidentally conventional type of differentiation is not 

possible due to discreteness indicated in the earlier section.Refreshment pf mathematical proceedures 

is necessary. 

 

The Gauss Egregema context: 

Gauss Egregema is concerned with the transformation of coordinates. In so far as the problem 

we are investigating, the coordinate grid remains unchanged: only the metric coefficients are 

changing on the same grid. For the rectangular system will remain rectangular while the metric 

coefficients will change producing another metric compatible manifold; the spherical system of 

coordinates will remain spherical there while the expressions [and consequently the values] of 

the metric coefficients between any pair of coordinate labels will change. 

We are not considering grid changes: rectangular to spherical or from spherical to elliptic. Our 

formulations  are not in violation of the Gauss Egregema 

Tensors incidentally are defined by transformation rules: these transformations relate to 

changes in the grid system keeping the manifold constant/fixed. Changes may be from spherical 

to cylindrical, rectangular to elliptic etc. … 
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Example: 

𝑇̅𝜇ν =
𝜕𝑥̅𝜇

𝜕𝑥𝛼

𝜕𝑥̅𝜈

𝜕𝑥𝛽
𝑇𝛼𝛽 

These transformations involve coordinate transformations on the same type of 

manifold(differentiation allowed: discreteness issue crops up when we are trying to move into 

an adjacent manifold]. The coordinate system will change for example from rectangular to 

spherical etc.  The manifold will not change: flat space time will remain flat space time or 

Schwarzschild geometry will remain Schwarzschild geometry. 

But in our case the metric coefficients will change on the same coordinate grid. 

 

 

Discussion: 

Between two surfaces M1 and M2 we may have millions of metric compatible surfaces but all 

the 10 equations given by (7)  will not be simultaneously satisfied by them. Starting from a 

given manifold  M1 only 210  specific surfaces will adhere to the required equation s as listed 

earlier. We are considering metric compatible surfaces only in the process of variation 

because of the Ricci scalar worked by changes in the metric coefficients. 

Each metric compatible surface satisfies the Bianchi Identity and consequently is a solution of 

the Field Equation[Einstein’s Field equations: incidentally they may be deduced without using 

the Einstein Hilbert Action] So the procedure indicated provides us the opportunity to locate 

different solutions to the Field  equations starting from  a known one. 
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Supplementary Material 

1.On the Covariant Derivative of the Metric Tensors  

We may choose arbitrary differentiable functions 𝑓𝜇𝜈(𝑡, 𝑥, 𝑦, 𝑧): four of them for orthogonal 

systems and sixteen of them for on orthogonal systems. If a surface[manifold] is considered 

where the above functions are chosen to be metric coefficients that is 𝑔𝜇𝜈 ≡ 𝑓𝜇𝜈 ,  then have  

∇𝛼𝑔𝜇𝜈 = 0 or  ∇𝛼𝑓𝜇𝜈 = 0 

Proof[1 ]: 

Step 1: 

We will first show: 

1. 
𝜕𝑔𝜇𝜈

𝜕𝑥𝑚 = [𝜇𝑚. 𝜈] + [𝜈𝑚. 𝜇];  where [𝑎𝑏, 𝑐] =
1

2
(

𝜕𝑔𝑎𝑐

𝜕𝑥𝑏 +
𝜕𝑔𝑏𝑐

𝜕𝑥𝑎 −
𝜕𝑔𝑎𝑏

𝜕𝑥𝑐 ): FChristoffel symbols 

of type1] 

2. 
𝜕𝑔𝜇𝜈

𝜕𝑥𝑚
= −𝑔𝜇𝑛Γ𝑚𝑛

𝜈 − 𝑔𝜈𝑛Γ𝑚𝑛
𝜇 

[where Christoffel symbols of the second type: Γ𝛽𝛾
𝛼 =

1

2
𝑔𝛼𝑘 (

𝜕𝑔𝛽𝑘

𝜕𝑥𝛾 +
𝜕𝑔𝑘𝛾

𝜕𝑥𝛽 −
𝜕𝑔𝛽𝛾

𝜕𝑥𝑘 )] 

Proof of 1.  

[𝜇𝑚. 𝜈] =
1

2
(

𝜕𝑔𝜇𝜈

𝜕𝑥𝑚
+

𝜕𝑔𝜈𝑚

𝜕𝑥𝜇
−

𝜕𝑔𝜇𝑚

𝜕𝑥𝜈
) 

[𝜈𝑚. 𝜇] =
1

2
(

𝜕𝑔𝜈𝜇

𝜕𝑥𝑚
+

𝜕𝑔𝑚𝜇

𝜕𝑥𝜈
−

𝜕𝑔𝜈𝑚

𝜕𝑥𝜇
) 

Therefore[by direct addition], 

[𝜇𝑚. 𝜈] + [𝜈𝑚. 𝜇] =
𝜕𝑔𝜇𝜈

𝜕𝑥𝑚
 

Proof of 2. 

𝑔𝑖𝑘𝑔𝑘𝑗 = 𝛿𝑗
𝑖  

Partial Differentiating with respect to 𝑥𝑚 we obtain: 

http://en.wikipedia.org/wiki/F%28R%29_gravity
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𝑔𝑖𝑘
𝜕𝑔𝑘𝑗

𝜕𝑥𝑚
+

𝜕𝑔𝑖𝑘

𝜕𝑥𝑚
𝑔𝑘𝑗 = 0 

𝑔𝑖𝑘
𝜕𝑔𝑘𝑗

𝜕𝑥𝑚
= −

𝜕𝑔𝑖𝑘

𝜕𝑥𝑚
𝑔𝑘𝑗 

Multiplying both sides of the above by 𝑔𝑖𝑟 we obtain 

  𝑔𝑗𝑟𝑔𝑘𝑗
𝜕𝑔𝑖𝑘

𝜕𝑥𝑚
= −𝑔𝑗𝑟𝑔𝑖𝑘 𝜕𝑔𝑘𝑗

𝜕𝑥𝑚
 

𝑂𝑟,  

𝛿𝑘
𝑟 𝜕𝑔𝑖𝑘

𝜕𝑥𝑚
= −𝑔𝑟𝑗𝑔𝑖𝑘[𝑘𝑚, 𝑗] − 𝑔𝑗𝑟𝑔𝑖𝑘[𝑗𝑚, 𝑘] 

𝜕𝑔𝑖𝑟

𝜕𝑥𝑚
= −𝑔𝑖𝑘Γ𝑘𝑚

𝑟 − 𝑔𝑗𝑟Γ𝑗𝑚
𝑖 

Same as 

𝜕𝑔𝜇𝜈

𝜕𝑥𝑚
= −𝑔𝜇𝑛Γ𝑚𝑛

𝜈 − 𝑔𝜈𝑛Γ𝑚𝑛
𝜇 

 

Step 2: 

Proof of ∇𝑚𝑔𝜇𝜈 = 0 

∇𝑚𝑔𝜇𝜈 =
𝜕𝑔𝜇𝜈

𝜕𝑥𝑚
+ Γ𝑘𝑚

𝜇𝑔𝑘𝜈 + Γ𝑘𝑚
𝜈𝑔𝜇𝑘 

But  

𝜕𝑔𝜇𝜈

𝜕𝑥𝑚
= −𝑔𝑘𝜈Γ𝑘𝑚

𝜇
− 𝑔𝜇𝑘Γ𝑘𝑚

𝜈
 

[from 2 of step1] 

Therefore ∇𝑚𝑔𝜇𝜈 = 0 

Proof of ∇𝑚𝑔𝜇𝜈 = 0 

∇𝑚𝑔𝜇𝜈 =
𝜕𝑔𝜇𝜈

𝜕𝑥𝑚
− Γ𝜇𝑚

𝑘𝑔𝑘𝜈 − Γ𝜈𝑚
𝑘𝑔𝜇𝑘 

 

∇𝑚𝑔𝜇𝜈 = [𝜇𝑚. 𝜈] + [𝜈𝑚. 𝜇] − [𝜇𝑚. 𝜈] − [𝜈𝑚. 𝜇] = 0 

Results used: 

1. 
𝜕𝑔𝜇𝜈

𝜕𝑥𝑚 = [𝜇𝑚. 𝜈] + [𝜈𝑚. 𝜇]  

 



17 
 

 

2. 𝑔𝑘𝜈Γ𝜇𝑚
𝑘 = 𝛿𝜈

𝑠[𝜇𝑚, 𝑠] = [𝜇𝑚, 𝜈] and Γ𝜈𝑚
𝑘𝑔𝜇𝑘 = [𝜈𝑚. 𝜇] 

 [ Discussion:  Γ𝜇𝑚
𝑘𝑔𝑘𝜈 = [𝜇𝑚. 𝜈]: 𝑃𝑟𝑜𝑜𝑓: Γ𝜇𝑚

𝑘 =
1

2
𝑔𝑘𝑠 (

𝜕𝑔𝜇𝑠

𝜕𝑥𝑚 +
𝜕𝑔𝑠𝑚

𝜕𝑥𝜇 −
𝜕𝑔𝜇𝑚

𝜕𝑥𝑠 ) =

𝑔𝑘𝑠[𝜇𝑚, 𝑠] 𝑜𝑟, 𝑔𝑘𝜈Γ𝜇𝑚
𝑘 = 𝑔𝑘𝜈𝑔𝑘𝑠[𝜇𝑚, 𝑠] 

Or, 

  𝑔𝑘𝜈Γ𝜇𝑚
𝑘 = 𝛿𝜈

𝑠[𝜇𝑚, 𝑠] = [𝜇𝑚, 𝜈] 

Therefore  

∇𝛼(𝑔𝜇𝜈) = 0  and ∇𝛼𝑔𝜇𝜈 = 0  follow as necessary conditions for covariant differentiation. We 

cannot part with this so long as we do not change the fundamental premises relating to the 

space being considered in the Lagrangian. 

Moreover the said conditions are tied to the fact that parallel transport of a pair of vectors 

along a curve lying on the manifold does not change the dot product/inner product between 

them. 

2 Difference of two Connections 

We may analyze it the following way. 

We are given metric compatible functions 𝑔𝜇𝜈(𝑡, 𝑥, 𝑦, 𝑧) 

We consider an incremented 𝑔𝜇𝜈(𝑡, 𝑥, 𝑦, 𝑧) + 𝛿𝑔(𝑡, 𝑥, 𝑦, 𝑧). The new functions are metric 

compatible in respect of the manifold constructed by using them as metric coefficients . Then 

we have constructed a new transformation of passing from one manifold to another[both are 

metric compatible satisfying ∇𝛼[𝑔𝜇𝜈(𝑡, 𝑥, 𝑦, 𝑧)] = 0 and ∇𝛼[𝑔𝜇𝜈(𝑡, 𝑥, 𝑦, 𝑧) + 𝛿𝑔(𝑡, 𝑥, 𝑦, 𝑧)] = 0] 

Suppose M2 is not metric compatible in the sense ∇𝛼𝑔𝜇𝜈(𝑡, 𝑥, 𝑦, 𝑧) ≠ 0 

 

The final metric figuring in the field equations will be of the type M1, that is metric compatible, 

and not of the type M2 which may be metric incompatible for arbitrary increments . Possibly 

that may allow inclusion of fictitious metric incompatible surfaces in the variation. 

Differentiation will always take place on the metric compatible surfaces like M1 and not on 

surfaces of the type M2. . But this idea cannot be entertained in view of the fact that we 

consider the difference of two connections as a tensor 

Standard  Proof from Literature[Sean Carroll] 

Transformation of Christoffel Symbols 

Γ𝜇′𝜈′
𝜆′ =

𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜆′

𝜕𝑥𝜆
Γ𝜇𝜈′

𝜆 − −
𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕2𝑥𝜆′

𝜕𝑥𝜇𝜕𝑥𝜈
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In the above coordinate system has changed on the same manifold. Now the manifold changes 

and we have coordinate transformation on the new manifold. 

Γ̅𝜇′𝜈′
𝜆′

=
𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜆′

𝜕𝑥𝜆
Γ̅𝜇𝜈′

𝜆
−

𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕2𝑥𝜆′

𝜕𝑥𝜇𝜕𝑥𝜈
 

The transformation elements 
𝜕𝑥𝜇

𝜕𝑥𝜇′ remaining unchanged with change of the manifold 

Difference between two connections: 

Γ𝜇′𝜈′
𝜆′

− Γ̅𝜇′𝜈′
𝜆′

 

=
𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜆′

𝜕𝑥𝜆
Γ𝜇𝜈′

𝜆 −
𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕2𝑥𝜆′

𝜕𝑥𝜇𝜕𝑥𝜈
+

𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕2𝑥𝜆′

𝜕𝑥𝜇𝜕𝑥𝜈
−

𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜆′

𝜕𝑥𝜆
Γ̅𝜇𝜈′

𝜆
  (1) 

Therefore, 

Γ𝜇′𝜈′
𝜆′ − Γ̅𝜇′𝜈′

𝜆′
=

𝜕𝑥𝜇

𝜕𝑥𝜇′

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜆′

𝜕𝑥𝜆
[Γ𝜇𝜈

𝜆 − Γ̅𝜇𝜈
𝜆

] (2) 

We have been able to factor out the common quantity 
𝝏𝒙𝝁

𝝏𝒙𝝁′

𝝏𝒙𝝂

𝝏𝒙𝝂′

𝝏𝒙𝝀′

𝝏𝒙𝝀  which has not changed 

due to change in the manifold at the concerned point. This is a vital point for us 

The quantity Γ𝜇𝜈′
𝜆 − Γ̅𝜇𝜈

𝜆
 transforms like a tensor. 

Γ𝜇𝜈′
𝜆andΓ̅𝜇𝜈′

𝜆
 stand on the same coordinate grid. Γ𝜇′𝜈′

𝜆′andΓ̅𝜇′𝜈′
𝜆′

 stand on the same grid but 

different from the previous one. Variation takes place on the same grid. This variation is then 

considered on other grids through coordinate transformation. 

The Christoffel symbols have been considered on the same coordinate grid that allows the 

cancellation of two identical middle terms on the right side of (1). That leads to the  tensor 

transformation criterion in (2). We have different sets of 𝑔𝜇𝜈 hanging on the same grid 

Γ𝜇′𝜈′
𝜆′andΓ̅𝜇′𝜈′

𝜆′
 correspond to different manifolds but they are on the same coordinate grid. 

 

Γ𝜇𝜈
𝜆andΓ̅𝜇𝜈

𝜆
 correspond to different manifolds but they are on the same coordinate grid. 

Γ𝜇′𝜈′
𝜆′andΓ𝜇𝜈

𝜆enjoy the same manifold but different coordinate grids 

Γ̅𝜇′𝜈′
𝜆′

andΓ̅𝜇′𝜈′
𝜆′

 are on the same manifold but their coordinate grids are different 

[the above derivation  does not consider 𝛿𝑔𝛼𝛽 as a tensor: this goes in favor of the formula as 

we shall see soon. 

(𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈)is a tensor and also a metric coefficient in respect of M2 
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3.Tensors 

Coordinate and Physical Values Infinitesimal Separations: 

We start with the metric 

𝑐2𝑑𝜏2 = 𝑔𝑡𝑡𝑑(𝑐𝑡)2 − 𝑔𝑥𝑥𝑑𝑥2 − 𝑔𝑦𝑦𝑑𝑦2 − 𝑔𝑧𝑧𝑑𝑧2 (1) 

𝑐2𝑑𝜏2 = 𝑑(𝑐𝑇)2 − 𝑑𝐿2   (2) 

Physical Separations 

Physical Time interval: 𝒅𝑻 = √𝒈𝒕𝒕𝒅𝒕  (3) 

Physical Length:𝑑𝐿 = √𝑔𝑥𝑥𝑑𝑥2 + 𝑔𝑦𝑦𝑑𝑡2 + 𝑔𝑧𝑧𝑑𝑧2  (4) 

Physical separations along the x , y and the z direction: 

𝒅𝒙𝒑𝒉 = √𝒈𝒙𝒙𝒅𝒙 (5.1) 

𝒅𝒚𝒑𝒉 = √𝒈𝒚𝒚𝒅𝒚  (5.2) 

𝒅𝒛𝒑𝒉 = √𝒈𝒛𝒛𝒅𝒛  (5.3) 

[Sufficx: ”ph” stands for physical] 

For the Null Geodesic: 𝑑𝑠2 = 𝑐2𝑑𝜏2 = 0 

𝑑(𝑐𝑇)2 − 𝑑𝐿2 = 0 

Or 𝑐2𝑑𝑇2 = 𝑑𝐿2 

⟹
𝑑𝐿

𝑑𝑇
= 𝑐  (6) 

In this physical separation formulation locally we always have 
𝑑𝐿

𝑑𝑇
= 𝑐 for the null geodesic. 

 

Now we take a light ray travelling along the x axis: rather we orient the x axis[an infinitesimal part of it ] 

al.ong the direction of propagation of  light ray in curved space  

𝑑𝑠2 = 𝑔𝑡𝑡𝑐2𝑑𝑡2 − 𝑔𝑥𝑥𝑑𝑥2 

𝑑𝑠2 = 0 

Therefore, 0 = 𝑔𝑡𝑡𝑐2𝑑𝑡2 − 𝑔𝑥𝑥𝑑𝑥2 

⇒
𝑑𝑥

𝑑𝑡
= √

𝑔𝑡𝑡

𝑔𝑥𝑥
𝑐  (7) 

Coordinate speed of light in curved space time 

𝑑𝑥

𝑑𝑡
≠ 𝑐 (8) 
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But physical speed of light [Local physical Speed], 
𝑑𝐿

𝑑𝑇
= 𝑐 

It is interesting to note that relation (7) 

 Reduces to 
𝑑𝑥

𝑑𝑡
= 𝑐 when we are in Minkowski space that is when  𝑔𝑡𝑡 = 1 and 𝑔𝑥𝑥 = 1 

wE do have an allied concept of proper speed 

 

Coordinate and Physical Values of Tensors: 

Proper speed in General Relativity is defined by: 

(
𝑑𝑡

𝑑𝜏
,

𝑑𝑥

𝑑𝜏
,

𝑑𝑦

𝑑𝜏
,

𝑑𝑧

𝑑𝜏
) . Now proper time interval 𝑑𝜏 is not expected to be the same for flat space time and 

curved space time. So we have different values for proper speed components in flat space time and in 

curved space time: due to difference in the value of proper time interval 

(
𝑐𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
)

≡
𝑐𝑑𝑡

√𝑔𝑡𝑡𝑑(𝑐𝑡)2 − 𝑔𝑥𝑥𝑑𝑥2 − 𝑔𝑦𝑦𝑑𝑦2 − 𝑔𝑧𝑧𝑑𝑧2

,
𝑑𝑥

√𝑔𝑡𝑡𝑑(𝑐𝑡)2 − 𝑔𝑥𝑥𝑑𝑥2 − 𝑔𝑦𝑦𝑑𝑦2 − 𝑔𝑧𝑧𝑑𝑧2

 

𝑑𝑦

√𝑔𝑡𝑡𝑑(𝑐𝑡)2 − 𝑔𝑥𝑥𝑑𝑥2 − 𝑔𝑦𝑦𝑑𝑦2 − 𝑔𝑧𝑧𝑑𝑧2

,
𝑑𝑧

√𝑔𝑡𝑡𝑑(𝑐𝑡)2 − 𝑔𝑥𝑥𝑑𝑥2 − 𝑔𝑦𝑦𝑑𝑦2 − 𝑔𝑧𝑧𝑑𝑧2

 

In the flat space time context 𝑔𝑡𝑡 = 𝑔𝑥𝑥 = 𝑔𝑦𝑦 = 𝑔𝑧𝑧 = 1 and we have the proper time interval for 

Minkowski space. In a thought experiment you may turn on gravity starting from Minkowski space : the 

proper time interval will change gradually as the manifold changes.  

Replacing proper time interval of curved space time by proper time interval; of Minkowski space is 

theoretically incorrect. But we can always do the following: 

Locally we can replace 

𝑐2𝑑𝜏2 = 𝑔𝑡𝑡𝑑(𝑐𝑡)2 − 𝑔𝑥𝑥𝑑𝑥2 − 𝑔𝑦𝑦𝑑𝑦2 − 𝑔𝑧𝑧𝑑𝑧2   

By 

𝑐2𝑑𝜏2 = 𝑐2𝑑𝑇2 − 𝑑𝑥𝑝ℎ
2 − 𝑑𝑦𝑝ℎ

2 − 𝑑𝑧𝑝ℎ
2 (9) 

Relation (9) locally has the “ form “ of the Minkowski metric. We have to be care ful that this metric 

contains gravity. But the advantage with it is that we have the form of the flat space time metric 

Four speed as Tensor[Rank 1]≡ (
𝑐𝑑𝑇

𝑑𝜏
,

𝑑𝑥𝑝ℎ

,𝑑𝜏
,

𝑑𝑦𝑝ℎ

,𝑑𝜏
′

𝑑𝑧𝑝ℎ

,𝑑𝜏
) 

The above is a tensor considering the Minkowskian form of the metric (9). The proper time in (9) is not 

the proper time of Minkowski space but we consider it to be locally invariant in its own manifold. 

The justification of considering physical values becomes cl;ear. 
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In a transformation relation like 

𝐴̅𝜇 =
𝜕𝑥̅𝜇

𝜕𝑥𝛼
𝐴𝛼 

𝜕𝑥̅𝜇

𝜕𝑥𝛼 does not contain the metric coefficients𝑔𝜇𝜈. As a mater of fact 𝐴𝛼 and 𝐴̅𝜇 are Euclidean quantities. 

But the physical values (orthogonal systems being considered):𝐴𝛼
𝑝ℎ = √𝑔𝛼𝛼𝐴𝛼 and  

𝐴̅𝜇
𝑝ℎ = √𝑔̅𝜇𝜇𝐴𝛼(summation over 𝛼 or  or 𝜇 not implied]These physical values are cvharacterizedby the 

metric properties of the manifold. These physical quantities exhibit local Lorentz covariance in view of 

metric (9) 

The variables in 
𝜕𝑥̅𝜇

𝜕𝑥𝛼 are those of (1) but he physical variables pertain to (9). 

Important to note that if you look at relation (1) the quantities 𝒕, 𝒙, 𝒚  and 𝒛 do not contain the metric 

coefficients 𝒈𝝁𝝂 

The metric cvoefficients are responsible o=]for curving space time . The global variables standing 

independent of them do not curve space.  

Now we are write the following two equations 

𝑐2𝑑𝜏2 = 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 

 

𝑐2𝑑𝜏′2 = 𝑔𝑡𝑡𝑐2𝑑𝑡2 − 𝑔𝑥𝑥𝑑𝑥2 − 𝑔𝑦𝑦𝑑𝑦2 − 𝑔𝑧𝑧𝑑𝑧2 

Absence of metric coefficients in 𝒕, 𝒙, 𝒚  and 𝒛 pints to un structured space, But lookingat the above 

two equations the interval  , 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 are Euclidean  if the variables t,x,y and z are identical in 

the two equations. 

We may justify this physically by a thought experiment. Starting  from Minkowski space you turn =on 

gravity gradually the quantities 𝑑𝑡, 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 will change to  √𝒈𝒕𝒕𝒅𝒕  , √𝒈𝒙𝒙𝒅𝒙, √𝒈𝒚𝒚𝒅𝒚 and 

√𝒈𝒛𝒛𝒅𝒛   for the same pair of space time coordinate locations   (𝑡, 𝑥, 𝑦, 𝑧) 𝑎𝑛𝑑 (𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑥, 𝑦 +

𝑑𝑦, 𝑧 + 𝑑𝑧). Thus the first equation defines the Euclidean background while the second onerepresents 

curved space time  with the labels t x y and z remaining Euclidean 

 IN the curved spasce time context the measurable quantities having the same dimensions of length are  

to  𝑐√𝒈𝒕𝒕𝒅𝒕  , √𝒈𝒙𝒙𝒅𝒙, √𝒈𝒚𝒚𝒅𝒚 and √𝒈𝒛𝒛𝒅𝒛 

Let us try to comprehend the situation with Schwarzschild metric: 

𝑐2𝑑𝜏2 = 𝑐2 (1 −
2𝐺𝑚

𝑐2𝑟
) 𝑑𝑡2 − (1 −

2𝐺𝑚

𝑐2𝑟
)

−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑆𝑖𝑛2𝜃𝑑𝜑2) 

The radial distance between two infinitesimally close points is not dr but it is : (1 −
2𝐺𝑚

𝑐2𝑟
)

−1/2
𝑑𝑟 =

√𝑔𝑟𝑟𝑑𝑟 
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Suppose In try transfortming Schwarzschild metric from Spherical to Cartesian system for the stationary 

observer in the global system of coordinates. 

𝑔′𝜇𝜈 =
𝜕𝑥𝛼

𝜕𝑥′𝜇

𝜕𝑥𝛽

𝜕𝑥′𝜈
𝑔𝛼𝛽 

𝑥 = 𝑟𝐶𝑜𝑠𝜑𝑆𝑖𝑛𝜃 

𝑦 = 𝑟𝑆𝑖𝑛𝜑𝑆𝑖𝑛𝜃 

𝑧 = 𝑟𝐶𝑜𝑠𝜃 

𝑡′ = 𝑡 [relatively stationary observers in the global system of coordinates] 

Cartesian coordinates related to Schwarzschild coordinates by familiar relations[2] 

 

The above transformations are use  
𝜕𝑥𝛼

𝜕𝑥′𝜇
 in consideration of the Euclidean grid 

Special Example [3]: 

𝑓𝛼 = 𝑚0 [
𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼

𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
] 

We consider a spatially stationary observer near a Schwarzcchild mass so that we have non geodesic 

motion and 𝑓𝛼 ≠ 0 

Four speed≡ (𝑢𝑡 , 0,0,0) 

Norm of four speed=𝑐2 = 1 

⇒ (1 −
2𝑚

𝑟
) 𝑢𝑡

2 = 1 

𝑢𝑡 = (1 −
2𝑚

𝑟
)

−1/2

 

We are in the (𝑟, 𝜃, 𝜑) 𝑠𝑦𝑠𝑡𝑒𝑚 .For(spatially) stationary observer  𝑢𝑟 =
𝑑𝑟

𝑑𝜏
= 0; 𝑢𝜃 =

𝑑𝜃

𝑑𝜏
= 0; 𝑢𝜑 =

𝑑𝜑

𝑑𝜏
= 0 

Radial forc𝑒: 𝑓𝑟 = 𝑚0 [
𝑑2𝑥𝑟

𝑑𝜏2 + Γ𝑟
𝑡𝑡 (

𝑑𝑥𝑡

𝑑𝜏
)

2

] = 𝑚0Γ𝑟
𝑡𝑡 (

𝑑𝑥𝑡

𝑑𝜏
)

2

=
𝑚

𝑟2
(1 − 2𝑚/𝑟) (1 −

2𝑚

𝑟
)

−1
=

𝑚

𝑟2= 

𝑓𝑟 =
𝑚

𝑟2 gives us the coordinate value of the radial component of the force four vector[Minkowski 

force]. It is the same as Newtonian thrust  

The physical component is given by :√𝒈𝒓𝒓𝒇𝜶 = (𝟏 −
𝟐𝒎

𝒓
)

−𝟏/𝟐 𝒎

𝒓𝟐. The physical value is much greater 

than Newtonian thrust and infinitely larger a r approaches 2m.  

Additional Point 
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We start with the definition of four acceleration: 

𝑎𝛼 = [
𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼

𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
] 

For motion along a geodesic  each component of four acceleration  is zero.  In particular for radial 

motion under gravity the radial component of four acceleration=0. Though four acceleration and four 

force are elegant mathematical formulations they do not conform to what we understand by 

acceleration in the physical sense. An apple falling from  a tree will accelerate at the rate3 9.8 m/s2. If 

gravity were a million times stronger it would have accelerated at a much faster rate. But four 

acceleration would always remain zero for geodesics. 

We can always formulate relations closer to what we mean by acceleration in the day to day physical 

sense. We do the following 

The Geodesic Equation: 

𝑑2𝑥𝛼

𝑑𝜏2
+ Γ𝛼

𝛽𝛾

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
= 0 

For radial motion under gravity, Schwarzschild metric being considered we have, 

𝑑2𝑟

𝑑𝜏2
= −Γ𝑟

𝑡𝑡 (
𝑑𝑡

𝑑𝜏
)

2

− Γ𝑟
𝑟𝑟 (

𝑑𝑟

𝑑𝜏
)

2

 

𝑑2𝑟

𝑑𝜏2
= −

𝑚

𝑟2
(1 − 2𝑚/𝑟) (

𝑑𝑡

𝑑𝜏
)

2

+
𝑚

𝑟2
(1 − 2𝑚/𝑟)−1 (

𝑑𝑟

𝑑𝜏
)

2

 

Or, 

𝑑2𝑟

𝑑𝜏2
= −

𝑚

𝑟2
((1 − 2𝑚/𝑟) (

𝑑𝑡

𝑑𝜏
)

2

− (1 − 2𝑚/𝑟)−1 (
𝑑𝑟

𝑑𝜏
)

2

) 

 

[ Christoffel symbols in the above have been taken in the (-,+,+,+) signature] 

Now we write the Schwarzschild metric: 

𝑑𝜏2 = −(1 − 2𝑚/𝑟)𝑑𝑡2 + (1 − 2𝑚/𝑟)−1𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑆𝑖𝑛2𝜃𝑑𝜑2) 

 

For radial motion 

𝑑𝜏2 = −(1 − 2𝑚/𝑟)𝑑𝑡2 + (1 − 2𝑚/𝑟)−1𝑑𝑟2 

Dividing both sides of the above by the proper time interval squared 𝑑𝜏2 we have: 
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1 = −(1 − 2𝑚/𝑟) (
𝑑𝑡

𝑑𝜏
)

2

+ (1 − 2𝑚/𝑟)−1 (
𝑑𝑟

𝑑𝜏
)

2

 

𝑑2𝑟

𝑑𝜏2
= +

𝑚

𝑟2
 

𝑚 →
𝐺𝑚

𝑐2 and 𝜏 → 𝑐𝜏; 𝑡 → 𝑐𝑡 

Explanation for  the positive sign: In our chosen signature(-,+,+,+),𝑑𝜏 is imaginary for time like 

interval separations. 𝑑𝜏 contains the imaginary “I” as a factor. When we double differtentiate to 

evaluate 
𝑑2𝑟

𝑑𝜏2 on the left side of the formula we evidently have ,𝑖 × 𝑖 = −1 

In effect we are having  
𝑑2𝑟

𝑑𝜏2
= −

𝑚

𝑟2
 

Which is equivalent to   
𝑑2𝑟

𝑑𝜏2
= −

𝐺𝑚

𝑟2
 

 

 Notable issue: How does the relation stand in view of transformations considering the fact 

that 
𝒅𝟐𝒓

𝒅𝝉𝟐  is not a four vector component like 
𝒅𝟐𝒙𝜶

𝒅𝝉𝟐 + 𝚪𝜶
𝜷𝜸

𝒅𝒙𝜷

𝒅𝝉

𝒅𝒙𝜸

𝒅𝝉
 , given that transformations 

comprise a core aspect in physical considerations? 

The tangent to a geodesic curved gets parallel transported along it. In presence of gravity 

alone only geodesics are available for physical motion . But parallel transport may be 

considered for all types of world lines , even the imaginary ones 

We are concerned with radial motion under gravity[geodesic in terms of spatial and temporal 

coordinates]  

For parallel transport along non geodesics the norm of the vector is preserved. But in these 

situations we have agents other than gravity in operation. 

We may start with the velocity vector for  [geodesic] motion in the radial direction and move 

it along the same radius. The four speed and the corresponding four acceleration will remain 

unchanged. If we consider a Cartesian system with origin on the same radial line and x –axis 

along the radial direction then, 

we will  have 
𝒅𝟐𝒓

𝒅𝝉𝟐 =
𝒅𝟐𝒙

𝒅𝝉𝟐  

This Cartesian system may have the same origin as the global Schwarzschild coordinate 

system. But the x axis has to coincide with the outward radial direction 

In fact we have without any type of mathematical fanfare, 𝒅𝒓 = 𝒅𝒙 and 𝒅𝝉 unchanged when 

we align the x axis of the Cartesian frame in the direction with out changing the origin] 
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On the Curving of Space time Geometry 

In general relativity coordinate distances and physical distances are 
identical only for flat spacetime. But in curved spacetime the coordinate separations and 
the physical separations are different. They may become radically different if the 
curvature is strong enough. Lets consider the physical curving of 3D space in view of the 
above fact. We consider two flat surfaces parallel to the x-y plane at two levels, z=a and 
z=b in the flat spacetime context. Several points are considered on the two mentioned 
planes. A gravitational change is now considered. The metric coefficients change and the 
physical distances of the points lying on each plane change . The points may be 
considered pair wise on each plane and also pair wise on the two separate planes. Their 
mutual distances change with changes in the gravitational field and change may occur 
differently for the different pairs. The planes become undulating surfaces—space gets 
curved! 
Let’s consider a spherical planet like the earth. A dense mass approaches it in our 
thought experiment. The value of the metric coefficients change at each point in the 
concerned field changes.. Due to gravitational effects, even in our classical interpretation, 
the shape of the earth’s surface might change due to an interaction between the changes 
in the space time curvature and non-gravitational factors like the resistance of the earth’s 
crust etc In our “experiment” in the first paragraph we may consider the 
coordinates as labels---stickers of different colors at different points on the two planes. 
Initially they were on a flat surface. After the gravitational change they lie on a pair of 
undulating surfaces. A straight line on some plane becomes a curved line – the 
path of a light ray bends and the straight line path of a test particle the Minkowski space 
picks up the curved path of a planet! 
We may start with a spherical coordinate system describing Schwarzschild geometry. Due to 
manifold changes the coordinate planes become curved surfaces. The axes become curved lines 
instead of straight lines. Prior to Schwarzchild geometry there could have been some other type 
of geometry with global Cartesian or spherical coordinates. The straight line x,yz axis became 
curved lines in Schwarzschlild geometry. Old curved lines became strait in the physical sense. 
The Euclidean background remains maintained. 
 

Events are Labeled by Coordinate Values 

Events are labeled by Coordinate values and not by physical values. The light cone is created by 

such coordinate labels. If there is a change in the nature of the manifold the surface of the light 

cone will get distorted  

Dot product and its invariance 

𝑎. 𝑏 = 𝑔𝜇𝜈𝑎𝜈𝑏𝜇 = 𝑎𝜇𝑏𝜇: Invariant (1) 

 

In the orthogonal system: 𝑎. 𝑏 = 𝑔𝜇𝜇𝑎𝜇𝑏𝜇 

[𝑠𝑖𝑛𝑐𝑒 𝑔𝜇𝜈 = 0  if 𝜇 ≠ 𝜈] 
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𝑎𝜈 and 𝑏𝜇 are coordinate values of the vectors: vectors/tensors are denoted by coordinate values and 

not by physical values.” 𝑔𝜇𝜈" pertain  to the nature of the space where the objects are situated. 

Physical value of 𝑎𝜈 in orthogonal system  :√𝑔𝜈𝜈𝑎𝜈 = 𝑎𝜈
𝑝ℎ [√|𝑔𝜇𝜈| has been implied by √𝑔𝜇𝜈] 

Physical value of 𝑏𝜇 in orthogonal system  :√𝑔𝜇𝜇𝑏𝜇 = 𝑏𝜇
𝑝ℎ 

𝑎. 𝑏 = 𝑔𝜇𝜇𝑎𝜇𝑏𝜇 = 𝑔𝜇𝜇
𝑎𝜇

𝑝ℎ

√𝑔𝜇𝜇

𝑏𝜇
𝑝ℎ

√𝑔𝜇𝜇
= (𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑠𝑖𝑔𝑛)𝑎𝜇

𝑝ℎ
𝑏𝜇

𝑝ℎ = 𝑎𝜇𝑏𝜇 (2) 

Example for clarifying the sign aspect:For flat space time(With  the (+, −, −, −) signature 

] 𝑔𝜇𝜇
𝑎𝜇

𝑝ℎ

√𝑔𝜇𝜇

𝑏𝜇
𝑝ℎ

√𝑔𝜇𝜇
= 𝑔00

𝑎0
𝑝ℎ

√𝑔00

𝑏0
𝑝ℎ

√𝑔00
+ 𝑔11

𝑎1
𝑝ℎ

√𝑔11

𝑏1
𝑝ℎ

√𝑔11
+ 𝑔22

𝑎2
𝑝ℎ

√𝑔22

𝑏2
𝑝ℎ

√𝑔22
+ 𝑔33

𝑎3
𝑝ℎ

√𝑔33

𝑏3
𝑝ℎ

√𝑔33
= +1

𝑎0
𝑝ℎ

√+1

𝑏0
𝑝ℎ

√+1
+

(−1)
𝑎1

𝑝ℎ

√|−1|

𝑏1
𝑝ℎ

√|−1|
+ (−1)

𝑎2
𝑝ℎ

√|−1|

𝑏2
𝑝ℎ

√|−1|
+ (−1)

𝑎3
𝑝ℎ

√|−1|

𝑏3
𝑝ℎ

√|−1|
= 𝑎0

𝑝ℎ𝑏0
𝑝ℎ

− 𝑎1
𝑝ℎ𝑏1

𝑝ℎ
− 𝑎2

𝑝ℎ𝑏2
𝑝ℎ

− 𝑎3
𝑝ℎ𝑏3

𝑝ℎ
 

(3) 

Similar extensions 

[Appropriate sign has to be taken since √𝑔𝜇𝜇 is always positive] 

The above signifies the MInkowskian nature of the physical quantities a and b. 

They agree with the definition of dot product 

Now  

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 (4) 

The above is in relation to coordinate values 

In relation to physical values we may write[orthogonal systems] 

𝐹𝜇𝜈 = 𝜕𝜇 (
𝐴𝜈

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

√𝑔𝜈𝜈

) − 𝜕𝜈 (
𝐴𝜇

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

√𝑔𝜇𝜇

) 

But A(coordinate value) is gauge dependent…gauging on A should not alter the physical nature of 

𝐹𝜇𝜈(which is not violated in the above.) 

Definition of  physical value in the  General type [Literature based]: orthogonal or non orthogonal: 

𝐹𝑖𝑘
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝜇𝜈 (5)[following summation convention] 

Identical with  

𝐹𝜇𝜈
𝑝ℎ = √𝑔𝜇𝛼𝑔𝜈𝛽𝐹𝛼𝛽 

 

Multiplying both sides of (5)by 𝑔𝑖𝜇𝑔𝑘𝜈 

𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝜇𝜈Implies that 
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𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘  (6) 

Define 𝐹𝜇𝜈:𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘  (7)[allowing summation convention] 

𝐹𝜇𝜈:𝑝ℎ𝐹𝜇𝜈
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘√𝑔𝜇𝛼𝑔𝜈𝛽𝐹𝛼𝛽(6.1) 

You have in the orthogonal system, 𝑖 = 𝜇 = 𝛼:and 𝑘 = 𝜈 = 𝛽 and  

𝐹𝜇𝜈:𝑝ℎ𝐹𝜇𝜈
𝑝ℎ = 𝐹𝜇𝜈𝐹𝜇𝜈 (8)[summation considered] 

[On the left side we have curved space time  metric coefficients on the right we don’t have. 

[In the orthogonal system:𝑔𝑗𝑗 =
1

𝑔𝑗𝑗
 [summation not implied]: this simplifies the rhs of (6.1) causing 

cancellation][] 

Thus in the orthogonal system the dot product of the physical values is invariant  

 

You may compare equation (8) with the relation 𝑎𝜈
𝑝ℎ𝑏𝜇

𝑝ℎ
= 𝑎𝜇𝑏𝜇 

Further investigation of the tensorial nature of 𝐹𝜇𝜈
𝑝ℎ and 𝐹𝜇𝜈:𝑝ℎ 

Recalling (6) 

𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘 

And treating 𝐹𝑖𝑘
𝑝ℎ as a tensor let us lower its indices :𝐹𝜇𝜈:𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘. This agrees with our 

definition of 𝐹𝜇𝜈:𝑝ℎ.  

Recalling (7) let is raise the indices of 𝐹𝜇𝜈:𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘. Multiplying both sides by 𝑔𝑖𝜇𝑔𝑘𝜈 we have 

𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝜇𝜈:𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈 𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝑖𝑘 

Treating 𝐹𝜇𝜈:𝑝ℎ as a tensor and raising indices , 

   𝐹𝑖𝑘
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈𝐹𝜇𝜈: agrees with our definition 

From relations (5) and (7) the quantities 𝐹𝜇𝜈
𝑝ℎ and 𝐹𝜇𝜈:𝑝ℎ cannot be directly recognized as tensors 

 

 

From the theoretical point of view you may take 𝐹𝑖𝑘 = 𝑃𝑖𝑄𝑘 

We have the following differential equation: 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 = 𝑃𝜇𝑄𝜈: There two quantities P and Q and 

so we can exert choice. But 𝑃𝜇 and 𝑄𝜇each must transform like a  vector 

If A transforms like a 4 vector and if P and Q are 4 vectors preserving 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 = 𝑃𝜇𝑄𝜈we have to 

write. 
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𝜕𝜇(Λ𝜈
𝛼𝐴′𝛼) − 𝜕𝜈(Λ𝜇

𝛽𝐴′𝛽) = (Λ𝜈
𝛼𝑃′𝜇)(Λ𝜈

𝛼𝑄′𝜇) 

The above equation will ensure the appropriate transformation properties 

[the  background system is Euclidean and Lorentz transformation holds for uniform relative motion 

between the frames]. 

𝐹𝑖𝑘 is the coordinate value of the vector. 

But  

𝐹𝑖𝑘 = 𝜕𝑖 (
𝐴𝑘

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

√𝑔𝜈𝜈

) − 𝜕𝑘 (
𝐴𝑖

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

√𝑔𝜇𝜇

) 

Therefore: 

𝐹𝜇𝜈
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈 (𝜕𝑖 (

𝐴𝑘
𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

√𝑔𝜈𝜈

) − 𝜕𝑘 (
𝐴𝑖

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

√𝑔𝜇𝜇

)) 

The above is identical with 

𝐹𝜇𝜈
𝑝ℎ = √𝑔𝑖𝜇𝑔𝑘𝜈(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) 

Transformation: 

𝐹′𝑖𝑘 = Λ𝑖
𝜇Λ𝑘

𝜈𝐹𝜇𝜈 

√𝑔𝑖𝜇𝑔𝑘𝜈𝐹′𝑖𝑘 = √𝑔𝑖𝜇𝑔𝑘𝜈Λ𝑖

𝜇

Λ𝑘
𝜈𝐹𝜇𝜈 

 

√𝑔′𝑖𝜇𝑔′𝑘𝜈√𝑔𝑖𝜇𝑔𝑘𝜈𝐹′𝑖𝑘 = √𝑔′𝑖𝜇𝑔′𝑘𝜈√𝑔𝑖𝜇𝑔𝑘𝜈Λ𝑖

𝜇

Λ𝑘
𝜈𝐹𝜇𝜈 

√𝑔𝑖𝜇𝑔𝑘𝜈𝐹′𝜇𝜈

𝑝ℎ

= √𝑔′𝑖𝜇𝑔′𝑘𝜇Λ𝑖
𝜇Λ𝑘

𝜈
𝐹𝜇𝜈

𝑝ℎ
 

Again: 

 

We have the curved space time transformations for the physical values of 𝐹𝜇𝜈 

 𝑔′𝑖𝜇 and 𝑔′𝑘𝜇  are transformed values of the metric coefficients. 

When we consider transformation of tensors we involve only the coordinate values and not the physical 

values of the tensor for example we take  𝐴𝜇 instead of √𝑔𝜇𝜇𝐴𝜇 
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Link https://drive.google.com/file/d/0BymT8iD6LY1nQ1VURFNhWDdtVkE/view?usp=sharing 

 

Extra Supplementary Material 

Certain calculations  that were provided to stand out against my work :  

𝑔𝜇𝜈 = 𝑔𝜇𝛼𝑔𝜈𝛽𝑔𝛼𝛽 (A) 

𝛿𝑔𝜇𝜈 = (𝛿𝑔𝜇𝛼)𝑔𝜈𝛽𝑔𝛼𝛽 + 𝑔𝜇𝛼(𝛿𝑔𝜈𝛽)𝑔𝛼𝛽 + 𝑔𝜇𝛼𝑔𝜈𝛽(𝛿𝑔𝛼𝛽)  

𝛿𝑔𝜇𝜈 = (𝛿𝑔𝜇𝛼)𝑔𝜈𝛽𝑔𝛼𝛽 + 𝑔𝜇𝛼(𝛿𝑔𝜈𝛽)𝑔𝛼𝛽 + 𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽  

𝛿𝑔𝜇𝜈 = (𝛿𝑔𝜇𝛼)𝛿𝛼
𝜈 + (𝛿𝑔𝜈𝛽)𝛿𝛽

𝜇 + 𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽  

𝛿𝑔𝜇𝜈 = 𝛿𝑔𝜇𝜈 + 𝛿𝑔𝜈𝜇 + 𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽 (B) 

There fore, 

𝛿𝑔𝜇𝜈 = −𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽 

But I have in my paper 

𝛿𝑔𝜇𝜈 = 𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽 

Solution/answer offered by me: 

 

𝛿𝑔𝜇𝜈 = 𝛿𝑔𝜇𝜈 + 𝛿𝑔𝜈𝜇 + 𝛿𝑔𝜇𝜈 [if 𝛿𝑔𝛼𝛽 is treated as a tensor]   (C) 

We have: 𝛿𝑔𝜇𝜈 + 𝛿𝑔𝜈𝜇 = 0 ensuring the validity of (C) 

𝛿𝑔𝜇𝜈 = −𝛿𝑔𝜈𝜇  

 

δgμν is an antisyymmetric tensor  

Relation (B) reads 𝛿𝑔𝜇𝜈 = 𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽 (D) 

Again in relation B if you cancel 𝛿𝑔𝜇𝜈 from either side you have  

𝛿𝑔𝜈𝜇 = −𝑔𝜇𝛼𝑔𝜈𝛽𝛿𝑔𝛼𝛽 (E) 

https://drive.google.com/file/d/0BymT8iD6LY1nQ1VURFNhWDdtVkE/view?usp=sharing
https://drive.google.com/file/d/0BymT8iD6LY1nQ1VURFNhWDdtVkE/view?usp=sharing
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Adding (D) and (E) 

𝛿𝑔𝜈𝜇 + 𝛿𝑔𝜈𝜇 = (−𝑔𝜇𝛼𝑔𝜈𝛽 + 𝑔𝜈𝛼𝑔𝜇𝛾)𝛿𝑔𝛼𝛽 

[𝜇, 𝜈 are fixed indices] 

The left side is symmetric with respect to  interchange of 𝜇 and 𝜈 while the right side is antisymmetric 

with respect to the interchange of 𝜇 and 𝜈. Therefore we have 𝛿𝑔𝜈𝜇 + 𝛿𝑔𝜈𝜇 = 0 ⟹  𝛿𝑔𝛼𝛽 = 0 for 

general type of non orthogonal systems  

[Since generally speaking  −𝑔𝜇𝛼𝑔𝜈𝛽 + 𝑔𝜈𝛼𝑔𝜇𝛾 ≠ 0] 

In the orthogonal system(C) and (D ) 

𝛿𝑔𝜈𝜇 = −𝑔𝜇𝜇𝑔𝜈𝜈𝛿𝑔𝜇𝜈 [[𝜇, 𝜈 are fixede indices: summation on them is not implied here](C’) 

𝛿𝑔𝜈𝜇 = 𝑔𝜈𝜈𝑔𝜇𝜇𝛿𝑔𝜇𝜈   [[𝜇, 𝜈 are fixede indices: summation on them is not implied here (D) 

𝛿𝑔𝜈𝜇 + 𝛿𝑔𝜈𝜇 = −𝑔𝜇𝜇𝑔𝜈𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜈𝜈𝑔𝜇𝜇𝛿𝑔𝜇𝜈 = 0 

Therefore 2𝛿𝑔𝜈𝜇 = 0 or, 𝛿𝑔𝜇𝜈 = 0. Impossibility of continuous variation is evident 

Simultaneous symmetricity and asymmetricity suggests zero value. But asymmetricity has been deduced 

using differentiation. In basic calculationsinn my paper “survey…” I have used𝑔𝜇𝛼𝑔𝛼𝜈 = 𝛿𝜇
𝜈 and 

 (𝑔𝛼𝜇 + 𝛿𝑔𝛼𝜇)(𝑔𝛼𝜈 + 𝛿𝑔𝛼𝜈) = 𝛿𝜇
𝜈 

 

Covaraiant differentiation of 𝛿𝑔𝛼𝛽 is extensively used in the extended gravity theories only because 

𝛿𝑔𝛼𝛽 taken to be is a tensor. But the 10 equations I th paper “Survey”show that 𝛿𝑔𝛼𝛽 can move through 

discrete steps only 

We have 𝛿𝑔𝜈𝜇 as anti symmetric tensor instead of symmetric 

Now 𝑔𝛼𝛽 is symmetric and 𝛿𝑔𝛼𝛽 is antisymmetric. Therfore 𝑔𝛼𝛽 + 𝛿𝑔𝛼𝛽 is neither symmetric or anti 

symmetric 

 

 

Salient Point: 

If continuous changes in 𝑔𝜇𝜈  are impossible due to discrete values of 𝛿𝑔𝜇𝜈  , differentiation of becomes 

impossible and we do not have relation s C or D. In we do not have  anti symmetric  𝛿𝑔𝜇𝜈 

Ancillary Aspect 

Even then we may assert the following though it is not so much necessary if discreteness renders usual 

type of differentiation impossible. 

We consider the quantityr: 
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𝜙 = 𝐴𝑖𝑗𝑎𝑖𝑎𝑗  

𝜙 = 𝐴𝑖𝑗𝑎𝑖𝑎𝑗 = 𝐴𝑗𝑖𝑎𝑗𝑎𝑖  

2𝜙 = 𝐴𝑖𝑗𝑎𝑖𝑎𝑗 + 𝐴𝑗𝑖𝑎𝑗𝑎𝑖  

Or, 

𝜙 =
1

2
(𝐴𝑖𝑗 + 𝐴𝑗𝑖)𝑎𝑖𝑎𝑗  

Or, 

𝜙 = 𝐵𝑖𝑗𝑎𝑖𝑎𝑗  

Therefore in the context of a dot product like,𝜙 = 𝐴𝑖𝑗𝑎𝑖𝑎𝑗[or 𝑑𝑠2 = (𝑔𝛼𝛽 + 𝛿𝑔𝛼𝛽)𝑑𝑥𝑖𝑑𝑥𝑗] 

I can always replace 𝐴𝑖𝑗  by a symmetric tensor 𝐵𝑖𝑗: this is a context dependent replacement valid for dot 

products . But may not be valid in an arbitrary situation 

 

 

 

 

Symmetricity for the metric tensor is not essential for our work or otherwise: 

Definition:𝑔𝑖𝑗 =
𝐺(𝑖,𝑗)

𝑔
 

Where 𝐺(𝑖, 𝑗) is the cofactor of 𝑔𝑖𝑗  and 𝑔 is the determinant of 𝑔𝑖𝑗  

Again  𝑔 = 𝑔𝑖𝑗𝐺(𝑖, 𝑗); [summation over j only] 

Also: 𝑔𝑘𝑗𝐺(𝑖, 𝑗) = 0 if 𝑘 ≠ 𝑖 

Now, 𝑔𝑖𝑗𝑔𝑘𝑗 =
𝐺(𝑖,𝑗)

𝑔
𝑔𝑘𝑗 = 𝛿𝑖

𝑘  

Symmetricity of 𝑔𝑘𝑗 has not been assumed here. 

Incidentally 𝐺(𝑖, 𝑗) is not a tensor in the usual sense . It is a relative tensor of weight two 

But the quantity 
𝐺(𝑖,𝑗)

𝑔
 is a tensor by division rule since 𝑔𝑘𝑗 and 𝛿𝑖

𝑘 are tensors. 

The result 𝑔𝑖𝑗𝑔𝑘𝑗 = 𝛿𝑖
𝑘 has been used in derivation of my equations. 

On fR) Gravity 

Force four Orthogonal to 4 velocity as suggested by f(R) gravity papers[1] is not necessary .There are 

logicalinconsistencies withsuch formulations 
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Part 1 

𝑑2𝑥𝜇

𝑑𝑠2 + Γ𝜇
𝜈𝜆𝑢𝜈𝑢𝜆 = 𝑓𝜇 (68:f®Gravity paper) ---(1) 

Where, 

𝑓𝜇 = 8𝜋
∇𝜈𝑝

(𝜌+𝑝)[8𝜋+𝑓𝑇(𝑅,𝑇)]
(𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈) (69:paper)  ---------- (2) 

We multiply both sides of (68) by 
1

𝑖2 and use the substitution 𝑠′ = 𝑖𝑠 [ prime on s does not relate to 

differentiation];𝑖 = √−1 

Relation (68) reduces to 

𝑑2𝑥𝜇

𝑑𝑠′2 + Γ𝜇
𝜈𝜆𝑢′𝜈𝑢′𝜆 = −𝑓𝜇     (3) 

Where, 

𝑢′𝜈 =
𝑑𝑥𝜈

𝑑𝑠′
=

𝑑𝑥𝜈

𝑑(𝑖𝑠)
=

1

𝑖

𝑑𝑥𝜈

𝑑𝑠
  (4.1) 

𝑢′𝜆 =
𝑑𝑥𝜆

𝑑𝑠′
=

𝑑𝑥𝜆

𝑑(𝑖𝑠)
=

1

𝑖

𝑑𝑥𝜆

𝑑𝑠
 (4.2) 

We re write (3) as:\ 

𝑑2𝑥𝜇

𝑑𝑠′2 + Γ𝜇
𝜈𝜆𝑢′𝜈𝑢′𝜆 = −8𝜋

∇𝜈𝑝

(𝜌+𝑝)[8𝜋+𝑓𝑇(𝑅,𝑇)]
(𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈) (5) 

It is important to note that on the right side of (5) we do not have prime on 𝑢𝜇 and on 𝑢𝜈 

 

In relations (64) 65 ,66, 67 we could have used s’=is instead of s in getting the same form of result that is 

in obtaining (68).  

𝑑2𝑥𝜇

𝑑𝑠′2
+ Γ𝜇

𝜈𝜆𝑢′𝜈𝑢′𝜆 = 𝑓′𝜇
(6) 

With 𝑓′𝜇 = 8𝜋
∇𝜈𝑝

(𝜌+𝑝)[8𝜋+𝑓𝑇(𝑅,𝑇)]
(𝑔𝜇𝜈 − 𝑢′𝜇′𝑢𝜈) (7) 

On the right we now have  𝑢′𝜇 and 𝑢′𝜈 since we have used is instead of s 

This is mathematical artifice and it is not mandatory to connect it in the physical sense. The manifold 

itself contains space like and mixed curves[worlds lines[] though the possibility of movement along such 

curves in the physical world come under restrictions. 

From (3) and (6) 

𝑓′𝜇 = −𝑓𝜇 

From (6) and (7) we have  

𝑑2𝑥𝜇

𝑑𝑠′2 + Γ𝜇
𝜈𝜆𝑢′𝜈𝑢′𝜆 = 8𝜋

∇𝜈𝑝

(𝜌+𝑝)[8𝜋+𝑓𝑇(𝑅,𝑇)]
(𝑔𝜇𝜈 − 𝑢′𝜇′𝑢𝜈) (8) 
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From (5) and (8) 

−8𝜋
∇𝜈𝑝

(𝜌 + 𝑝)[8𝜋 + 𝑓𝑇(𝑅, 𝑇)]
(𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈) = 8𝜋

∇𝜈𝑝

(𝜌 + 𝑝)[8𝜋 + 𝑓𝑇(𝑅, 𝑇)]
(𝑔𝜇𝜈 − 𝑢′𝜇′𝑢𝜈) 

[important ∇𝜈𝑝, 𝑝 𝑎𝑛𝑑𝜌 are identical on both sides: they are point functions on the manifold while 

proper velocity components depend on directions chosen at a given point on the manifold] 

−(𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈) = (𝑔𝜇𝜈 − 𝑢′𝜇′𝑢𝜈) 

Or  

2𝑔𝜇𝜈 = 𝑢𝜇𝑢𝜈 + 𝑢′𝜇′𝑢𝜈 = 0 

Since 𝑢′𝜇′𝑢𝜈 =
1

𝑖2 𝑢𝜇𝑢𝜈 from (4.1) and (4.2) 

 

Implies 

𝑔𝜇𝜈 = 0 

This can be avoided only if  

𝑓′𝜇 = −𝑓𝜇 = 0 (9) 

You have nothing other than what you have from Einstein’s theory. 

 

Part 11 

Separation between to particles/bodies moving along the same geodesic may increase 

Consider two stones falling towards the earth  along the same radius. The one at a greater height has 

lesser acceleration  than the one closer to the earth. Their separation should increase with time as they 

move along the geodesic. Gravity should not be misunderstood to have the sole option of bring bodies 

closer together. If we pelt a stone upwards with a speed greater than 11 or 12 km/s[escape velocity] it 

will not return to the earth.  In a many body scenario we can think of suitable initial condition like a big 

bang[classical big bang] where the bodies move outwards  never to come back. In fact Laplace’s 

equation does not allow stable equilibrium. 

This type of classical expansion may explain the expansion of the universe [less satisfactorily]  

But will not explain the accelerated pace of the expansion at least in the two body scenario. And the 

classical conservation of energy principle. 

But in Einstein’s theory gravity is not a force.  where do you get work from? 

If Power is the time component of force and this happens to be zero in geodesic motion. [but in 

principle it admits force not relating to gravity: in presence of gravity alone it is zero[geodesic motion)] 

Is it possible to speculate accelerated pace of the universe with Einstein’s theories? 
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First we have to consider the difference between four acceleration and three acceleration. A body falling 

freely under gravity accelerates at the rate of 9.8 m/s. But four acceleration[even the radial component ] 

is exactly zero. If the earth were a dense object the three acceleration could have been 1000 m/s 

radially downwards, the four acceleration remaining zero. 

The relation 

𝑑2𝑥𝜇

𝑑𝑠2 + Γ𝜇
𝜈𝜆𝑢𝜈𝑢𝜆 = 𝑓𝜇  represents four acceleration per unit rest mass in the general case 

For geodesic motion 

𝑑2𝑥𝜇

𝑑𝑠2 + Γ𝜇
𝜈𝜆𝑢𝜈𝑢𝜆 = 0 (10) 

The rate of fall [three acceleration ] of the apple falling from a tree is governed by the value 

𝑑2𝑥𝜇

𝑑𝑠2  which is physically palpable to us. 

[Both the concepts four acceleration and three acceleration are consistent/valid  formulations; four 

acceleration being more suitable for writing the equations]. 

We write relation (10) as 

𝑑2𝑥𝜇

𝑑𝑠2 = −Γ𝜇
𝜈𝜆𝑢𝜈𝑢𝜆  if the right side positive there will be positive there is a possibility of fours speeds in 

the radial direction continuously increasing in a time varying metric. This formula will obviously do 

better than classical results 

[Our idea here is to explore such possibilities] 

[1] Harko T,Lobo F S N,Nojiri S,Odinstov S D, f(R) GravityPhysical Review D,DOI:10.1103/PhysRev D. 

84.024020 (2011) 

Short note on Dual Spaces and how they may be applied to 𝑔𝛼𝛽 and 𝑔𝛼𝛽 

[To justify the fact that 𝑔𝛼𝛽 is the dual of 𝑔𝛼𝛽] 

Given any vector space V over a field F, the dual space V∗ is defined as the set of all linear 

maps φ: V → F (linear functionals). The dual space V∗ itself becomes a vector space over F when 

equipped with an addition and scalar multiplication satisfying: 

 

A mapping may assign a scalar to every vector in some vector space . These mappings may 

be defined in such a manner that they form a vector space themselves: the scalar 

mentioned is just instrumental in the process of defining the mapping so that these mappings 

form a new [distinct]vector space. 

Linear maps are most suitable 

(𝜑 + 𝜓)(𝑥) = 𝜑(𝑥) + 𝜓(𝑥) 

(𝑎𝜑)(𝑥) = 𝑎(𝜑(𝑥)) 

https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Field_(mathematics)
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_functional
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[𝑥:element from the original vector space V; 𝜑 and 𝜓 are elements in the dual space 𝑉∗] 

For linear maps we also have: 

𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦) 

𝜑(𝑐𝑥) = 𝑐𝜑(𝑥) 

Example: 

(𝑔𝛼𝛽)(𝑔𝛼𝛽) = 4 

The mapping  𝑔𝛼𝛽  has to be defined as a linear map . With any other element in V 

(𝜑 + 𝜓)(𝑥) = 𝜑(𝑥) + 𝜓(𝑥) 

(𝑎𝜑)(𝑥) = 𝑎(𝜑(𝑥)) 

Have to be satisfied: point is that we have to create a vector space with thefunctions /mappings   

𝑔𝛼𝛽 along with other elements in the dual space . 

The mapping 𝑔𝛼𝛽 should also satisfy: 

𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦) 

𝜑(𝑐𝑥) = 𝑐𝜑(𝑥) 

Usual definitions are good enough. 

𝑔𝛼𝛽 and 𝑔𝛼𝛽 belong to different spaces: the original vector spa e and its dual 

 Quantities like 𝑔𝛼𝛽 + 𝑔𝛼𝛽 belong to neither of the spaces, original vector space or the dual spaces.  

But we have mappings/operations connecting vectors from the two spaces V and its dual V* 

(𝑔𝛼𝛽)(𝑔𝛼𝛽) = 4 has the appearance of a dot product but it is not a dot product since the two elements 

are from different spaces. 

For an arbitrary tensor: 

𝑇𝛼𝛽𝑇𝛼𝛽 = 𝑠[sacalar] 

That is if you choose 𝑇𝛼𝛽 from V the mapping has to be defined by  

𝑇𝛼𝛽(𝑇𝛼𝛽) = 𝑆 scalar 

Usual tensor transformation rules[for example the contravariant tensor transformations:𝑇′𝜇𝜈 =
𝜕𝑥′𝜇

𝜕𝑥𝛼

𝜕𝑥′𝜈

𝜕𝑥𝛽 𝑇𝛼𝛽 ] are good enough. We have the formula 𝑇𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝑇𝜇𝜈, which is consistent with 

The transformation 𝑇′𝜇𝜈 =
𝜕𝑥′𝜇

𝜕𝑥𝛼

𝜕𝑥′𝜈

𝜕𝑥𝛽 𝑇𝛼𝛽 and also with the mapping (𝑔𝛼𝛽)(𝑔𝛼𝛽) = 4 

Could we get something more general than 𝑇𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝑇𝜇𝜈 from (𝑔𝛼𝛽)(𝑔𝛼𝛽) = 4? 
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We have  

𝑇𝛼𝛽𝑇𝛼𝛽 = 𝑔𝛼𝜇𝑔𝛽𝜈𝑇𝛼𝛽𝑇𝜇𝜈 = 𝑇𝜇𝜈𝑇𝜇𝜈[ a consistent picture in the same frame of reference] 

We may choose any consistent definition for example the usual ones… 

If the components of a tensor are zero in one frame , they are also zero in the dual space. 

Any tensor equation may be written in  terms of tensors in the original or the dual space or in mixed 

form expressing the same event. 

Thus tensors I the original and the dual space express the same physical quantities in different forms 

 

We consider two vectors 𝑇1, 𝑇2 belong to  

Mappings 𝑇1and 𝑇2 are contained in the dual space 𝑉∗ using the scalar concept: 

𝑇1(𝑇1) = 𝑠11 

𝑇2(𝑇1) = 𝑠21 

𝑇1(𝑇2) = 𝑠12 

𝑇2(𝑇1) = 𝑠21 

𝑇1(𝑇1) ± 𝑇2(𝑇1) = 𝑠11 ± 𝑠21 

Or, 

𝑔𝛼𝛽(𝑇𝛼𝛽) + 𝛿𝑔𝛼𝛽(𝑇𝛼𝛽) = sum / difference of two scalars[sum and difference are operations defined 

consistently  by linearity[linear mappings] 

 

Given  

𝑔𝜇𝜈𝑔𝜇𝜈 = 4  

𝑔𝛼𝛽𝑔𝛼𝛽 = 4  

We have to find a consistent formula for 𝑔𝜇𝜈𝑔𝛼𝛽 

𝑔𝜇𝜈 = 𝑔𝜇𝛼𝑔𝜈𝛽𝑔𝛼𝛽 is a valid fomula which already exists . it leads to consistent  formation of the dual 

space 

When we take variations on both sides of 𝑔𝜇𝜈 = 𝑔𝜇𝛼𝑔𝜈𝛽𝑔𝛼𝛽,the variation in one space is getting 

consistently linked with variation in the other [dual space]. Two different spaces are not a problem 

when they get connected by mappings especially if the mappings are linear functions. Dual space speaks 

of such connected or inter related vectors. 

We denote  
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𝐴𝜇𝜈 = 𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈 

Therefore 𝛿𝑔𝜇𝜈 = 𝐴𝜇𝜈 − 𝑔𝜇𝜈  

If 𝑨𝝁𝝂 is a tensor [as required by manifold variation to produce Ricci scalar R or some function of it at 

any stage of variation] 𝜹𝒈𝝁𝝂 us also a tensor being the difference of two tensor 

𝐴𝜇𝜈 = 𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈 is a tensor with respect to both the manifolds M1 and M2 bu t it is a metric tensor 

with respect to M2 only. We 𝑔𝜇𝜈 as metric tensor for M1. In  have In the product  

 

𝐴𝜇𝜈𝐴𝜇𝜈 = 𝑠[scalar] 

𝑔𝜇𝜈𝑔𝜇𝜈 = 4 

 

[To be continued/improved with further improvements/elaborations] 

 

 

 

 

 

 

 

 


